复羽叶栾树植冠种子库种子活力变化机制

刘相泉, 赵仁菲, 朱艳芳, 邓仕明, 李吉涛, 邓志军

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2) : 35-41.

PDF(1594 KB)
PDF(1594 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2) : 35-41. DOI: 10.12302/j.issn.1000-2006.202201038
专题报道:“攥紧中国种子”视域下的中国林草种业研究专题Ⅰ(执行主编 施季森 喻方圆)

复羽叶栾树植冠种子库种子活力变化机制

作者信息 +

Mechanisms of seed vigour changes in the canopy seed bank of Koelreuteria bipinnata

Author information +
文章历史 +

摘要

【目的】探明植冠种子库中种子活力变化的生理生态机制,准确认识植冠种子库的生态意义。【方法】以复羽叶栾树(Koelreuteria bipinnata)植冠种子库为研究对象,在果实进入成熟期后每隔一定时间从植冠种子库中采集种子,分别进行萌发测试,种子干质量、含水量、浸出液电导率、丙二醛(MDA)含量测定,以及超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、过氧化氢酶(CAT)、脱氢抗坏血酸还原酶(DHAR)等4种主要抗氧化酶活性的测定,并对种子萌发率和各生理指标进行相关性分析。【结果】在研究期内,复羽叶栾树植冠种子库中的种子先后经历了生理成熟、成熟脱水、休眠诱导和休眠解除4个生理时期;各生理时期的种子总体上在模拟的秋季变温条件下萌发最好,其次为春季变温,再次为夏季变温;完成成熟脱水的种子在植冠种子库中宿存期间始终保持着高活力水平;4种抗氧化酶的活性与模拟的春、夏、秋季节变温条件下的萌发率间具有显著或极显著的正相关性,且均随着种子休眠的诱导而下降,随着种子休眠的解除而升高,表明抗氧化酶在植冠种子库中种子活力的获得和保持中起着重要的积极作用,并证实了种子休眠与萌发的“胚胁迫学说”。【结论】本研究促进了对植冠种子库的深入认识,还发现复羽叶栾树植冠种子库中种子具有较强的活力保持能力,建议在森林经营管理和植被恢复中充分利用其植冠种子库。

Abstract

【Objective】 This study explored physiological and ecological mechanisms of seed vigor change in the canopy seed bank of Koelreuteria bipinnata in order to accurately understand the ecological significance of canopy seed banks.【Method】 A canopy seed bank of K. bipinnata was used as the object of study, and seeds were collected from the canopy seed bank at certain time intervals after fruits entered the ripening period. We then conducted a germination test and determined the seed dry mass, water content, malondialdehyde content, and activities of SOD, APX, CAT and DHAR. Finally, we performed an analysis between the germination percentage and physiological indices.【Result】 During the study duration, seeds in the canopy seed bank experienced four physiological periods, including physiological maturity, mature dehydration, dormancy induction and release. The seeds in each physiological period generally had the best germination under simulated autumn alternative temperatures, followed by spring alternative temperatures and summer alternative temperatures. The vigor of the seeds was maintained at a high level after mature dehydration was finished, and the four antioxidases played a significant positive role in the acquisition and maintenance of seed vigor, being significantly positive correlative with the germination percentages under simulated spring, summer and autumn alternative temperatures. Moreover, they all decreased with the induction of seed dormancy and increased with the release of dormancy, which also confirmed the “Embryo stress theory” of seed dormancy and germination.【Conclusion】 This study not only promotes further understanding of the canopy seed banks, but also finds that seeds in the canopy seed bank of K. bipinnata have a strong ability to maintain vigor. Full use of canopy seed banks in forest management and vegetation restoration should be encouraged.

关键词

复羽叶栾树 / 植冠种子库 / 种子活力 / 休眠 / 萌发 / 抗氧化酶

Key words

Koelreuteria bipinnata / canopy seed bank / seed vigour / dormancy / germination / antioxidative enzyme

引用本文

导出引用
刘相泉, 赵仁菲, 朱艳芳, . 复羽叶栾树植冠种子库种子活力变化机制[J]. 南京林业大学学报(自然科学版). 2023, 47(2): 35-41 https://doi.org/10.12302/j.issn.1000-2006.202201038
LIU Xiangquan, ZHAO Renfei, ZHU Yanfang, et al. Mechanisms of seed vigour changes in the canopy seed bank of Koelreuteria bipinnata[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(2): 35-41 https://doi.org/10.12302/j.issn.1000-2006.202201038
中图分类号: S722;S685   

参考文献

[1]
WANG Y C, JIANG D M, TOSHIO O, et al. Recent advances in soil seed bank research[J]. Contemp Probl Ecol, 2013, 6(5):520-524.DOI:10.1134/s1995425513050181.
[2]
LAMONT B B, PAUSAS J G, HE T H, et al. Fire as a selective agent for both serotiny and nonserotiny over space and time[J]. Crit Rev Plant Sci, 2020, 39(2):140-172.DOI:10.1080/07352689.2020.1768465.
[3]
马君, 刘志民. 植冠种子库及其生态意义研究[J]. 生态学杂志, 2005, 24(11):1329-1333.
MA J, LIU Z M. Canopy seed bank and its ecological significance:a review[J]. Chin J Ecol, 2005, 24(11):1329-1333.DOI: 10.13292/j.1000-4890.2005.0154.
[4]
AGUADO M, VICENTE M J, MIRALLES J, et al. Aerial seed bank and dispersal traits in Anthemis chrysantha (Asteraceae),a critically endangered species[J]. Flora Morphol Distribution Funct Ecol Plants, 2012, 207(4):275-282.DOI:10.1016/j.flora.2012.02.002.
[5]
BHATT A, PHONDANI P C, PHARTYAL S S, et al. Influence of aerial seed banks on germination response in three desert plant species[J]. J Plant Ecol, 2016, 10(6):994-1000.DOI:10.1093/jpe/rtw113.
[6]
苏文华, 崔凤涛, 赵元蛟, 等. 云南松球果延迟开放及其植冠种子库[J]. 生态学报, 2017, 37(2):541-548.
SU W H, CUI F T, ZHAO Y J, et al. Canopy seed bank and serotinous cones of Pinus yunnanensis forests[J]. Acta Ecol Sin, 2017, 37(2):541-548.DOI:10.5846/stxb201507041414.
[7]
SU W H, YU J E, ZHANG G F, et al. Comparison of the canopy and soil seed banks of Pinus yunnanensis in central Yunnan,China[J]. For Ecol Manag, 2019, 437:41-48.DOI:10.1016/j.foreco.2019.01.002.
[8]
邓志军, 宋松泉, 艾训儒. 植物种子保存和检测的原理与技术[M]. 北京: 科学出版社, 2019.
DENG Z J, SONG S Q, AI X R. The principle and technology of plant seed preservation and detection[M]. Beijing: Science Press, 2019.
[9]
李振华, 王建华. 种子活力与萌发的生理与分子机制研究进展[J]. 中国农业科学, 2015, 48(4):646-660.
LI Z H, WANG J H. Advances in research of physiological and molecular mechanism in seed vigor and germination[J]. Sci Agric Sin, 2015, 48(4):646-660.DOI:10.3864/j.issn.0578-1752.2015.04.03.
[10]
陈快. 吸湿-回干循环对水杉种子活力的影响[D]. 恩施: 湖北民族大学, 2020.
CHEN K. Effect of hydration-dehydration cycles on seed vigor of Metasequoia glyptostroboides[D]. Enshi: Hubei Minzu University, 2020.
[11]
LIU H, ZHU Y F, LIU X, et al. Effect of artificially accelerated aging on the vigor of Metasequoia glyptostroboides seeds[J]. J For Res, 2020, 31(3):769-779.DOI:10.1007/s11676-018-0840-1.
[12]
中国科学院中国植物志编辑委员会. 中国植物志:第47卷第1册[M]. 北京: 科学出版社, 1985: 56.
Editorial committee of flora of China, CAS. Flora of China:vol.47(1)[M]. Beijing: Science Press, 1985: 56.
[13]
钟军弟, 蔡进改, 张涛, 等. 复羽叶栾树育苗基质配方的筛选[J]. 北方园艺, 2017(4):83-89.
ZHONG J D, CAI J G, ZHANG T, et al. Screening of substrate formula for seedling of Koelreuteria bipinnata[J]. North Hortic, 2017(4):83-89.DOI:10.11937/bfyy.201704019.
[14]
TAWFIK A, IBRAHIM O,TAHA. Micropropagation of Koelreuteria bipinnata using juvenile and mature explants[J]. Curr J Appl Sci Technol, 2021, 20(3):470-478.DOI:10.14456/cast.2020.31.
[15]
YANG Y, YANG Y, YU Y, et al. First report of rust disease on Koelreuteria bipinnata caused by Nyssopsora koelreuteriae in China[J]. Plant Dis, 2016, 100(5):1014.DOI:10.1094/pdis-10-15-1182-pdn.
[16]
CAO L M, LIU J H, LIN Q, et al. The floral organogenesis of Koelreuteria bipinnata and its variety K.bipinnata var. integrifolia (Sapindaceae):evidence of floral constraints on the evolution of monosymmetry[J]. Plant Syst Evol, 2018, 304(8):923-935.DOI:10.1007/s00606-018-1519-y.
[17]
LUO Z H, TIAN D L, NING C, et al. Roles of Koelreuteria bipinnata as a suitable accumulator tree species in remediating Mn,Zn,Pb,and Cd pollution on Mn mining wastelands in Southern China[J]. Environ Earth Sci, 2015, 74(5):4549-4559.DOI:10.1007/s12665-015-4510-8.
[18]
李萧萧. 复羽叶栾树对Cd、Pb污染的修复潜力研究[D]. 重庆: 西南大学, 2019.
LI X X. Study on remediation potential of Koelreuteria bipinnate Franch. for Cd and Pb pollution[D]. Chongqing: Southwest University, 2019.
[19]
冯景, 沈永宝, 史锋厚. 银杏种子脱水敏感性的研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6):193-200.
FENG J, SHEN Y B, SHI F H. Study on desiccation sensitivity of Ginkgo biloba seeds[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6):193-200.DOI:10.3969/j.issn.1000-2006.201808026.
[20]
宋松泉. 种子生物学研究指南[M]. 北京: 科学出版社, 2005: 61-62.
SONG S Q. Seed biology research guide[M]. Beijing: Science Press, 2005: 61-62.
[21]
HEATH R L, PACKER L. Photoperoxidation in isolated chloroplasts.I: kinetics and stoichiometry of fatty acid peroxidation[J]. Arch Biochem Biophys, 1968,125(1):189-198.
[22]
RAO K V M, SRESTY T V S. Antioxidant parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses[J]. Plant Science, 2000, 157(1): 113-128.DOI:10.1016/S0168-9452(00)00273-9.
[23]
NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiol, 1981, 22(5):867-880.DOI:10.1093/oxfordjournals.pcp.a076232.
[24]
LÜCK H. Catalase[C]// BERGMEYER H U. Methods of enzymatic analysis. New York: Academic Press, 1965: 885-894.
[25]
ARRIGONI O, DE GARA L, TOMMASI F, et al. Changes in the ascorbate system during seed development of Vicia faba L[J]. Plant Physiol, 1992, 99(1):235-238.DOI:10.1104/pp.99.1.235.
[26]
DIAS D C F S, RIBEIRO F P, DIAS L A S, et al. Tomato seed quality in relation to fruit maturation and post-harvest storage[J]. Seed Sci Technol, 2006, 34(3):691-699.DOI:10.15258/sst.2006.34.3.15.
[27]
BARBEDO A S.C, ZANIN A C.W, BARBEDO C J et al. Efeitos da idade e do periodo de repouso pós-colheita dos frutos sobre a qualidade de sementes de berinjela[J]. Horticultura Brasileira, 1994, 12(1): 14-18
[28]
DENG Z J, HU X F, AI X R, et al. Dormancy release of Cotinus coggygria seeds under a pre-cold moist stratification:an endogenous abscisic acid/gibberellic acid and comparative proteomic analysis[J]. New For, 2016, 47(1):105-118.DOI:10.1007/s11056-015-9496-2.
[29]
BASKIN C C, CHESSON P L, BASKIN J M. Annual seed dormancy cycles in two desert winter annuals[J]. J Ecol, 1993, 81(3):551.DOI:10.2307/2261533.
[30]
FINCH-SAVAGE W E, FOOTITT S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments[J]. J Exp Bot, 2017, 68(4):843-856.DOI:10.1093/jxb/erw477.
[31]
LIMA A T, MEIADO M V. Effect of hydration and dehydration cycles on Mimosa tenuiflora seeds during germination and initial development[J]. S Afr N J Bot, 2018, 116:164-167.DOI:10.1016/j.sajb.2018.03.017.
[32]
TRINDADE LIMA A, MARIA DE OLIVEIRA D, VINICIUS MEIADO M. Effect of hydration and dehydration cycles on Macroptilium atropurpureum seeds germination under water deficit conditions[J]. Commun Plant Sci, 2018, 8(1):55-61.DOI:10.26814/cps2018008.
[33]
SOEDA Y, KONINGS M C J M, VORST O, et al. Gene expression programs during Brassica oleracea seed maturation,osmopriming,and germination are indicators of progression of the germination process and the stress tolerance level[J]. Plant Physiol, 2005, 137(1):354-368.DOI:10.1104/pp.104.051664.
[34]
POLLE A. Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling:computer simulations as a step towards flux analysis[J]. Plant Physiol, 2001, 126(1):445-462.DOI:10.1104/pp.126.1.445.
[35]
DESIKAN R, A-H-MACKERNESS S, HANCOCK J T, et al. Regulation of the Arabidopsis transcriptome by oxidative stress[J]. Plant Physiol, 2001, 127(1):159-172.DOI:10.1104/pp.127.1.159.
[36]
KNIGHT H, KNIGHT M R. Abiotic stress signalling pathways:specificity and cross-talk[J]. Trends Plant Sci, 2001, 6(6):262-267.DOI:10.1016/s1360-1385(01)01946-x.
[37]
MITTLER R. Oxidative stress,antioxidants and stress tolerance[J]. Trends Plant Sci, 2002, 7(9):405-410.DOI:10.1016/S1360-1385(02)02312-9.
[38]
程淑娟, 唐东芹, 刘群录. 盐胁迫对两种忍冬属植物活性氧平衡的影响[J]. 南京林业大学学报(自然科学版), 2013, 37(1):137-141.
CHENG S J, TANG D Q, LIU Q L. Reactive oxygen species homeostasis of two Lonicera species under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(1):137-141.
[39]
BOWLER C, MONTAGU M V, INZE D. Superoxide dismutase and stress tolerance[J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43:83-116.DOI:10.1146/annurev.pp.43.060192.000503.
[40]
WILLEKENS H, CHAMNONGPOL S, DAVEY M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants[J]. EMBO J, 1997, 16(16):4806-4816.DOI:10.1093/emboj/16.16.4806.

基金

国家自然科学基金项目(31860073)
生物资源保护与利用湖北省重点实验室2020年度开放基金项目(PT012008)

编辑: 郑琰燚
PDF(1594 KB)

Accesses

Citation

Detail

段落导航
相关文章

/