基于移动激光扫描的行道树树冠点云逐点检测

李秋洁, 李相程

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1) : 205-213.

PDF(4419 KB)
PDF(4419 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1) : 205-213. DOI: 10.12302/j.issn.1000-2006.202202018
研究论文

基于移动激光扫描的行道树树冠点云逐点检测

作者信息 +

Pointwise detection of street tree crown point clouds based on mobile laser scanning

Author information +
文章历史 +

摘要

【目的】针对行道树树冠在线检测问题,研究基于移动激光扫描(mobile laser scanning,MLS)的行道树树冠点云逐点检测方法,构建能够在线、快速、准确检测出行道树树冠点云的高性能树冠检测器,为行道树对靶施药提供基础数据。【方法】应用搭载一个2D激光雷达(light detection and ranging,LiDAR)的MLS系统实时采集街道轮廓线测量数据,从中提取点云三维坐标、一次回波强度和回波次数等属性;构建点云半径为δ的球域搜索方法,实现点云邻域在线快速查询;从待识别点δ球域中提取宽度、深度、高度、维度、密度、次数和强度7类点云局部特征;采用监督学习算法融合点云局部特征、训练树冠检测器,预测待识别点的类别。采集一段长137 m街道的点云数据,开展了邻域搜索方法、监督学习算法、点云局部特征和树冠逐点检测器4个对比实验。【结果】构建的δ球域搜索方法的搜索时间为k-D树法的10.90%;在神经网络(neural network,NN)、支持向量机(support vector machine,SVM)、Boosting和随机森林(random forest,RF)4种监督学习算法中,RF算法得到的树冠检测器分类精度最好;与单类特征相比,组合特征具有更好的泛化性能;本研究方法设计的树冠逐点检测器在检测精度和效率上均优于已有方法,球域半径δ在0.1~1.0 m范围内变化时,测试集F1分数≥97.74%。【结论】提出的方法能够从实时采集的MLS点云数据中快速、准确地检测出行道树树冠点云,为行道树对靶施药提供数据支撑。

Abstract

【Objective】 To address the problem of online detection of street-tree crowns, this study proposes a pointwise detection method for the point cloud of street-tree crowns based on mobile laser scanning (MLS), and generates a high-performance tree-crown detector capable of online, fast and accurate detection of the point cloud of street-tree crowns to provide basic data for street-tree-targeted spraying. 【Method】 The MLS system equipped with a 2D LiDAR (light detection and ranging) was used to collect the street contour measurement data in real time, and five attributes such as three-dimensional coordinates, primary echo intensity and number of echoes were extracted; a δ spherical neighborhood search method was built to realize online and fast query of point cloud neighborhood; seven kinds of local features of point cloud such as width, depth, height, dimensionality, density, number of echoes and echo intensity were extracted from the spherical domain of the point to be identified; the supervised learning algorithm was used to fuse the local features of point cloud and train a crown detector to predict the category of the point to be identified. 【Result】 The point cloud data of a 137 m long street were collected, and four comparative experiments of neighborhood search methods, supervised learning algorithms, local features of point clouds, and pointwise crown detectors were conducted. The experimental results show that the query time of the proposed δ spherical neighborhood search method is 10.90% of that of k-D tree; among the four supervised learning algorithms of neural network (NN), support vector machine (SVM), Boosting and random forest (RF), the classification performance of the crown detector trained by RF is the best; compared with single kind of features, combined features have better generalization performance; the pointwise crown detector designed by this paper is obviously superior to the existing method in terms of detection accuracy and efficiency. When the radius δ changes within the range of 0.1-1.0 m, the F1 score on the test set is ≥ 97.74%. 【Conclusion】 The proposed method can quickly and accurately detect street-tree crown point clouds from MLS point-cloud data collected in real time and provide a spray prescription map for targeted spraying applications on street trees.

关键词

对靶施药 / 行道树 / 树冠点云检测 / 逐点分类 / 移动激光扫描

Key words

targeted spraying / street tree / crown point cloud detection / pointwise classification / mobile laser scanning

引用本文

导出引用
李秋洁, 李相程. 基于移动激光扫描的行道树树冠点云逐点检测[J]. 南京林业大学学报(自然科学版). 2024, 48(1): 205-213 https://doi.org/10.12302/j.issn.1000-2006.202202018
LI Qiujie, LI Xiangcheng. Pointwise detection of street tree crown point clouds based on mobile laser scanning[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 205-213 https://doi.org/10.12302/j.issn.1000-2006.202202018
中图分类号: TH112;S718   

参考文献

[1]
袁琨, 郭佳, 陆哲明, 等. 篱垣型垂直绿化的减噪能力及其影响因素[J]. 中国城市林业, 2021, 19(4):67-71.
YUAN K, GUO J, LU Z M, et al. Noise reduction ability of vertical greening of hedgerow and its influencing factors[J]. J Chin Urban For, 2021, 19(4):67-71.DOI: 10.12169/zgcsly.2020.09.10.0001.
[2]
李苹苹, 苗纯萍, 陈玮, 等. 城市街谷行道树对PM2.5浓度影响的数值模拟研究[J]. 生态学杂志, 2021, 40(12):4044-4052.
LI P P, MIAO C P, CHEN W, et al. Numerical simulation on the effects of street trees on PM2.5 concentration in street canyon[J]. Chin J Ecol, 2021, 40(12):4044-4052.DOI: 10.13292/j.1000-4890.202111.036.
[3]
蒋应红. 国内外城市行道树综述[J]. 中国市政工程, 2020(6):4-6,109.
JIANG Y H. A summary of urban street trees at home & abroad[J]. China Munic Eng, 2020(6):4-6, 109.DOI: 10.3969/j.issn.1004-4655.2020.06.002.
[4]
王伟. 行道树栽植养护技术[J]. 河南农业, 2019(35):33,35.
WANG W. Planting and maintenance technology of street trees[J]. Agric Henan, 2019(35): 33,35.DOI: 10.15904/j.cnki.hnny.2019.35.017.
[5]
商艳上, 苏田, 李臻, 等. 园林行道树复壮技术[J]. 现代农业科技, 2021(12):176-177.
SHANG Y S, SU T, LI Z, et al. Rejuvenation technology of garden street trees[J]. Modern Agricultural Science and Technology, 2021(12):176-177.DOI: 10.3969/j.issn.1007-5739.2021.12.071.
[6]
李秋洁, 童岳凯, 薛玉玺, 等. 基于YOLACT的行道树靶标点云分割方法[J]. 林业工程学报, 2022, 7(4):144-150.
LI Q J, TONG Y K, XUE Y X, et al. Point cloud segment method for street tree target based on YOLACT[J]. J Fore Eng, 2022, 7(4):144-150.DOI:10.13360/j.issn.2096-1359.202110034.
[7]
白秋薇, 张信, 罗红品, 等. 设施果园自动对靶精准变量施肥控制系统[J]. 农业工程学报, 2021, 37(12):28-35.
BAI Q W, ZHANG X, LUO H P, et al. Control system for auto-targeting precision variable-rate fertilization of fruit trees in a greenhouse orchard[J]. Trans Chin Soc Agric Eng, 2021, 37(12):28-35.DOI: 10.11975/j.issn.1002-6819.2021.12.004http://www.tc.
[8]
郑加强, 徐幼林. 环境友好型农药喷施机械研究进展与展望[J]. 农业机械学报, 2021, 52(3):1-16.
ZHENG J Q, XU Y L. Development and prospect in environment-friendly pesticide sprayers[J]. Trans Chin Soc Agric Mach, 2021, 52(3):1-16.DOI: 10.6041/j.issn.1000-1298.2021.03.001.
[9]
焦祥, 张慧春, 郑加强, 等. 基于农林植物表型的智能喷雾机械研究进展[J]. 世界林业研究, 2020, 33(5):42-46.
JIAO X, ZHANG H C, ZHENG J Q, et al. Research progress in intelligent sprayers based on phenotype of agricultural and forestry plants[J]. World For Res, 2020, 33(5):42-46.DOI: 10.13348/j.cnki.sjlyyj.2020.0021.y.
[10]
袁鹏成, 李秋洁, 邓贤, 等. 基于LiDAR的对靶喷雾实时控制系统设计与试验[J]. 农业机械学报, 2020, 51(S1):273-280.
YUAN P C, LI Q J, DENG X, et al. Design and experiment of real-time control system for target spraying based on LiDAR[J]. Trans Chin Soc Agric Mach, 2020, 51(S1):273-280.
[11]
SULTAN M M, ZAHID A, HE L, et al. Development of a LiDAR-guided section-based tree canopy density measurement system for precision spray applications[J]. Comput Electron Agric, 2021, 182:106053.DOI: 10.1016/j.compag.2021.106053.
[12]
CHEN L M, ZHU H P, HORST L, et al. Management of pest insects and plant diseases in fruit and nursery production with laser-guided variable-rate sprayers[J]. Hort Science, 2021, 56(1):94-100.DOI: 10.21273/hortsci15491-20.
[13]
SAFAIE A H, RASTIVEIS H, SHAMS A, et al. Automated street tree inventory using mobile LiDAR point clouds based on Hough transform and active contours[J]. ISPRS J Photogramm Remote Sens, 2021, 174:19-34.DOI: 10.1016/j.isprsjprs.2021.01.026.
[14]
BIENERT A, GEORGI L, KUNZ M, et al. Automatic extraction and measurement of individual trees from mobile laser scanning point clouds of forests[J]. Ann Bot, 2021, 128(6):787-804.DOI: 10.1093/aob/mcab087.
[15]
XU S, SUN X Y, YUN J Y, et al. A new clustering-based framework to the stem estimation and growth fitting of street trees from mobile laser scanning data[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13:3240-3250.DOI: 10.1109/JSTARS.2020.3001978.
[16]
陆清屿, 李秋洁, 童岳凯, 等. 基于Mask R-CNN的行道树实例分割方法[J]. 林业工程学报, 2021, 6(5):154-160.
LU Q Y, LI Q J, TONG Y K, et al. Instance segmentation method of street trees based on Mask R-CNN[J]. J Fore Eng, 2021, 6(5):154-160.DOI:10.13360/j.issn.2096-1359.202010011.
[17]
WEINMANN M, WEINMANN M, MALLET C, et al. A classification-segmentation framework for the detection of individual trees in dense MMS point cloud data acquired in urban areas[J]. Remote Sens, 2017, 9(3):277.DOI: 10.3390/rs9030277.
[18]
WEINMANN M, HINZ S, WEINMANN M. A hybrid semantic point cloud classification-segmentation framework based on geometric features and semantic rules[J]. PFG, 2017, 85(3):183-194.DOI: 10.1007/s41064-017-0020-5.
[19]
HACKEL T, WEGNER J D, SCHINDLER K. Fast semantic segmentation of 3D point clouds with strongly varying density[J]. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, 2016, III-3:177-184.DOI: 10.5194/isprsannals-iii-3-177-2016.
[20]
LANDRIEU L, RAGUET H, VALLET B, et al. A structured regularization framework for spatially smoothing semantic labelings of 3D point clouds[J]. ISPRS J Photogramm Remote Sens, 2017, 132:102-118.DOI: 10.1016/j.isprsjprs.2017.08.010.
[21]
PUENTE I, GONZÁLEZ-JORGE H, ARIAS P, et al. Land-based mobile laser scanning systems:a review[C]// The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2011. DOI: 10.5194/isprsarchives-xxxviii-5-w12-163-2011.
[22]
WANG C, WEN C L, DAI Y D, et al. Urban 3D modeling with mobile laser scanning:a review[J]. Virtual Real Intell Hardw, 2020, 2(3):175-212.DOI: 10.1016/j.vrih.2020.05.003.
[23]
李天, 何雄奎, 王志翀, 等. 基于LiDAR技术的喷雾量三维空间分布测试方法[J]. 农业工程学报, 2021, 37(6):42-49.
LI T, HE X K, WANG Z C, et al. Method for measuring the 3D spatial distribution of spray volume based on LiDAR[J]. Trans Chin Soc Agric Eng, 2021, 37(6):42-49.DOI: 10.11975/j.issn.1002-6819.2021.06.006.
[24]
MADER D, WESTFELD P, MAAS H G. An integrated flexible self-calibration approach for 2D laser scanning range finders applied to the hokuyo UTM-30LX-EW[C]// The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014.DOI: 10.5194/isprsarchives-xl-5-385-2014.
[25]
WEINMANN M, URBAN S, HINZ S, et al. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas[J]. Comput Graph, 2015, 49:47-57.DOI: 10.1016/j.cag.2015.01.006.
[26]
DEMANTKÉ J, MALLET C, DAVID N, et al. Dimensionality based scale selection in 3D lidar point clouds[C]// The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2011.DOI: 10.5194/isprsarchives-xxxviii-5-w12-97-2011.
[27]
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016.

基金

国家自然科学基金项目(31901239)

编辑: 李燕文
PDF(4419 KB)

Accesses

Citation

Detail

段落导航
相关文章

/