伴矿景天WRKY基因家族鉴定及镉胁迫响应分析

王剑超, 邱文敏, 金康鸣, 陆铸畴, 韩小娇, 卓仁英, 刘晓光, 何正权

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2) : 49-60.

PDF(5220 KB)
PDF(5220 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2) : 49-60. DOI: 10.12302/j.issn.1000-2006.202201015
研究论文

伴矿景天WRKY基因家族鉴定及镉胁迫响应分析

作者信息 +

Comprehensive analysis of WRKY gene family in Sedum plumbizincicola responding to cadmium stress

Author information +
文章历史 +

摘要

【目的】WRKY 转录因子在植物响应非生物胁迫过程中发挥着重要的调控作用,目前超积累植物伴矿景天(Sedum plumbizincicola) WRKY转录因子的研究较少。进行SpWRKY基因家族的全基因组鉴定及其在镉胁迫下的表达模式分析可为后续SpWRKYs 基因克隆和耐镉功能分析提供参考。【方法】对伴矿景天WRKY基因家族进行全基因组鉴定和生物信息学分析,利用转录组数据和qRT-PCR 技术检测WRKY基因在镉胁迫下的表达模式并进行转基因拟南芥耐镉性的分析。【结果】伴矿景天基因组中共鉴定出77个SpWRKYs,非均匀地分布在各条染色体上;系统进化树分析发现,伴矿景天WRKY成员被分成3大类群(Ⅰ—Ⅲ),第Ⅱ类群又被分成5个亚群(Ⅱa—e);共线性分析发现,伴矿景天WRKY基因家族和拟南芥(Arabidopsis thaliana) 之间存在7个共线基因对,和玉吊钟(Kalanchoe fedtschenkoi)之间存在53个共线基因对;SpWRKYs基因之间存在 19 个片段复制基因对;启动子序列分析发现,SpWRKYs 启动子有多种与激素和逆境响应等相关的顺式调控元件;镉胁迫表达分析发现,7 个SpWRKYs 受镉胁迫显著上调表达,整体表达趋势呈现先增后减的状态;在拟南芥中过表达SpWRKY69发现,SpWRKY69可以增强Cd离子向地上部的转运速率,对植株镉耐性起到负调控作用。【结论】伴矿景天WRKY基因家族与其他物种的WRKY家族结构相似,片段复制是其主要进化动力之一。镉胁迫条件下部分成员相对表达量显著变化,而SpWRKY69能增加Cd离子向地上部的转运速率,故其他WRKY成员可能也参与调控植株镉耐性。

Abstract

【Objective】 WRKY transcription factors play important regulatory roles for a plant abiotic stress response. However, little information is available about WRKY transcription factors in the hyperaccumulating plant Sedum plumbizincicola. The identification of SpWRKY gene family members and analysis of their expression patterns under cadmium stress can provide a reference for molecular cloning of SpWRKYs gene and functional characterization of cadmium tolerance.【Method】 In this study, the genome-wide identification and bioinformatics analysis of WRKY gene family members were carried out. Expression patterns of WRKY genes under cadmium stress were derived from transcriptome data and qPCR, and the roles of SpWRKY69 in cadmium tolerance were assessed by the heterologous expression in Arabidopsis thaliana.【Result】 There were 77 SpWRKYs identified in S. plumbizincicola, unevenly distributed on the chromosomes. Based on the phylogenetic analysis, the SpWRKY proteins were classified into three groups (Ⅰ-Ⅲ), among which the second group was further divided into five subgroups (Ⅱa-e). The synteny analysis showed that there were seven collinear gene pairs in the S. plumbizincicola and A. thaliana WRKY gene family and 53 collinear gene pairs for Kalanchoe fedtschenkoi; 19 pairs of SpWRKYs were identified as the segmental duplication. Cis-regulatory elements related to stress and hormone responses were found in the promoters of SpWRKYs. The expression profiles showed that the expression levels of the seven SpWRKYs were significantly up-regulated under cadmium stress, exhibiting a pattern of increasing initially and then decreasing. Over-expression of SpWRKY69 in A. thaliana showed that SpWRKY69 can enhance the transport rate of Cd ions to the shoot and play a negative role in regulating plant cadmium tolerance.【Conclusion】 Structural features of WRKY gene family members in S. plumbizincicola are similar to those of other species, and the fragment duplication is one of the main evolutionary forces. The relative expression levels of some members change significantly under cadmium stress, and SpWRKY69 can increase the transport rate of Cd ions to the shoot, and so other WRKY members may also be involved in the regulation of plant cadmium tolerance. These results provide a foundation for further functional characterization of SpWRKYs related to Cd tolerance.

关键词

伴矿景天 / WRKY转录因子 / 镉胁迫 / 基因表达 / 拟南芥转基因

Key words

Sedum plumbizincicola / WRKY transcription factor / cadmium stress / gene expression / Arabidopsis transformation

引用本文

导出引用
王剑超, 邱文敏, 金康鸣, . 伴矿景天WRKY基因家族鉴定及镉胁迫响应分析[J]. 南京林业大学学报(自然科学版). 2023, 47(2): 49-60 https://doi.org/10.12302/j.issn.1000-2006.202201015
WANG Jianchao, QIU Wenmin, JIN Kangming, et al. Comprehensive analysis of WRKY gene family in Sedum plumbizincicola responding to cadmium stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(2): 49-60 https://doi.org/10.12302/j.issn.1000-2006.202201015
中图分类号: S718   

参考文献

[1]
ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molec Gen Genet, 1994, 244(6):563-571.DOI:10.1007/BF00282746.
[2]
EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5):199-206.DOI:10.1016/S1360-1385(00)01600-9.
[3]
WANG L N, ZHU W, FANG L C, et al. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera[J]. BMC Plant Biol, 2014, 14:103.DOI:10.1186/1471-2229-14-103.
[4]
REN C M, ZHU Q, GAO B D, et al. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling[J]. J Integr Plant Biol, 2008, 50(5):630-637.DOI:10.1111/j.1744-7909.2008.00653.x.
[5]
GUILLAUMIE S, MZID R, MÉCHIN V, et al. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco[J]. Plant Mol Biol, 2010, 72(1):215.DOI:10.1007/s11103-009-9563-1.
[6]
JIANG C H, HUANG Z Y, XIE P, et al. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv.tomato DC3000 in Arabidopsis[J]. J Exp Bot, 2015, 67(1):157-174.DOI:10.1093/jxb/erv445.
[7]
SHENG Y B, YAN X X, HUANG Y, et al. The WRKY transcription factor,WRKY13,activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J]. Plant Cell Environ, 2019, 42(3):891-903.DOI:10.1111/pce.13457.
[8]
TAO Z, KOU Y J, LIU H B, et al. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. J Exp Bot, 2011, 62(14):4863-4874.DOI:10.1093/jxb/err144.
[9]
CHU X Q, WANG C, CHEN X B, et al. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(11):e0143022.DOI:10.1371/journal.pone.0143022.
[10]
LIU Z Q, FANG H H, PEI Y X, et al. WRKY transcription factors down-regulate the expression of H2S-generating genes,LCD and DES in Arabidopsis thaliana[J]. Sci Bull, 2015, 60(11):995-1001.DOI:10.1007/s11434-015-0787-y.
[11]
SUN Y D, YU D Q. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement[J]. Plant Cell Rep, 2015, 34(8):1295-1306.DOI:10.1007/s00299-015-1787-8.
[12]
中国生态环境部. 2014全国土壤污染状况调查公报[EB/OL].(2014-04-17)[2021-10-12]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
[13]
LANE T W, MOREL F M. A biological function for cadmium in marine diatoms[J]. Proc Natl Acad Sci USA, 2000, 97(9):4627-4631.DOI:10.1073/pnas.090091397.
[14]
ANDRESEN E, KÜPPER H. Cadmium toxicity in plants[J]. Met Ions Life Sci, 2013, 11:395-413.DOI:10.1007/978-94-007-5179-8_13.
[15]
RODRÍGUEZ-SERRANO M, ROMERO-PUERTAS M C, PAZMIÑO D M, et al. Cellular response of pea plants to cadmium toxicity:cross talk between reactive oxygen species,nitric oxide,and calcium[J]. Plant Physiol, 2009, 150(1):229-243.DOI:10.1104/pp.108.131524.
[16]
CHENG S P. Effects of heavy metals on plants and resistance mechanisms.A state-of-the-art report with special reference to literature published in Chinese journals[J]. Environ Sci Pollut Res Int, 2003, 10(4):256-264.DOI:10.1065/espr2002.11.141.2.
[17]
FAROON O, ASHIZAWA A, WRZAHJ S, et al. Toxicological profile for cadmium[R]. Cleveland: USA. US Department of Energy, 1989.
[18]
MUSZYNSKA E, HANUS-FAJERSKA E. Why are heavy metal hyperaccumulating plants so amazing?[J]. BioTechnologia, 2015, 4:265-271.DOI:10.5114/bta.2015.57730.
[19]
LI J T, GURAJALA H K, WU L H, et al. Hyperaccumulator plants from China:a synthesis of the current state of knowledge[J]. Environ Sci Technol, 2018, 52(21):11980-11994.DOI:10.1021/acs.est.8b01060.
[20]
PENG J S, WANG Y J, DING G, et al. A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola[J]. Mol Plant, 2017, 10(5):771-774.DOI:10.1016/j.molp.2016.12.007.
[21]
XU D, LU Z C, JIN K M, et al. SPDE:a multi-functional software for sequence processing and data extraction[J]. Bioinformatics, 2021, 37(20):3686-3687.DOI:10.1093/bioinformatics/btab235.
[22]
EDGAR R C. MUSCLE:Multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Res, 2004, 32(5):1792-1797.DOI:10.1093/nar/gkh340.
[23]
WATERHOUSE A M, PROCTER J B, MARTIN D M A, et al. Jalview Version 2: a multiple sequence alignment editor and analysis workbench[J]. Bioinformatics, 2009, 25(9):1189-1191.DOI:10.1093/bioinformatics/btp033.
[24]
KUMAR S, STECHER G, LI M, et al. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549.DOI:10.1093/molbev/msy096.
[25]
ZHANG H K, GAO S H, LERCHER M J, et al. EvolView,an online tool for visualizing,annotating and managing phylogenetic trees[J]. Nucleic Acids Res, 2012, 40(W1):W569-W572.DOI:10.1093/nar/gks576.
[26]
CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI:10.1016/j.molp.2020.06.009.
[27]
LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1):325-327.DOI:10.1093/nar/30.1.325.
[28]
WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.DOI:10.1093/nar/gkr1293.
[29]
HAN X J, YIN H F, SONG X X, et al. Integration of small RNAs,degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation[J]. Plant Biotechnol J, 2016, 14(6):1470-1483.DOI:10.1111/pbi.12512.
[30]
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504.DOI:10.1101/gr.1239303.
[31]
CLOUGH S J, BENT A F. Floral dip:a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6):735-743.DOI:10.1046/j.1365-313x.1998.00343.x.
[32]
SAMBROOK J, FRITSCH E, MANIATIS T. Molecular cloning:a laboratory manual[J]. Trends Biotechnol, 1991, 9(1): 213-214.
[33]
ALVAREZ M E, PENNELL R I, MEIJER P J, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity[J]. Cell, 1998, 92(6):773-784.DOI:10.1016/S0092-8674(00)81405-1.
[34]
WOHLGEMUTH H, MITTELSTRASS K, KSCHIESCHAN S, et al. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone[J]. Plant Cell Environ, 2002, 25(6):717-726.DOI:10.1046/j.1365-3040.2002.00859.x.
[35]
罗夏琳, 胡玉斐, 李攻科. 微波辅助消解-电感耦合等离子体原子发射光谱测定烟草中的重金属[J]. 分析科学学报, 2016, 32(2):249-252.DOI:10.13526/j.issn.1006-6144.2016.02.020.
LUO X L, HU Y F, LI G K. Determination of heavy metals in tobaccos by microwave-assisted digestion-inductively coupled plasma-optical emission spectrometry[J]. J Anal Sci, 2016, 32(2):249-252.DOI:10.13526/j.issn.1006-6144.2016.02.020.
[36]
ÜLKER B, SOMSSICH I E. WRKY transcription factors:from DNA binding towards biological function[J]. Curr Opin Plant Biol, 2004, 7(5):491-498.DOI:10.1016/j.pbi.2004.07.012.
[37]
RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends Plant Sci, 2010, 15(5):247-258.DOI:10.1016/j.tplants.2010.02.006.
[38]
KIM C Y, ZHANG S Q. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco[J]. Plant J, 2004, 38(1):142-151.DOI:10.1111/j.1365-313x.2004.02033.x.
[39]
XIE Z, ZHANG Z L, ZOU X L, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol, 2005, 137(1):176-189.DOI:10.1104/pp.104.054312.
[40]
GUPTA S, MISHRA V K, KUMARI S, et al. Deciphering genome-wide WRKY gene family of Triticum aestivum L[J]. Genes Genom, 2019, 41(1):79-94.DOI:10.1007/s13258-018-0742-9.
[41]
XIE T, CHEN C J, LI C H, et al. Genome-wide investigation of WRKY gene family in pineapple:evolution and expression profiles during development and stress[J]. BMC Genom, 2018, 19(1):490.DOI:10.1186/s12864-018-4880-x.
[42]
DONG J X, CHEN C H, CHEN Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Mol Biol, 2003, 51(1):21-37.DOI:10.1023/a:1020780022549.
[43]
CHRISTIAN A, YUE R, LIU Q, et al. The WRKY gene family in rice (Oryza sativa)[J]. J Integr Plant Biol, 2007(6):827-842.DOI:10.1111/j.1744-7909.2007.00504.x.
[44]
YANG B, JIANG Y Q, RAHMAN M H, et al. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments[J]. BMC Plant Biol, 2009, 9:68.DOI:10.1186/1471-2229-9-68.
[45]
TIIKA R J, WEI J, MA R, et al. Identification and expression analysis of the WRKY gene family during different developmental stages in Lycium ruthenicum Murr.fruit[J]. Peer J, 2020, 8:e10207.DOI:10.7717/peerj.10207.
[46]
WANG D, CHEN Q Y, CHEN W W, et al. A WRKY transcription factor,EjWRKY17,from Eriobotrya japonica enhances drought tolerance in transgenic Arabidopsis[J]. Int J Mol Sci, 2021, 22(11):5593.DOI:10.3390/ijms22115593.
[47]
DANG F F, LIN J H, CHEN Y P, et al. A feedback loop between CaWRKY41 and H2O2 coordinates the response to Ralstonia solanacearum and excess cadmium in pepper[J]. J Exp Bot, 2019, 70(5):1581-1595.DOI:10.1093/jxb/erz006.
[48]
CAI Z D, XIAN P Q, WANG H, et al. Transcription factor GmWRKY142 confers cadmium resistance by up-regulating the cadmium tolerance 1-like genes[J]. Front Plant Sci, 2020, 11:724.DOI:10.3389/fpls.2020.00724.

基金

国家重点研发计划子课题(2016YFD080080104)

编辑: 吴祝华
PDF(5220 KB)

Accesses

Citation

Detail

段落导航
相关文章

/