南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3): 237-246.doi: 10.12302/j.issn.1000-2006.202203001
• 综合述评 • 上一篇
王珏1(), 李彦杰2, 陈益存2, 高暝2, 赵耘霄2, 吴立文2, 黄世清3, 张永志3, 朱康烁3, 汪阳东1,2,*()
收稿日期:
2022-03-01
修回日期:
2022-06-19
出版日期:
2023-05-30
发布日期:
2023-05-25
通讯作者:
汪阳东
基金资助:
WANG Jue1(), LI Yanjie2, CHEN Yicun2, GAO Ming2, ZHAO Yunxiao2, WU Liwen2, HUANG Shiqing3, ZHANG Yongzhi3, ZHU Kangshuo3, WANG Yangdong1,2,*()
Received:
2022-03-01
Revised:
2022-06-19
Online:
2023-05-30
Published:
2023-05-25
Contact:
WANG Yangdong
摘要:
近红外光谱技术是一种快速、准确、无损、高通量、低成本的分析技术,广泛应用于林业领域。在木材性质检测方面,近红外光谱技术对于木材力学特征及化学成分含量等检测都有较高的准确性;在经济林产品品质分析方面,则主要用于反映林业产品的化学组分及含量、口感及硬度等直接和间接性状,对经济林产品品质及林木遗传育种的研究有较好应用前景;在林木分类鉴别应用方面,近红外光谱能够鉴别不同树种及种源,乃至反映树龄信息,在多物种模型中应用效果更好;近红外光谱还能够有效区分多物种的正常植物体与染病植物体,可在林木病虫害研究及生物检疫方面发挥作用。此外,近红外光谱还能应用于预测森林凋落物分解速率、预测土壤成分含量等。笔者分析了近红外光谱在林业科研和生产实际应用中的影响因素,包括样品状态、样本集特征等内在因素,以及预处理、波长选择、建模方式、硬件条件等外在因素对最终模型稳定性和准确度产生的影响。总结认为,近红外光谱技术引入林业研究后大大提高了林业样品检测效率,实现了绿色无损的高通量检测,对林地现场快速测量及林木遗传育种有极好的适应性,对促进林业产业的发展意义重大。
中图分类号:
王珏,李彦杰,陈益存,等. 近红外光谱技术在林业领域的应用[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 237-246.
WANG Jue, LI Yanjie, CHEN Yicun, GAO Ming, ZHAO Yunxiao, WU Liwen, HUANG Shiqing, ZHANG Yongzhi, ZHU Kangshuo, WANG Yangdong. The application of near-infrared spectroscopy in forestry[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(3): 237-246.DOI: 10.12302/j.issn.1000-2006.202203001.
表1
近红外光谱技术与几种相关技术的对比"
对比项目 comparison item | 近红外光谱 near infrared spectroscopy | 红外光谱 infrared spectroscopy | 拉曼光谱 raman spectroscopy |
---|---|---|---|
波长范围 wavelength range | 780~2 526 mm | 2 500~25 000 mm | 2 500~200 000 mm |
激发形式excitation mechanism | 吸收 | 吸收 | 非弹性光子散射 |
采样模式 acquisition mode | 漫反射,透射 | 漫反射,透射,衰减全反射 | 散射 |
采样深度sampling depth | 深 | 浅 | 视样品透光度及波长而定 |
仪器复杂度instrument complexity | 低 | 中 | 高 |
化学特异性chemical specificity | 低 | 高 | 高 |
样本要求sample requirements | 宽泛,要求少 | 不含游离水 | 均一,不含游离水 |
主要缺点main problems | 灵敏度较低,光谱重合, 解释困难 | 大气信号干扰, 不适用于潮湿样品 | 自发荧光干扰, 激光可能破坏分子结构 |
表2
近红外光谱技术在林业领域的具体应用"
样品 sample | 检测内容 test content | 预处理/建模方法 pretreatment / modeling method | 文献编号 reference No. |
---|---|---|---|
综纤维素、木质素 | Savitzky-Golay平滑、二阶导数等+BPNN | [ | |
日本柳杉Cryptomeria japonica | 微纤丝角 | 一阶导数+PLSR | [ |
种源 | Savitzky-Golay平滑、SNV、MSC+PCA | [ | |
桉木 Eucalyptus bosistoana | 心材内含物 | 二阶导数、一阶导数、SNV+PLSR | [ |
落叶松 Larix gmelinii | 木材密度 | 径向基函数+SVR | [ |
树种鉴别 | 一阶导数、二阶导数+PCR、Fisher判别 | [ | |
杉木 Cunninghamia lanceolata | 密度 | PCA+多元线性回归/(GWO-)SVR | [ |
蒙古栎 Quercus mongolica | 机械性能 | Savitzky-Golay卷积平滑、MSC、一阶导数等+ (CLE-)PLSR | [ |
咖啡 Coffea arabica | pH、酸度 | 一阶导数、SNV+PLSR | [ |
甜柿 Diospyros kaki | 果皮强度、脆性 | MSC、一阶微分+改进PLSR | [ |
果肉平均硬度 | SNV、一阶微分等+改进PLSR | ||
辣木 Moringa oleifera | 蛋白质 | MSC、BC、PCA+PLSR | [ |
矿物质 | MSC、BC、Savitzky-Golay卷积平滑等+PLSR | ||
油桐Vernicia fordii 油茶Camellia oleifera 核桃Juglans regia | 含油率 | 均值中心化、一阶导数、二阶导数等+PLSR/RBFNN | [ |
橄榄 Olea europaea | 水、油、油酸、亚油酸 | 二阶导数+PLSR | [ |
红松Pinus koraiensis | 种子活性、虫害 | 正交信号校正+PLSR | [ |
马尾松Pinus massoniana 樟子松P. sylvestris var. mongolica | 树种鉴别 | 一阶导数、二阶导数+PCR、Fisher判别 | [ |
欧洲赤松P. sylvestris | 树龄、早晚材 | PCA+PLS-DA | [ |
橡胶Hevea brasiliensis | 病叶与正常叶 | MSC+PCA | [ |
柑橘Citrus sinensis | 黄龙病 | PCA+MLPNN | [ |
[1] | YU H Q, ZHAO R J, FU F, et al. Use of near infrared spectroscopy to measure mechanical properties of solid wood[J]. Chinses Forestry Science and Technology, 2007, 6(2). DOI: 10.1007/s00226-003-0213-5. |
[2] | ASTM. Standard practice for near infrared qualitative analysis[S]. West Conshohocken, PA: ASTM International, 2016. |
[3] | STARK E, LUCHTER K, MARGOSHES M. Near-infrared analysis (NIRA): a technology for quantitative and qualitative analysis[J]. Applied Spectroscopy Reviews, 1986, 22(4): 335-399. DOI: 10.1080/05704928608060440. |
[4] | MARTEN G C, BRINK G E, BUXTON D R, et al. Near infrared reflectance spectroscopy analysis of forage quality in four legume species[J]. Crop Science, 1984, 24(6): 1179-1182. DOI: 10.2135/cropsci1984.0011183X002400060040x. |
[5] | SIESLER H W, OZAKI Y, KAWATA S, et al. Near infrared spectroscopy: principles, instruments applications[M]. Weinheim, Germany: Wiley-VCH:2002. |
[6] | 陆婉珍. 现代近红外光谱分析技术[M]. 北京: 中国石化出版社, 2007. |
LU W Z. Modern near-infrared spectroscopy analytical technology[M]. Beijing: China Petrochemical Press, 2007. | |
[7] | CONWAY J M, NORRIS K H, BODWELL C E. A new approach for the estimation of body composition: infrared interactance[J]. American Journal of Clinical Nutrition, 1984, 40(6): 1123-1130. DOI: 10.1093/ajcn/40.6.1123. |
[8] | OSBORNE B G, FEARN T. Near infrared spectroscopy in food analysis[M]. UK: Longman, 1998. |
[9] | BATTEN G D. An appreciation of the contribution of NIR to agriculture[J]. Journal of Near Infrared Spectroscopy, 1998, 6(1): 105-114. DOI: 10.1255/jnirs.127. |
[10] | 杨忠, 江泽慧, 费本华. 近红外光谱技术及其在木材科学中的应用[J]. 林业科学, 2005, 41(4): 177-183. |
YANG Z, JIANG Z H, FEI B H. Application of near infrared (NIR) spectroscopy to wood science[J]. Scientia Silvae Sinicae, 2005, 41(4): 177-183. | |
[11] | OZAKI Y, HUCK C W, BEC K B. Near-IR spectroscopy and its applications[J]. Molecular and Laser Spectroscopy: Advances and Applications, 2018: 11-38. DOI: 10.1016/B978-0-12-849883-5.00002-4. |
[12] | LU B, DAO P D, LIU J, et al. Recent advances of hyperspectral imaging technology and applications in agriculture[J]. Remote Sensing, 2020, 12(16): 2659. DOI: 10.3390/rs12162659. |
[13] | LI Y J, ALTANER C M. Effects of variable selection and processing of NIR and ATR-IR spectra on the prediction of extractive content in Eucalyptus bosistoana heartwood[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 213: 111-117. DOI: 10.1016/j.saa.2019.01.060. |
[14] | BEC K B, GRABSKA J, HUCK C W. Near-infrared spectroscopy in bio-applications[J]. Molecules, 2020, 25, 2948. DOI: 10.3390/molecules25122948. |
[15] | BURNS D A, CIURCZAK E W. Handbook of near-infrared analysis[M]. 2nd ed. New York: Marcel Dekker, INC, 2001, p588. |
[16] | WRIGHT J A, BIRKETT M D, GAMBINO M J T. Prediction of pulp yield and cellulose content from wood samples using near infrared reflectance spectroscopy[J]. Tappi Journal, 1990, 73(8): 164-166. |
[17] | HOFFMEYER P, PEDERSEN J G. Evaluation of density and strength of Norway spruce wood by near infrared reflectance spectroscopy[J]. Holz als Roh-und werkstoff, 1995, 53(3): 165-170. DOI: 10.1007/BF02716418. |
[18] | 莫军前, 张文博. 基于近红外光谱技术的热处理竹材物理力学性能[J]. 林业工程学报, 2019, 4(1):32-38. |
MO J Q, ZHANG W B. Physical and mechanical properties of heat-treated bamboo using near infrared reflectance spectroscopy[J]. J Fore Eng, 2019, 4(1):32-38.DOI:10.13360/j.issn.2096-1359.2019.01.005. | |
[19] | 丁丽, 相玉红, 黄安民, 等. BP神经网络与近红外光谱定量预测杉木中的综纤维素、木质素、微纤丝角[J]. 光谱学与光谱分析`, 2009(7): 1784-1787. |
DING L, XIANG Y H, HUANG A M, et al. Quantitative prediction of holocellulose, lignin, and microfibril angles in Chinese fir using BP neural network and near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2009(7): 1784-1787. DOI: 10.3964/j.issn.1000-0593(2009)07-1784-04. | |
[20] | 刘镇波, 孙凤亮, WANG X M, 等. 基于近红外光谱法的人工林杨木木质素含量预测[J]. 南京林业大学学报(自然科学版), 2013, 37(6): 121-126. |
LIU Z B, SUN F L, WANG X M, et al. Prediction of lignin content of plantation poplar using near infrared spectroscopy method[J]. J Nanjing Fore Univ (Nat Sci Ed), 2013, 37(6): 121-126.DOI: 10.3969/j.issn.1000-2006.2013.06.024. | |
[21] | 胡云超, 王红鸿, 熊智新, 等. 基于SWSRA-UVE算法的纸浆材综纤维素近红外预测模型共享研究[J]. 林业工程学报, 2023, 8(2):101-108. |
HU Y C, WANG H H, XIONG Z X, et al. Research on near infrared prediction model sharing of pulpwood holocellulose based on SWSRA-UVE algorithm[J]. J Fore Eng, 2023, 8(2):101-108.DOI:10.13360/j.issn.2096-1359.202210001. | |
[22] | LI Y J, ALTANER C. Calibration of near infrared spectroscopy (NIRS) data of three Eucalyptus species with extractive contents determined by ASE extraction for rapid identification of species and high extractive contents[J]. Holzforschung, 2019, 73(6): 537-545. DOI: 10.1515/hf-2018-0166. |
[23] | ZHANG Y Z, LI Y X, ZHANG H F, et al. Modeling wood density of larch by near-infrared spectrometry and support vector machine[C]// Applied Mechanics and Materials. Stafa: Trans Tech Publications Ltd, 2011, 55: 433-438. |
[24] | 谭念, 王学顺, 黄安民, 等. 基于灰狼算法SVM的NIR杉木密度预测[J]. 林业科学, 2018, 54(12): 137-141. |
TAN N, WANG X S, HUANG A M, et al. Wood density prediction of Cunninghamia lanceolata based on gray wolf algorithm SVM and NIR[J]. Scientia Silvae Sinicae, 2018, 54(12): 137-141. DOI: 10. 11707/j. 1001-7488. 20181215. | |
[25] | YU L, LIANG Y L, ZHANG Y Z, et al. Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares[J]. Journal of Forestry Research, 2020, 31(3): 1053-1060. DOI: 10.1007/s11676-019-01031-7. |
[26] | MA T, INAGAKI T, TSUCHIKAWA S. Calibration of SilviScan data of Cryptomeria japonica wood concerning density and microfibril angles with NIR hyperspectral imaging with high spatial resolution[J]. Holzforschung, 2017, 71(4): 341-347. DOI: 10.1515/hf-2016-0153. |
[27] | 王钰. 2018年我国林业产业总产值7.33万亿元[EB/OL]. |
WANG Y. The total output value of my country’s forestry industry in 2018 was 7.33 trillion yuan[EB/OL]. . | |
[28] | 胡逸磊, 姜洪喆, 周宏平, 等. 水果成熟度近红外光谱及高光谱成像无损检测研究进展[J]. 食品工业科技, 2021, 42(20):377-383. |
HU Y L, JIANG H Z, ZHOU H P, et al. Research progress on nondestructive detection of fruit maturity by near infrared spectroscopy and hyperspectral imaging[J]. Science and Technology of Food Industry, 2021, 42(20):377-383. DOI: 10.13386/j.issn1002-0306.2020070074. | |
[29] | ARAÚJO C S, MACEDO L L, VIMERCATI W C, et al. Determination of pH and acidity in green coffee using near-infrared spectroscopy and multivariate regression[J]. Journal of the Science of Food and Agriculture, 2020, 100(6): 2488-2493. DOI: 10.1002/jsfa.10270. |
[30] | 王丹, 鲁晓翔, 张鹏, 等. 可见/近红外漫反射光谱无损检测甜柿果实硬度[J]. 食品发酵工业, 2013, 39(5): 180-184. |
WANG D, LU X X, ZHANG P, et al. Nondestructive detection of persimmon fruit firmness by vis/near infrared diffuse reflectance spectroscopy[J]. Food and Fermentation Industries, 2013, 39(5): 180-184. DOI: 10.13995/j.cnki.11-1802/ts.2013.05.013. | |
[31] | 李玉荣, 刘英, 汪力. 多信息融合的马尾松苗木静态指标检测方法[J]. 林业工程学报, 2019, 4(5):129-133. |
LI Y R, LIU Y, WANG L. Study on static index detection method of masson pine seedlings based on multi-information fusion[J]. J Fore Eng, 2019, 4(5):129-133.DOI:10.13360/j.issn.2096-1359.2019.05.018. | |
[32] | RÉBUFA C, PANY I, BOMBARDA I. NIR spectroscopy for the quality control of Moringa oleifera (Lam.) leaf powders: Prediction of minerals, protein and moisture contents[J]. Food chemistry, 2018, 261: 311-321. DOI: 10.1016/j.foodchem.2018.04.066. |
[33] | 李水芳, 付红军, 马强, 等. 构建三种木本油料植物种子含油率NIR通用模型的可行性研究[J]. 林产化学与工业, 2017, 37(4): 137-142. |
LI S F, FU H J, MA Q, et al. Universal models for determining oil contents in three woody oil plant seeds by using near infrared spectroscopy: a feasibility study[J]. Chemistry and Industry of Forest Products, 2017, 37(4): 137-142. DOI: 10. 3969/j. issn. 0253-2417. 2017. 04. 020. | |
[34] | LEÓN L, GARRIDO-VARO A, DOWNEY G. Parent and harvest year effects on near-infrared reflectance spectroscopic analysis of olive (Olea europaea L.) fruit traits[J]. Journal of Agricultural and Food Cchemistry, 2004, 52(16): 4957-4962. DOI: 10.1021/jf0496853. |
[35] | TIGABU M, ODÉN P C. Discrimination of viable and empty seeds of Pinus patula Schiede & Deppe with near-infrared spectroscopy[J]. New Forests, 2003, 25(3): 163-176. DOI: 10.1023/A:1022916615477. |
[36] | ESPINOZA J A, HODGE G R, DVORAK W S. The potential use of near infrared spectroscopy to discriminate between different pine species and their hybrids[J]. Journal of Near Infrared Spectroscopy, 2012, 20(4): 437-447. |
[37] | NISGOSKI S, SCHARDOSIN F Z, BATISTA F R R, et al. Potential use of NIR spectroscopy to identify Cryptomeria japonica varieties from southern Brazil[J]. Wood Science and Technology, 2016, 50(1): 71-80. DOI: 10.1007/s00226-015-0783-z. |
[38] | 骆立, 徐兆军, 王晓羽. 基于支持向量机的木材树种识别模型[J]. 林业工程学报, 2022, 7(4):122-127. |
LUO L, XU Z J, WANG X Y, et al. Identification of wood species using support vector machine[J]. J Fore Eng, 2022, 7(4):122-127.DOI:10.13360/j.issn.2096-1359.202111006. | |
[39] | 汪紫阳, 尹世逵, 李颖, 等. 基于可见/近红外光谱识别东北地区常见木材[J]. 浙江农林大学学报, 2019, 36(1): 162-169. |
WANG Z Y, YIN S K, LI Y, et al. Identification of common wood species in northeast China using Vis/NIR spectroscopy[J]. Journal of Zhejiang A & F University, 2019, 36(1): 162-169. DOI: 10.11833/j.issn.2095-0756.2019.01.020. | |
[40] | 杨金勇, 李学春, 黄安民, 等. 基于主成分分析与 Fisher 判别的 NIR 木材识别[J]. 东北林业大学学报, 2013, 41(12): 132-134. |
YANG J Y, LI X C, HUANG A M, et al. Timber NIR identification based on the principal component analysis and fisher discriminant analysis[J]. Journal of Northeast Forestry University, 2013, 41(12): 132-134. DOI: 10.13759/j.cnki.dlxb.2013.12.001. | |
[41] | 杨忠, 江泽慧, 吕斌. 红木的近红外光谱分析[J]. 光谱学与光谱分析, 2012, 32(9): 2405-2408. |
YANG Z, JIANG Z H, LV B. Near-infrared spectroscopy analysis of rosewood[J]. Spectroscopy and Spectral Analysis, 2012, 32(9): 2405-2408. DOI: 10.3964/j.issn.1000-0593(2012)09-2405-04. | |
[42] | RUANO A, ZITEK A, HINTERSTOISSER B, et al. NIR hyperspectral imaging (NIR-HI) and μXRD for determination of the transition between juvenile and mature wood of Pinus sylvestris L[J]. Holzforschung, 2019, 73(7): 621-627. DOI: 10.1515/hf-2018-0186. |
[43] | LUCAS DOMINGOS DA SILVA A, ALVES FILHO E G, SILVA L M A, et al. Near infrared spectroscopy to rapid assess the rubber tree clone and the influence of maturation and disease at the leaves[J]. Microchemical Journal, 2021, 168: 106478. DOI: 10.1016/j.microc.2021.106478. |
[44] | XU F, HAO Z, HUANG L, et al. Comparative identification of Citrus huanglongbing by analyzing leaves using laser-induced breakdown spectroscopy and near-infrared spectroscopy[J]. Applied Physics B, 2020, 126(3): 1-7. DOI: 10.1007/s00340-020-7392-8. |
[45] | 王震, 张晓丽, 安树杰. 松材线虫病危害的马尾松林木光谱特征分析[J]. 遥感技术与应用, 2007(3): 367-370. |
WANG Z, ZHANG X L, AN S J. Analysis of spectral characteristics of masson pine trees damaged by pine wood nematode[J]. Remotesensing Technology and Application, 2007(3): 367-370. | |
[46] | 黄明祥, 龚建华, 李顺, 等. 松材线虫病害高光谱时序与敏感特征研究[J]. 遥感技术与应用, 2012, 27(6): 954-960. |
HUANG M X, GONG J H, LI S, et al. Study on pine wilt disease hyper-spectral time series and sensitive features[J]. Remote Sensing Technology and Application, 2012, 27(6):954-960. | |
[47] | 马跃, 吕全, 赵相涛, 等. 接种不同浓度松材线虫的黑松光谱学特征分析[J]. 山东农业科学, 2012, 44(11): 1216. |
MA Y, LV Q, ZHAO X T, et al. Analysis of spectral characteristics of Pinus thunbergii inoculated with pine wood nematode[J]. Shandong Agricultural Sciences, 2012, 44(11): 1216. DOI: 10.14083/j.issn.1001-4942.2012.11.012. | |
[48] | GILLON D, JOFFRE R, DARDENNE P. Predicting the stage of decay of decomposing leaves by near infrared reflectance spectroscopy[J]. Canadian Journal of Forest Research, 1993, 23(12): 2552-2559. |
[49] | CHODAK M, LUDWIG B, KHANNA P, et al. Use of near infrared spectroscopy to determine biological and chemical characteristics of organic layers under spruce and beech stands[J]. Journal of Plant Nutrition and Soil Science, 2002, 165(1): 27-33. DOI: 10.1002/1522-2624(200202) 165:1<27::AID-JPLN27>3.0.CO;2-A. |
[50] | CONFORTI M, MATTEUCCI G, BUTTAFUOCO G. Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties[J]. Journal of Soils and Sediments, 2018, 18(3): 1009-1019. |
[51] | VENDRAME P R S, MARCHÃO R L, BRUNET D, et al. The potential of NIR spectroscopy to predict soil texture and mineralogy in Cerrado Latosols[J]. European Journal of Soil Science, 2012, 63(5): 743-753. |
[52] | SCHWANNINGER M, RODRIGUES J C, FACKLER K. A review of band assignments in near infrared spectra of wood and wood components[J]. Journal of Near Infrared Spectroscopy, 2011, 19(5): 287-308. |
[53] | 江泽慧, 黄安民. 木材中的水分及其近红外光谱分析[J]. 光谱学与光谱分析, 2006(8): 1464-1468. |
JIANG Z H, HUANG A M. Moisture in wood and its near-infrared spectral analysis[J]. Spectroscopy and Spectral Analysis, 2006(8): 1464-1468. | |
[54] | NISGOSKI S, CARNEIRO M E, BOLZON DE MUÑIZ G I. Influencia de la granulometría de la muestra en la discriminación de especies de Salix por infrarrojo cercano[J]. Maderas Ciencia Tecnología, 2015, 17(1): 195-204. DOI: 10.4067/S0718-221X2015005000019. |
[55] | BRAGA J W B, PASTORE T C M, CORADIN V T R, et al. The use of near infrared spectroscopy to identify solid wood specimens of Swietenia macrophylla (cites appendix II)[J]. Iawa Journal, 2011, 32(2): 285-296. |
[56] | 赵荣军, 邢新婷, 吕建雄, 等. 粗皮桉木材力学性质的近红外光谱方法预测[J]. 林业科学, 2012, 48(10): 106-111. |
ZHAO R J, XING X T, LV J X, et al. Estimation of wood mechanical properties of eucalyptus pellita by near infrared spectroscopy[J]. Scientia Silvae Sinicae, 2012, 48(10): 106-111. | |
[57] | 余雁, 江泽慧, 王戈, 等. 采谱方式对竹材气干密度近红外预测模型精度的影响[J]. 北京林业大学学报, 2007, 29(4): 80-83. |
YU Y, JIANG Z H, WANG G, et al. 2007. Effects of sample surface on the accuracy of near infrared predictive model of air dried density of bamboo[J]. J Beijing For Uni, 2007, 29(4): 80-83. DOI: 10.13332/j.1000-1522.2007.04.019. | |
[58] | BEC K B, GRABSKA J, HUCK C W. Biomolecular and bioanalytical applications of infrared spectroscopy: a review[J]. Analytica Chimica Acta, 2020, 1133: 150-177. DOI: 10.1016/j.aca.2020.04.015. |
[59] | SHI G, CAO J, LI C, et al. Compression strength prediction of Xylosma racemosum using a transfer learning system based on near-infrared spectral data[J]. Journal of Forestry Research, 2020, 31(3): 1061-1069. DOI: 10.1007/s11676-019-01052-2. |
[60] | 高升, 王巧华, 付丹丹, 等. 红提糖度和硬度的高光谱成像无损检测[J]. 光学学报, 2019, 39(10): 1030004. |
GAO S, WANG Q H, FU D D, et al. Nondestructive detection of sugar content and firmness of red globe grape by hypersrectral imaging[J]. Acta Optica Sinica, 2019, 39(10): 1030004. DOI: 10.3788/AOS201939.1030004. | |
[61] | 褚小立, 袁洪福, 陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004, 16(4): 528. |
CHU X L, YUAN H F, LU W Z. Progress and application of spectral data pretreatment and wavelength selection methods in NIR analytical technique[J]. Progress in chemistry, 2004, 16(4): 528. | |
[62] | BARNES R J, DHANOA M S, LISTER S J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra[J]. Applied spectroscopy, 1989, 43(5): 772-777. DOI: 10.1366/0003702894202201. |
[63] | LI Y J, DONG X, SUN Y, et al. An efficient method to reduce grain angle influence on NIR spectra for predicting extractives content from heartwood stem cores of Toona sinensis[J]. Plant methods, 2020, 16: 1-9. DOI: 10.1186/s13007-020-00623-3. |
[64] | KELLEY S S, RIALS T G, SNELL R, et al. Use of near infrared spectroscopy to measure the chemical and mechanical properties of solid wood[J]. Wood Science and Technology, 2004, 38(4): 257-276. DOI: 10.1007/s00226-003-0213-5. |
[65] | 袁天军, 王家俊, 者为, 等. 近红外光谱法的应用及相关标准综述[J]. 中国农学通报, 2013, 29(20): 190-196. |
YUAN T J, WANG J J, ZHE W, et al. The Review of application and standards of near infrared spectrometry[J]. Chinese Agricultural Science Bulletin, 2013, 29(20): 190-196. |
[1] | 杨瑞, 吴朝明, 朱骊, 胡海波. 苏南丘陵区坡面经济林土壤侵蚀特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 70-76. |
[2] | 储安婷, 宁卓, 杨红强. 林业碳汇对人工林最优轮伐期的影响--以杉木和落叶松为例[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 225-233. |
[3] | 陈菁菁, 李颂, 丁胜, 吴梦迪, 赵庆建. 基于空间视角的我国经济林产业集聚分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 159-166. |
[4] | 彭方仁, 朱凯凯, 谭鹏鹏. 我国经济林研究主要进展及有待突破的关键技术[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 127-134. |
[5] | 邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176. |
[6] | 彭红军, 徐笑, 俞小平. 林业碳汇产品价值实现路径综述[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 177-186. |
[7] | 曹林, 周凯, 申鑫, 杨晓明, 曹福亮, 汪贵斌. 智慧林业发展现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 83-95. |
[8] | 吴炅, 蒋馥根, 彭邵锋, 马开森, 陈松, 孙华. 结合树冠体积的油茶树高与产量估测研究[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 53-62. |
[9] | 张智光. 可再生资源型企业绿色战略的演进规律研究——以林业企业为例[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 1-11. |
[10] | 高沁怡, 潘春霞, 刘强, 顾光同, 祝雅璐, 吴伟光. 基于贝叶斯网络的林业碳汇项目风险评价[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 210-218. |
[11] | 丁胜, 李颂, 梁钰坤, 赵庆建, 曹福亮, 吕柳. 经济林产业上市公司融资影响因素分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 224-232. |
[12] | 张智光. 可再生资源型企业的绿色特征与绿色战略类型体系研究——以林业企业为例[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 1-8. |
[13] | 王章荣. 我国林木良种繁育基地建设发展形势及可持续发展策略[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 1-8. |
[14] | 林朝剑, 张广群, 杨洁, 徐鹏, 李英杰, 汪杭军. 基于迁移学习的林业业务图像识别[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 215-221. |
[15] | 刘诗琦, 贾黎明. 林业生物柴油可持续发展研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 216-224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||