[1] |
马鸿伟, 刘海, 姚顺彬, 等. 基于林业遥感的树种分类应用分析与展望[J]. 林业资源管理, 2020(3): 118-121.
|
|
MA H W, LIU H, YAO S B, et al. Analysis and prospect on the application of tree species classification based on forestry remote sensing[J]. For Resour Manag, 2020(3): 118-121. DOI:10.13466/j.cnki.lyzygl.2020.03.022.
|
[2] |
韩文霆, 张立元, 牛亚晓, 等. 无人机遥感技术在精量灌溉中应用的研究进展[J]. 农业机械学报, 2020, 51(2): 1-14.
|
|
HAN W T, ZHANG L Y, NIU Y X, et al. Review on UAV remote sensing application in precision irrigation[J]. Trans Chin Soc Agric Mach, 2020, 51(2): 1-14. DOI: 10.6041/j.issn.1000-1298.2020.02.001.
|
[3] |
徐誉远, 胡爽, 王本洋. 无人机遥感在我国森林资源监测中的应用动态[J]. 林业与环境科学, 2017, 33(1): 97-101.
|
|
XU Y Y, HU S, WANG B Y. Present status of unmanned aerial vehicles remote sensing for forest resources monitoring in China[J]. For Enviro Sci, 2017, 33(1): 97-101. DOI: 10.3969/j.issn.1006-4427.2017.01.018.
|
[4] |
宋以宁, 刘文萍, 骆有庆, 等. 基于线性谱聚类的林地图像中枯死树监测[J]. 林业科学, 2019, 55(4): 187-195.
|
|
SONG Y N, LIU W P, LUO Y Q, et al. Monitoring of dead trees in forest images based on linear spectral clustering[J]. Sci Silvae Sin, 2019, 55(4):187-195.DOI: 10.11707/j.1001-7488.20190420.
|
[5] |
郭璠, 蔡自兴. 图像去雾算法清晰化效果客观评价方法[J]. 自动化学报, 2012, 38(9): 1410-1419.
|
|
GUO F, CAI Z X. Objective assessment method for the clearness effect of image defogging algorithm[J]. Acta Autom Sin, 2012, 38(9): 1410-1419. DOI:10.3724/SP.J.1004.2012.01410.
|
[6] |
吴迪, 朱青松. 图像去雾的最新研究进展[J]. 自动化学报, 2015, 41(2): 221-239.
|
|
WU D, ZHU Q S. The latest research progress of image dehazing[J]. Acta Autom Sin, 2015, 41(2): 221-239. DOI:10.16383/j.aas.2015.c131137.
|
[7] |
LAND E H, MCCANN J J. Lightness and retinex theory[J]. J Op Soc of Am, 1971, 61(1): 1-11. DOI: 10.1364/josa.61.000001.
|
[8] |
李学明. 基于Retinex理论的图像增强算法[J]. 计算机应用研究, 2005, 22(2): 235-237.
|
|
LI X M. Image enhancement algorithm based on retinex theory[J]. Application Research of Computers, 2005, 22(2): 235-237.
|
[9] |
李菊霞, 余雪丽. 雾天条件下的多尺度Retinex图像增强算法[J]. 计算机科学, 2013, 40(3): 299-301,F0003.
|
|
LI J X, YU X L. Enhance algorithm for fog images based on improved multi-scale retinex[J]. Comput Sci, 2013, 40(3): 299-301,F0003.DOI: 10.3969/j.issn.1002-137X.2013.03.068.
|
[10] |
KIM J H, JANG W D, SIM J Y, et al. Optimized contrast enhancement for real-time image and video dehazing[J]. J Vis Commun Image Represent, 2013, 24(3):410-425.DOI: 10.1016/j.jvcir.2013.02.004.
|
[11] |
LIAO B, YIN P, XIAO C X. Efficient image dehazing using boundary conditions and local contrast[J]. Comput Graph, 2018, 70:242-250.DOI: 10.1016/j.cag.2017.07.016.
|
[12] |
ANCUTI C O, ANCUTI C. Single image dehazing by multi-scale fusion[J]. IEEE Trans Image Process, 2013, 22(8):3271-3282.DOI: 10.1109/TIP.2013.2262284.
|
[13] |
LIU Q Z, LUO Y Q, LI K, et al. Single image defogging method based on image patch decomposition and multi-exposure image fusion[J]. Front Neurorobot, 2021, 15:700483.DOI: 10.3389/fnbot.2021.700483.
|
[14] |
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Trans Pattern Anal Moch Intell, 2011, 33(12):2341-2353.DOI:10.1109/TPAMI.2010.168.
|
[15] |
CAI B, XU X, JIA K, et al. Dehazenet: an end-to-end system for single image haze removal[J]. IEEE Trans Image Process, 2016, 25(11):5187-5198.DOI: 10.1109/TIP.2016.2598681.
|
[16] |
LI B Y, PENG X L, WANG Z Y, et al. AOD-net:all-in-one deha-zing network[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice, Italy:IEEE, 2017:4780-4788.DOI: 10.1109/ICCV.2017.511.
|
[17] |
QU Y Y, CHEN Y Z, HUANG J Y, et al. Enhanced Pix2pix deha-zing network[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA, USA: IEEE, 2020:8152-8160.DOI: 10.1109/CVPR.2019.00835.
|
[18] |
LIU X H, MA Y R, SHI Z H, et al. GridDehazeNet:attention-based multi-scale network for image dehazing[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul, Korea (South): IEEE, 2020:7313-7322.DOI: 10.1109/ICCV.2019.00741.
|
[19] |
XU Y, WEN J, FEI L K, et al. Review of video and image defogging algorithms and related studies on image restoration and enhancement[J]. IEEE Access, 2015, 4:165-188.DOI: 10.1109/ACCESS.2015.2511558.
|
[20] |
梁健, 巨海娟, 张文飞, 等. 偏振光学成像去雾技术综述[J]. 光学学报, 2017, 37(4):0400001.
|
|
LIANG J, JU H J, ZHANG W F, et al. Review of optical polarimetric dehazing technique[J]. Acta Opt Sin, 2017, 37(4):0400001.DOI: 10.3788/AOS201737.0400001.
|
[21] |
SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Appl Opt, 2003, 42(3):511-525.DOI: 10.1364/ao.42.000511.
|
[22] |
王道累, 张天宇. 图像去雾算法的综述及分析[J]. 图学学报, 2020, 41(6):861-870
|
|
WANG D L, ZHANG T Y. Review and analysis of image defogging algorithm[J]. J Graph, 2020, 41(6):861-870.DOI: 10.11996/JG.j.2095-302X.2020060861.
|
[23] |
郭玥秀, 杨伟, 刘琦, 等. 残差网络研究综述[J]. 计算机应用研究, 2020, 37(5):1292-1297
|
|
GUO Y X, YANG W, LIU Q, et al. Survey of residual network[J]. Appl Res Comput, 2020, 37(5):1292-1297.DOI: 10.19734/j.issn.1001-3695.2018.12.0922.
|
[24] |
GAO S H, CHENG M M, ZHAO K, et al. Res2Net:a new multi-scale backbone architecture[J]. IEEE Trans Pattern Anal Mach Intell, 2021, 43(2):652-662.DOI: 10.1109/TPAMI.2019.2938758.
|
[25] |
REDMON J, FARHADI A. YOLO9000:better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI, USA: IEEE, 2017:6517-6525.DOI: 10.1109/CVPR.2017.690.
|
[26] |
LIU M J, WANG X H, ZHOU A J, et al. UAV-YOLO:Small object detection on unmanned aerial vehicle perspective[J]. Sensors, 2020, 20(8):2238.DOI: 10.3390/s20082238.
|
[27] |
ULLAH H, MUHAMMAD K, IRFAN M, et al. Light-DehazeNet:a novel lightweight CNN architecture for single image dehazing[J]. IEEE Trans Image Process, 2021, 30:8968-8982.DOI: 10.1109/TIP.2021.3116790.
|
[28] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV, USA: IEEE, 2016:770-778.DOI: 10.1109/CVPR.2016.90.
|
[29] |
LI X T, ZHAO H L, HAN L, et al. Gated fully fusion for semantic segmentation[J]. Proc AAAI Conf Artif Intell, 2020, 34(7):11418-11425.DOI: 10.1609/aaai.v34i07.6805.
|
[30] |
佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12): 1758-1763.
|
|
TONG Y B, ZHANG Q S, QI Y P. Image quality assessing by combining PSNR with SSIM[J]. J Image Graph, 2006, 11(12): 1758-1763.
|