不同楸树品种对茎腐病的抗性差异研究

祝艳艳, 贾瑞瑞, 付钰, 常林, 岳远征, 杨秀莲, 王良桂

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (2) : 155-165.

PDF(4090 KB)
PDF(4090 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (2) : 155-165. DOI: 10.12302/j.issn.1000-2006.202203017
研究论文

不同楸树品种对茎腐病的抗性差异研究

作者信息 +

Differences in resistance of Catalpa bungei cultivars to stem rot

Author information +
文章历史 +

摘要

【目的】 探究不同品种和不同繁殖方式楸树(Catalpa bungei)苗对烟草疫霉(Phytophthora nicotianae)(菌株QS.1)侵染的抗性差异,为楸树引种栽培、抗病育种提供依据。【方法】 以‘洛楸1号’组培苗(LQ-Z)、‘金丝楸’(JSQ)、‘楸杂1号’(QZ)、‘豫楸1号’(YQ)的1年生组培苗,以及‘洛楸1号’扦插苗(LQ-Q)、‘楸树5-8’(Q5-8)、‘楸树8-1’(Q8-1)的1年生扦插苗,6个生产上推广的楸树品种为试验材料,用烟草疫霉(菌株QS.1)进行侵染,测定楸树相关渗透物质含量、保护酶活性和光合气体参数等变化,分析不同处理楸树幼苗感染烟草疫霉(菌株QS.1)后的生理指标变化。【结果】 菌株QS.1侵染后2~4 d,供试的各楸树品种均感病。楸树品种组培苗中,‘楸杂1号’和‘豫楸1号’对菌株QS.1侵染的抗性最弱,‘金丝楸’的抗病力最强;楸树品种扦插苗中,‘楸树5-8’和‘楸树8-1’对菌株QS.1侵染抗性较强;‘洛楸1号’扦插苗抗病性大于组培苗,除‘金丝楸’外,楸树品种的扦插苗较组培苗具有更高的抗性。【结论】 不同楸树品种在接菌后感染致病存在差异,不同楸树品种的抗烟草疫霉(菌株QS.1)致病能力与光合性能的维持及防御相关酶活性的调节有关。

Abstract

【Objective】 To investigate the differences in resistance to Phytophthora nicotianae (strain QS.1) infestation by Catalpa bungei cultivars and breeding methods, providing basis for C. bungei introduction and cultivation and disease resistance breeding. 【Method】 The annual seedlings of ‘Jinsiqiu’ (JSQ),‘Qiuza 1 hao’ (QZ),‘Yuqiu 1 hao’ (YQ),‘Luoqiu 1 hao’ (LQ-Z)tissue cultured seedlings,and cutting seedling‘Luoqiu 1 hao’(LQ-Q),‘Qiu5-8’(Q5-8), ‘Qiu 8-1’(Q8-1),six C. bungei cultivars were used as experimental materials and infested with P. nicotianae strain QS.1 to determine relevant osmotic substance content,protective enzyme activity and photosynthetic gas parameters. 【Result】 After infection 2-4 d by strain QS.1,all C. bungei cultivars tested were susceptible to the disease and in the case of seedlings ‘Qiuza 1 hao’ and ‘Yuqiu 1 hao’ had the weakest resistance to the disease caused by the strain QS.1,while ‘Jinsiqiu’ had the strongest resistance to the disease; as far as the cuttings of C. bungei cultivars were concerned,Q5-8 and Q8-1 were more resistant to the infection of strain QS.1; ‘Luoqiu 1 hao’ cuttings were more resistant to the disease than the histoculture seedlings,and the cuttings of other species had stronger resistance to QS.1 infection than the histoculture seedlings,except for‘JSQ’.【Conclusion】 There were differences in infection pathogenesis among different C. bungei cultivars after inoculation. The pathogenic ability of different C. bungei cultivars against P. nicotianae strain QS.1 is related to the maintenance of photosynthetic performance and the regulation of defense-related enzyme activities.

关键词

楸树品种 / 烟草疫霉(菌株QS.1) / 抗性差异 / 生理指标 / 繁殖方式

Key words

Catalpa bungei cultivars / Phtophthora nicotianae (strain QS.1) / resistance difference / physiological index / propagation method

引用本文

导出引用
祝艳艳, 贾瑞瑞, 付钰, . 不同楸树品种对茎腐病的抗性差异研究[J]. 南京林业大学学报(自然科学版). 2024, 48(2): 155-165 https://doi.org/10.12302/j.issn.1000-2006.202203017
ZHU Yanyan, JIA Ruirui, FU Yu, et al. Differences in resistance of Catalpa bungei cultivars to stem rot[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(2): 155-165 https://doi.org/10.12302/j.issn.1000-2006.202203017
中图分类号: S763.7   

参考文献

[1]
HUANG W L, YE N L, XIAN B H. Investigation of stem base rot of sweetpotato and the pathogeny identification[J]. Chinese Agri Cultural Science Bulletin, 2019, 35(18):135141.
[2]
CHANG L, LIU K, WANG L G, et al. First report of Phytophthora nicotianae causing stem canker of Catalpa bungei (Chinese Catalpa) in China[J]. Plant Dis, 2022, 106(4):1309.DOI: 10.1094/PDIS-08-21-1778-PDN.
[3]
CLINE E T, FARR D F, ROSSMAN A Y. A synopsis of Phytophthora with accurate scientific names,host range,and geographic distribution[J]. Plant Heath Prog, 2008, 9(1):32.DOI: 10.1094/php-2008-0318-01-rs.
[4]
BAI G, YANG D H, CHAO P J, et al. Genome-wide identification and expression analysis of NtbHLH gene family in tobacco (Ni-cotiana tabacum) and the role of NtbHLH86 in drought adaptation[J]. Plant Divers, 2021, 43(6):510-522.DOI: 10.1016/j.pld.2020.10.004.
[5]
BOUGHALLEB-M’HAMDI N, BENFRADJ N, MIGLIORINI D, et al. Phytophthora nicotianae and P.cryptogea causing gummosis of citrus crops in Tunisia[J]. Trop Plant Pathol, 2018, 43(1):36-48.DOI: 10.1007/s40858-017-0180-2.
[6]
林霞. 樱桃抗茎腐病机理与效应因子PnAvh241功能初步研究[D]. 烟台: 烟台大学, 2019.
LIN X. Study on the cherry resistance mechanism of stem rot disease and the function of the RxLR effector PnAvh241[D]. Yantai: Yantai University, 2019.
[7]
陈瑞泰, 朱贤朝, 王智发, 等. 全国16个主产烟省(区)烟草侵染性病害调研报告[J]. 中国烟草科学, 1997, 18(4):1-7.
CHEN R T, ZHU X C, WANG Z F, et al. A report of investigating and studying tobacco infectious diseases of 16 main tobacco producing provinces(regions)in China[J]. Chin Tob Sci, 1997, 18(4):1-7.
[8]
PANABI R F, GUL S, ALI G, et al. Phytophthora nicotianae diseases worldwide: new knowledge of a long-recognised pathogen[J]. Phytopathol Mediterr, 2016, 55(1):20-40.DOI: 10.14601/Phytopathol_Mediterr-16423.
[9]
ZHANG C S, FENG C, ZHENG Y F, et al. Root exudates metabolic profiling suggests distinct defense mechanisms between resistant and susceptible tobacco cultivars against black shank di-sease[J]. Front Plant Sci, 2020, 11:559775.DOI: 10.3389/fpls.2020.559775.
[10]
李合生, 孙群, 赵世杰. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S, SUN Q, ZHAO S J. Principles and techniques of plant physiological and piochemical pxperiments[M]. Beijing: Higher Education Press, 2000.
[11]
杨兰芳, 庞静, 彭小兰, 等. 紫外分光光度法测定植物过氧化氢酶活性[J]. 现代农业科技, 2009(20):364-366.
YANG L F, PANG J, PENG X L, et al. Measurement of catalase activity in plants by ultraviolet spectrophotometry[J]. Mod Agric Sci Technol, 2009(20):364-366.DOI: 10.3969/j.issn.1007-5739.2009.20.247.
[12]
DODDS P N, RATHJEN J P. Plant immunity:towards an integrated view of plant-pathogen interactions[J]. Nat Rev Genet, 2010, 11(8):539-548.DOI: 10.1038/nrg2812.
[13]
赵小虎, 陈翠莲, 焦春香, 等. 不同油菜品种对油菜菌核病敏感性差异的生理生化特性研究[J]. 华中农业大学学报, 2006, 25(5):488-492.
ZHAO X H, CHEN C L, JIAO C X, et al. Physiological and biochemical reaction responses to Sclerotium blight inoculation among different rapeseed varieties[J]. J Huazhong Agric Univ (Nat Sci Ed), 2006, 25(5):488-492.DOI: 10.13300/j.cnki.hnlkxb.2006.05.007.
[14]
李赤, 于莉, 刘付东标, 等. 富贵竹中可溶性糖、蛋白质含量与细菌性茎腐病的关系[J]. 吉林农业大学学报, 2007, 29(6):620-622.
LI C, YU L, LIU F D B, et al. Relation between contents of soluble sugar and protein in Dracaena sanderiana Virens and bacterial stem rot[J]. J Jilin Agric Univ, 2007, 29(6):620-622.DOI: 10.13327/j.jjlau.2007.06.011.
[15]
杨汉波, 曹广黎, 韩珊, 等. 核桃对炭疽病菌抗性相关的生理生化响应差异研究[J]. 四川农业大学学报, 2020, 38(4):463-470.
YANG H B, CAO G L, HAN S, et al. Study on the difference in physiological and biochemical response of walnut (Juglans spp.) to anthracnose resistance[J]. J Sichuan Agric Univ, 2020, 38(4):463-470.DOI: 10.16036/j.issn.1000-2650.2020.04.012.
[16]
ALI S, KHAN A S, ANJUM M A, et al. Effect of postharvest oxalic acid application on enzymatic browning and quality of lotus (Nelumbo nucifera Gaertn.) root slices[J]. Food Chem, 2020, 312:126051.DOI: 10.1016/j.foodchem.2019.126051.
[17]
朱学明, 史祥鹏, 雍道敬, 等. 内生放线菌A-1诱导苹果对炭疽叶枯病的抗性[J]. 植物生理学报, 2015, 51(6):949-954.
ZHU X M, SHI X P, YONG D J, et al. Induction of resistance against Glomerella cingulata in apple by endophytic actinomycetes strain A-1[J]. Plant Physiol J, 2015, 51(6):949-954.DOI: 10.13592/j.cnki.ppj.2015.0129.
[18]
王莎莎, 盛业龙, 马文广, 等. 抗氧化系统参与不同抗性烟草品种幼苗对干旱和低温综合抗性的形成[J]. 生物技术通报, 2014(1):132-142.
WANG S S, SHENG Y L, MA W G, et al. Involvement of antioxidant defense system in drought and chilling comprehensive resistance formation in different resistant varieties of tobacco seedlings[J]. Biotechnol Bull, 2014(1):132-142.DOI: 10.13560/j.cnki.biotech.bull.1985.2014.01.025.
[19]
刘杜玲, 张博勇, 孙红梅, 等. 早实核桃不同品种抗寒性综合评价[J]. 园艺学报, 2015, 34(3):967-974.
LIU D L, ZHANG B Y, SUN H M, et al. Comprehensive evaluation on cold resistance of early fruiting walnut cultivars[J]. Acta Hortic Sin, 2015, 34(3):967-974.DOI: 10.16420/j.issn.0513-353x.2014-0917.
[20]
张燕梅, 李栋梁, 李俊峰, 等. 烟草疫霉侵染后剑麻H.11648叶片细胞超微结构和防御酶活性研究[J]. 热带作物学报, 2018, 39(6):1161-1165.
ZHANG Y M, LI D L, LI J F, et al. Changes in ultrastructure and activities of defense-related enzymes in leaves of sisal H.11648 after Phytophthora nicotianae Breda infection[J]. Chin J Trop Crops, 2018, 39(6):1161-1165.DOI: 10.3969/j.issn.1000-2561.2018.06.018.
[21]
MAGBANUA Z V, DE MORAES C M, BROOKS T D, et al. Is ca-talase activity one of the factors associated with maize resistance to Aspergillus flavus?[J]. Mol Plant Microbe Interact, 2007, 20(6):697-706.DOI: 10.1094/MPMI-20-6-0697.
[22]
YANG H, LUO P G. Changes in photosynthesis could provide important insight into the interaction between wheat and fungal pathogens[J]. Int J Mol Sci, 2021, 22(16):8865.DOI: 10.3390/ijms22168865.
[23]
MOHSENZADEH S, MALBOOBI M A, RAZAVI K, et al. Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit[J]. Environ Exp Bot, 2006, 56(3):314-322.DOI: 10.1016/j.envexpbot.2005.03.008.
[24]
BERGER S, SINHA A K, ROITSCH T. Plant physiology meets phytopathology:plant primary metabolism and plant-pathogen interactions[J]. J Exp Bot, 2007, 58(15/16):4019-4026.DOI: 10.1093/jxb/erm298.
[25]
KRETSCHMER M, DAMOO D, DJAMEI A, et al. Chloroplasts and plant immunity:where are the fungal effectors?[J]. Pathogens, 2019, 9(1):19.DOI: 10.3390/pathogens9010019.
[26]
马迎莉, 高雨, 袁婷婷, 等. 重金属铬胁迫对髯毛箬竹光合特性的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(1):54-60.
MA Y L, GAO Y, YUAN T T, et al. Effects of heavy metal chromium stress on the photosynthetic characteristics of Indocalamus barbatus McClure[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(1):54-60.DOI: 10.3969/j.issn.1000-2006.201712013.
[27]
STEWART J D, ZINE EL ABIDINE A, BERNIER P Y. Stomatal and mesophyll limitations of photosynthesis in black spruce seedlings during multiple cycles of drought[J]. Tree Physiol, 1995, 15(1):57-64.DOI: 10.1093/treephys/15.1.57.
[28]
FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982, 33:317-345.DOI: 10.1146/annurev.pp.33.060182.001533.
[29]
WAHID A, GELANI S, ASHRAF M, et al. Heat tolerance in plants:an overview[J]. Environ Exp Bot, 2007, 61(3):199-223.

基金

江苏省农业科技自主创新资金项目(CX(19)2038)
江苏省林业科技创新与推广项目(LYKJ(20019)05)

编辑: 李燕文
PDF(4090 KB)

Accesses

Citation

Detail

段落导航
相关文章

/