基于Resnet的林地无人机图像去雾改进算法

牛弘健, 刘文萍, 陈日强, 宗世祥, 骆有庆

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (2) : 175-181.

PDF(3334 KB)
PDF(3334 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (2) : 175-181. DOI: 10.12302/j.issn.1000-2006.202203011
研究论文

基于Resnet的林地无人机图像去雾改进算法

作者信息 +

Dehaze algorithm for woodland UAV images based on Resnet

Author information +
文章历史 +

摘要

【目的】 针对雾霾天气下林地无人机航拍图像存在对比度低、饱和度低和色调偏移等现象,基于Resnet网络,提出一种适应林地航拍场景的无人机图像去雾方法(DHnet)。【方法】 林地场景下无人机图像具有纹理特征、高低频信息丰富的特点,在主干网络各个层级附加信息传递模块,将特征图转化为权值图进行筛选过滤并发送到其他层级,接收端设置阈值避免冗余信息的不良影响,再经密集链接增强全局去雾效果,提高图像高低频区域的去雾质量,最后在林地无人机有雾图像测试集上进行去雾实验。【结果】 DHnet在林地图像测试集上的平均结构相似性为0.83,平均峰值信噪比为22.3 dB,分别较Resnet方法提高了4.8%和39.3%。【结论】 本研究提出的算法能有效降低图像色调偏移,去除残留雾气信息,有效提高无人机航拍林地雾气图像的色彩保真度和细节信息保持度。

Abstract

【Objective】 Aiming to address the phenomena of low contrast, low saturation, and hue shift in unmanned aerial vehicle (UAV) photography images of forestland under hazy conditions, this study proposes a de-fogging method for UAV images adapted to forestland aerial photography scenes based on Resnet. 【Method】 The UAV images in woodland scenes were characterized by texture features and rich high-and low-frequency information. GFF information transfer modules were attached to each layer of the backbone network to transform feature maps into weight maps for filtering and sending to other layers, and thresholds were set at the receiving end to avoid the adverse effects of redundant information. Then, the global defogging effect was enhanced by dense links to improve the defogging quality in high- and low-frequency image regions. Finally, defogging experiments were conducted on a test set of woodland UAV images with fog. 【Result】 The average structural similarity of DHnet on the test set of woodland images was 0.83, and the average peak signal-to-noise ratio was 22.3 dB, which represented improvements of 4.8% and 39.3%, respectively, compared with the Resnet method. 【Conclusion】 The algorithm can effectively reduce tonal shift and remove residual fog, improving the color fidelity and detailed information retention of aerial woodland fog images obtained by UAV photography.

关键词

林地 / 无人机 / 图像去雾 / 深度学习

Key words

woodland / unmanned aerial vehicle(UAV) / image dehaze / deep learning

引用本文

导出引用
牛弘健, 刘文萍, 陈日强, . 基于Resnet的林地无人机图像去雾改进算法[J]. 南京林业大学学报(自然科学版). 2024, 48(2): 175-181 https://doi.org/10.12302/j.issn.1000-2006.202203011
NIU Hongjian, LIU Wenping, CHEN Riqiang, et al. Dehaze algorithm for woodland UAV images based on Resnet[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(2): 175-181 https://doi.org/10.12302/j.issn.1000-2006.202203011
中图分类号: S758;TP75   

参考文献

[1]
马鸿伟, 刘海, 姚顺彬, 等. 基于林业遥感的树种分类应用分析与展望[J]. 林业资源管理, 2020(3): 118-121.
MA H W, LIU H, YAO S B, et al. Analysis and prospect on the application of tree species classification based on forestry remote sensing[J]. For Resour Manag, 2020(3): 118-121. DOI:10.13466/j.cnki.lyzygl.2020.03.022.
[2]
韩文霆, 张立元, 牛亚晓, 等. 无人机遥感技术在精量灌溉中应用的研究进展[J]. 农业机械学报, 2020, 51(2): 1-14.
HAN W T, ZHANG L Y, NIU Y X, et al. Review on UAV remote sensing application in precision irrigation[J]. Trans Chin Soc Agric Mach, 2020, 51(2): 1-14. DOI: 10.6041/j.issn.1000-1298.2020.02.001.
[3]
徐誉远, 胡爽, 王本洋. 无人机遥感在我国森林资源监测中的应用动态[J]. 林业与环境科学, 2017, 33(1): 97-101.
XU Y Y, HU S, WANG B Y. Present status of unmanned aerial vehicles remote sensing for forest resources monitoring in China[J]. For Enviro Sci, 2017, 33(1): 97-101. DOI: 10.3969/j.issn.1006-4427.2017.01.018.
[4]
宋以宁, 刘文萍, 骆有庆, 等. 基于线性谱聚类的林地图像中枯死树监测[J]. 林业科学, 2019, 55(4): 187-195.
SONG Y N, LIU W P, LUO Y Q, et al. Monitoring of dead trees in forest images based on linear spectral clustering[J]. Sci Silvae Sin, 2019, 55(4):187-195.DOI: 10.11707/j.1001-7488.20190420.
[5]
郭璠, 蔡自兴. 图像去雾算法清晰化效果客观评价方法[J]. 自动化学报, 2012, 38(9): 1410-1419.
GUO F, CAI Z X. Objective assessment method for the clearness effect of image defogging algorithm[J]. Acta Autom Sin, 2012, 38(9): 1410-1419. DOI:10.3724/SP.J.1004.2012.01410.
[6]
吴迪, 朱青松. 图像去雾的最新研究进展[J]. 自动化学报, 2015, 41(2): 221-239.
WU D, ZHU Q S. The latest research progress of image dehazing[J]. Acta Autom Sin, 2015, 41(2): 221-239. DOI:10.16383/j.aas.2015.c131137.
[7]
LAND E H, MCCANN J J. Lightness and retinex theory[J]. J Op Soc of Am, 1971, 61(1): 1-11. DOI: 10.1364/josa.61.000001.
[8]
李学明. 基于Retinex理论的图像增强算法[J]. 计算机应用研究, 2005, 22(2): 235-237.
LI X M. Image enhancement algorithm based on retinex theory[J]. Application Research of Computers, 2005, 22(2): 235-237.
[9]
李菊霞, 余雪丽. 雾天条件下的多尺度Retinex图像增强算法[J]. 计算机科学, 2013, 40(3): 299-301,F0003.
LI J X, YU X L. Enhance algorithm for fog images based on improved multi-scale retinex[J]. Comput Sci, 2013, 40(3): 299-301,F0003.DOI: 10.3969/j.issn.1002-137X.2013.03.068.
[10]
KIM J H, JANG W D, SIM J Y, et al. Optimized contrast enhancement for real-time image and video dehazing[J]. J Vis Commun Image Represent, 2013, 24(3):410-425.DOI: 10.1016/j.jvcir.2013.02.004.
[11]
LIAO B, YIN P, XIAO C X. Efficient image dehazing using boundary conditions and local contrast[J]. Comput Graph, 2018, 70:242-250.DOI: 10.1016/j.cag.2017.07.016.
[12]
ANCUTI C O, ANCUTI C. Single image dehazing by multi-scale fusion[J]. IEEE Trans Image Process, 2013, 22(8):3271-3282.DOI: 10.1109/TIP.2013.2262284.
[13]
LIU Q Z, LUO Y Q, LI K, et al. Single image defogging method based on image patch decomposition and multi-exposure image fusion[J]. Front Neurorobot, 2021, 15:700483.DOI: 10.3389/fnbot.2021.700483.
[14]
HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Trans Pattern Anal Moch Intell, 2011, 33(12):2341-2353.DOI:10.1109/TPAMI.2010.168.
[15]
CAI B, XU X, JIA K, et al. Dehazenet: an end-to-end system for single image haze removal[J]. IEEE Trans Image Process, 2016, 25(11):5187-5198.DOI: 10.1109/TIP.2016.2598681.
[16]
LI B Y, PENG X L, WANG Z Y, et al. AOD-net:all-in-one deha-zing network[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice, Italy:IEEE, 2017:4780-4788.DOI: 10.1109/ICCV.2017.511.
[17]
QU Y Y, CHEN Y Z, HUANG J Y, et al. Enhanced Pix2pix deha-zing network[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA, USA: IEEE, 2020:8152-8160.DOI: 10.1109/CVPR.2019.00835.
[18]
LIU X H, MA Y R, SHI Z H, et al. GridDehazeNet:attention-based multi-scale network for image dehazing[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul, Korea (South): IEEE, 2020:7313-7322.DOI: 10.1109/ICCV.2019.00741.
[19]
XU Y, WEN J, FEI L K, et al. Review of video and image defogging algorithms and related studies on image restoration and enhancement[J]. IEEE Access, 2015, 4:165-188.DOI: 10.1109/ACCESS.2015.2511558.
[20]
梁健, 巨海娟, 张文飞, 等. 偏振光学成像去雾技术综述[J]. 光学学报, 2017, 37(4):0400001.
LIANG J, JU H J, ZHANG W F, et al. Review of optical polarimetric dehazing technique[J]. Acta Opt Sin, 2017, 37(4):0400001.DOI: 10.3788/AOS201737.0400001.
[21]
SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Appl Opt, 2003, 42(3):511-525.DOI: 10.1364/ao.42.000511.
[22]
王道累, 张天宇. 图像去雾算法的综述及分析[J]. 图学学报, 2020, 41(6):861-870
WANG D L, ZHANG T Y. Review and analysis of image defogging algorithm[J]. J Graph, 2020, 41(6):861-870.DOI: 10.11996/JG.j.2095-302X.2020060861.
[23]
郭玥秀, 杨伟, 刘琦, 等. 残差网络研究综述[J]. 计算机应用研究, 2020, 37(5):1292-1297
GUO Y X, YANG W, LIU Q, et al. Survey of residual network[J]. Appl Res Comput, 2020, 37(5):1292-1297.DOI: 10.19734/j.issn.1001-3695.2018.12.0922.
[24]
GAO S H, CHENG M M, ZHAO K, et al. Res2Net:a new multi-scale backbone architecture[J]. IEEE Trans Pattern Anal Mach Intell, 2021, 43(2):652-662.DOI: 10.1109/TPAMI.2019.2938758.
[25]
REDMON J, FARHADI A. YOLO9000:better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI, USA: IEEE, 2017:6517-6525.DOI: 10.1109/CVPR.2017.690.
[26]
LIU M J, WANG X H, ZHOU A J, et al. UAV-YOLO:Small object detection on unmanned aerial vehicle perspective[J]. Sensors, 2020, 20(8):2238.DOI: 10.3390/s20082238.
[27]
ULLAH H, MUHAMMAD K, IRFAN M, et al. Light-DehazeNet:a novel lightweight CNN architecture for single image dehazing[J]. IEEE Trans Image Process, 2021, 30:8968-8982.DOI: 10.1109/TIP.2021.3116790.
[28]
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV, USA: IEEE, 2016:770-778.DOI: 10.1109/CVPR.2016.90.
[29]
LI X T, ZHAO H L, HAN L, et al. Gated fully fusion for semantic segmentation[J]. Proc AAAI Conf Artif Intell, 2020, 34(7):11418-11425.DOI: 10.1609/aaai.v34i07.6805.
[30]
佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12): 1758-1763.
TONG Y B, ZHANG Q S, QI Y P. Image quality assessing by combining PSNR with SSIM[J]. J Image Graph, 2006, 11(12): 1758-1763.

基金

国家重点研发计划(2021YFD1400900)
国家林业和草原局重大应急科技项目(ZD202001)

编辑: 郑琰燚
PDF(3334 KB)

Accesses

Citation

Detail

段落导航
相关文章

/