星载激光雷达GEDI数据林下地形反演性能验证

董瀚元, 于颖, 范文义

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2) : 141-149.

PDF(2617 KB)
PDF(2617 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2) : 141-149. DOI: 10.12302/j.issn.1000-2006.202201041
研究论文

星载激光雷达GEDI数据林下地形反演性能验证

作者信息 +

Verification of performance of understory terrain inversion from spaceborne lidar GEDI data

Author information +
文章历史 +

摘要

【目的】新一代天基测高系统全球生态系统动力学调查(GEDI)对森林观测及经营具有重要意义,为探究GEDI V2(GEDI第2版)数据反演林下地形的性能,利用机载雷达数据验证林下地形反演精度,并探究反演精度的影响因素。【方法】分别以美国西波拉森林与中国帽儿山森林为研究对象,利用G-liht及帽儿山高精度机载雷达数据验证GEDI V2数据在针叶林及针阔叶混交林下反演地形的性能,并分析不同光束强度、光斑时间、坡度及植被覆盖度对地形反演精度的影响。【结果】美国西波拉针叶林地区地形反演精度均方根误差(RMSE)为2.33 m,平均绝对误差(MAE)为1.48 m;帽儿山针阔叶混交林地区地形反演精度RMSE为4.49 m,MAE为3.33 m。随着坡度、植被覆盖度增大,两种森林类型地形反演精度均降低。【结论】GEDI V2数据反演针叶林林下地形精度要优于针阔叶混交林,强光束优于覆盖光束,湿润地区白天效果更优,干旱地区黑夜效果更优;平缓地区数据使用效果极好,陡峭地区精度降低;中低植被覆盖度区域地形反演精度较高,高植被覆盖区域地形测定性能有所下降。

Abstract

【Objective】 The new generation of the space-based altimetry global ecosystem dynamics investigation (GEDI) system is of great significance to forest observation and management. In order to explore the performance of GEDI version 2 data (V2 data) inversion of understory topography, this study uses airborne radar data to verify the accuracy of understory topography inversion, and explores the factors affecting the accuracy.【Method】 Taking the Cibola forest in the United States and the Maoer Mountain forest in China as the research objects, the performances of GEDI V2 data in coniferous forests and mixed coniferous and broad-leaved forests were verified using G-liht and Maoer Mountain high-precision airborne radar data. The effects of different beam intensities, spot times, slopes and vegetation coverage on the accuracy of terrain inversion were analyzed.【Result】 The root mean square error (RMSE) of topographic inversion accuracy in the Cibola taiga area of the United States was 2.33 m, and the average absolute error (MAE) was 1.48 m. The RMSE value of the topographic inversion accuracy in the coniferous and broad-leaved mixed forest area of Maoer Mountain was 4.49 m, and the MAE value was 3.33 m. With the increase in slope and vegetation coverage, the topographic inversion accuracy of the two forest types decreased.【Conclusion】 The GEDI V2 data inversion accuracy of understory topography in coniferous forests was higher than that of mixed coniferous and broad-leaved forests. Strong beams were better than coverage beams, and the accuracy was higher during the daytime in humid areas, and better at night in arid areas. The accuracy of steep areas was reduced, the terrain inversion accuracy was higher in areas with medium and low vegetation coverage, and the performances of terrain determination in areas with high vegetation coverage were decreased.

关键词

星载激光雷达 / 全球生态系统动力学调查(GEDI) / 林下地形 / 反演精度 / 坡度 / 植被覆盖度

Key words

spaceborne lidar / global ecosystem dynamics investigation (GEDI) / terrain under forest / inversion accuracy / slope / vegetation coverage

引用本文

导出引用
董瀚元, 于颖, 范文义. 星载激光雷达GEDI数据林下地形反演性能验证[J]. 南京林业大学学报(自然科学版). 2023, 47(2): 141-149 https://doi.org/10.12302/j.issn.1000-2006.202201041
DONG Hanyuan, YU Ying, FAN Wenyi. Verification of performance of understory terrain inversion from spaceborne lidar GEDI data[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(2): 141-149 https://doi.org/10.12302/j.issn.1000-2006.202201041
中图分类号: S771.8   

参考文献

[1]
蒋有绪. 世界森林生态系统结构与功能的研究综述[J]. 林业科学研究, 1995, 8(3): 314-321.
JIANG Y X. On study of structure and function of world forest ecosystem[J]. Forest Res, 1995, 8(3): 314-321.
[2]
LONG T F, ZHANG Z M, HE G J, et al. 30 m resolution global annual burned area mapping based on landsat images and google earth engine.[J]. Remote Sens, 2019, 11(5): 489. DOI: 10.3390/rs11050489.
[3]
李然, 王成, 苏国中, 等. 星载激光雷达的发展与应用[J]. 科技导报, 2007, 25(14): 58-63.
LI R, WANG C, SU G Z, et al. Development and applications of Spaceborne LiDAR[J]. Sci & Technol Rev, 2007, 25(14): 58-63. DOI:10.3321/j.issn:1000-7857.2007.14.010.
[4]
LEFSKY M A, HARDING D J, KELLER M, et al. Estimates of forest canopy height and aboveground biomass using ICESat[J]. Geophys Res Lett, 2005, 32(22): L22S02. DOI: 10.1029/2005gl023971, 2005.
[5]
DOLAN K, MASEK J G, HUANG C Q, et al. Regional forest growth rates measured by combining ICESat GLAS and Landsat data[J]. J Geophys Res, 2009, 114(G2): G00E05. DOI: 10.1029/2008JG000893, 2009.
[6]
BALLHORN U, JUBANSKI J, SIEGERT F. ICESat/GLAS data as a measurement tool for peatland topography and peat swamp forest biomass in Kalimantan, Indonesia[J]. Remote Sens, 2011, 3(9): 1957-1982. DOI: 10.3390/rs3091957.
[7]
HAYASHI M. Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan[J]. ISPRS J Photogramm and Remote Sens, 2013, 81: 12-18. DOI: 10.1016/j.isprsjprs.2013.04.004.
[8]
SHUMAN C A, ZWALLY H J, SCHUTZ B. E, et al. ICESat Antarctic elevation data: preliminary precision and accuracy assessment[J]. Geophys Res Lett, 2006, 33(7): L07501. DOI: 10.1029/2005gl025227, 2006.
[9]
DONGCHEN E, SHEN Q, XU Y, et al. High-accuracy topographical information extraction based on fusion of ASTER stereo-data and ICESat/GLAS data in Antarctica[J]. Sci China Ser D Earth Sci, 2009, 52(5): 714-722. DOI: 10.1007/s11430-009-0055-6.
[10]
JAWAK S D, LUIS A J. Synergistic use of multitemporal RAMP, ICESat and GPS to construct an accurate DEM of the Larsemann Hills region, Antarctica[J]. Adv Space Res, 2012, 50(4): 457-470. DOI: 10.1016/j.asr.2012.05.004.
[11]
ABDALATI W, ZWALLY H J, BINDSCHADLER R, et al. The ICESat-2 laser altimetry mission[J]. Proc IEEE, 2010, 98(5): 735-751. DOI: 10.1109/JPROC.2009.2034765.
[12]
DUBAYAH R, BLAIR J B, GOETZ S, et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography[J]. Sci Remote Sens, 2020, 1(C): 100002. DOI: 10.1016/j.srs.2020.100002.
[13]
QI W, DUBAYAH R O. Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping[J]. Remote Sens Environ, 2016, 187: 253-266. DOI: 10.1016/j.rse.2016.10.018.
[14]
ADAM M, URBAZAEV M, DUBOIS C, et al. Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests: influence of environmental and acquisition parameters[J]. Remote Sens, 2020, 12(23): 3948. DOI: 10.3390/rs12233948.
[15]
GUERRA H J, PASCUAL A. Using GEDI lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in Spain[J]. For Ecosyst, 2021, 8(1): 14. DOI: 10.1186/s40663-021-00291-2.
[16]
LIU A, CHENG X, CHEN Z Q. Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals[J]. Remote Sens Environ, 2021, 264: 112571. DOI: 10.1016/j.rse.2021.112571.
[17]
DUBAYAH R, HOFTON M, BLAIR J, et al. GEDI L2A elevation and height metrics data global footprint level V002[R]. NASA EOSDIS Land Processes DAAC, 2021-05-07. DOI: 10.5067/GEDI/GEDI02_A.002.
[18]
COOK B, CORP L, NELSON R, et al. NASA goddard’s LiDAR, hyperspectral and thermal (G-liht) airborne imager[J]. Remote Sens, 2013, 5(8): 4045-4066. DOI: 10.3390/rs5084045.
[19]
ROY D P, Wulder M A, Loveland T R, et al. Landsat-8: science and product vision for terrestrial global change research[J]. Remote Sens Environ, 2014, 145: 154-172. DOI: 10.1016/j.rse.2014.02.001.
[20]
柳红凯, 徐昌荣, 徐晓. 基于渐进加密三角网机载LIDAR点云滤波改进算法研究[J]. 江西理工大学学报, 2016, 37(3): 50-55, 60.
LIU H K, XU C R, XU X. Study on improved algorithm of point clouds from airborne scanner based on progressive encryption TIN[J]. J Jiangxi Univ Sci Technol, 2016, 37(3): 50-55, 60. DOI:10.13265/j.cnki.jxlgdxxb.2016.03.009.
[21]
佟斯琴, 包玉海, 张巧凤, 等. 基于像元二分法和强度分析方法的内蒙古植被覆盖度时空变化规律分析[J]. 生态环境学报, 2016, 25(5): 737-743.
TONG S Q, BAO Y H, ZHANG Q F, et al. Spatial temporal changes of vegetation coverage in Inner Mongolia based on the dimidiate pixel model and intensity analysis[J]. Ecol Environ Sci, 2016, 25(5): 737-743. DOI:10.16258/j.cnki.1674-5906.2016.05.002.

基金

国家自然科学基金面上项目(31870621)
国家自然科学基金面上项目(31971580)
中央高校基本科研业务费专项资金项目(2572021BA08)

编辑: 李燕文
PDF(2617 KB)

Accesses

Citation

Detail

段落导航
相关文章

/