长期结实和不结实红松针叶光合生理参数的差异

林强, 陆天宇, 沈海龙, 王元兴, 张鹏

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 137-146.

PDF(1744 KB)
PDF(1744 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 137-146. DOI: 10.12302/j.issn.1000-2006.202203032
研究论文

长期结实和不结实红松针叶光合生理参数的差异

作者信息 +

Analysis of needle photosynthetic index characteristics for long period seed setting and non-setting trees of Pinus koraiensis

Author information +
文章历史 +

摘要

【目的】选择营养生长基本一致而结实状况差异很大的红松(Pinus koraiensis)个体,分析其光合生理指标差异情况,为红松果材兼用培育提供科学依据。【方法】以吉林省露水河林业局种子园内30年生红松为研究对象,通过对不同结实特性及环境差异下红松个体光合指标进行连续观测,分析其生长季内叶绿素含量、比叶面积(SLA)、光响应参数、非结构性碳水化合物(NSC)含量等指标的变化情况。【结果】①不同结实状况红松叶绿素a(Chl a)、叶绿素b(Chl b)、类胡萝卜素(Car)和总叶绿素(Chl T)含量存在显著差异。在生长季期间,不结实红松中的Chl a、Chl b、Car和Chl T含量显著高于结实红松,而叶绿素a与b质量比(Chl a/b)相反,除7月外SLA均表现为结实红松>不结实红松。两种结实特性红松各指标在不同月份之间差异显著。两种结实特性红松叶绿素含量和比叶面积变化趋势一致,Chl a、Chl b、Car和Chl T含量呈下降趋势,而SLA则上升,Chl a/b先下降后上升;②两种结实特性的红松只有光饱和点(LSP)存在显著差异,表观量子效率(AQY)、光补偿点(LCP)、最大净光合速率(Pn,max)、暗呼吸速率(Rd)等均不显著。在整个生长季,除LCP外,两种结实特性红松各指标变化趋势基本一致,AQY和Rd表现为上升趋势,Pn,max、LCP、LSP则表现为下降趋势。除5月外,其他月份两种结实特性红松针叶AQY均为结实红松<不结实红松,Rd则相反,Pn,max和LSP表现为结实红松>不结实红松,LCP在5、7月份中为结实红松<不结实红松,6、8月份为结实红松>不结实红松,9月份趋于持平。同时,LCP和LSP随冠层升高而逐渐增大,且各指标在月份之间差异显著;③两种结实特性的红松个体针叶中可溶性糖、淀粉和NSC含量之间差异不显著,在生长季均表现为下降趋势且月份之间差异显著,可溶性糖和淀粉含量在不同生境下差异显著,针叶可溶性糖和NSC含量除4、8月外,均表现为结实红松>不结实红松,淀粉含量除6月外均表现为结实红松<不结实红松。【结论】吉林省红松林区的结实红松具有更高的光合潜力和物质消耗能力,因此在光照条件下会同化更多的碳,并提高了能量转换效率,以便在生长季存储更多的淀粉和NSC为果实发育提供营养支撑。

Abstract

【Objective】Photosynthetic products form the basis for forest growth and fruit development. This study analyzed the differences in photosynthetic physiological indexes of Korean pine (Pinus koraiensis) individuals that were largely similar in terms of their vegetative growth patterns, but significantly different with regards to seed setting. This study was conducted to provide a scientific basis for the optimum cultivation of the fruit and wood of P. koraiensis. 【Method】Thirty-year-old Pinus koraiensis in the seed orchard of the Lushuihe Forestry Bureau was selected as the research site, and the dynamic changes in chlorophyll, specific leaf area (SLA), light response parameters, and non-structural carbohydrates (NSC) during the growing season were assessed. 【Result】(1) There were significant differences in chlorophyll a (Chl a), chlorophyll b (Chl b), chlorophyll carotenoids, and total chlorophyll (Chl T) under different seed setting conditions. Specifically, Chl a, Chl b, Car and Chl T of non-fruiting P. koraiensis were significantly higher than those of fruiting Pinus koraiensis during the growing season, but chlorophyll a/b (Chl a/b) showed the opposite trend. However, the indices of the two seed-setting properties of P. koraiensis showed significant differences across different months. Chl a, Chl b, Car and Chl T decreased, SLA increased, and Chl a/b decreased at first and then increased. (2) The light saturation point (LSP) was significantly different between the two seed-setting properties of P. koraiensis; apparent quantum efficiency (AQY), light compensation point (LCP), maximum net photosynthetic rate (Pn,max) and dark respiration rate (Rd) were not significantly different. Except for the LCP, AQY and Rd of the two seed-setting properties of P. koraiensis showed an increased during the entire growing season. On the other hand, Pn,max, LCP, and LSP decreased. Two types of seed-setting characteristics of P. koraiensis needles were noted. Specifically, AQY showed less seed-setting than non-seed-setting in all months except May, but Rd, Pn,max and LSP showed the opposite trend. In addition, LCP in May and July is less seed-setting than non-seed-setting, and in June and August is more seed-setting than non-seed-setting. At the same time, LCP and LSP increased gradually with an increase in canopy, and the difference in each index month was significant. (3) There was no significant difference between soluble sugar, starch and NSC in the needles of the two seed-setting P. koraiensis individuals. However, the concentrations of soluble sugars and NSC in conifers were higher than those in non-conifers, except in April and August. In addition, the starch concentration was stable except for in June. 【Conclusion】P. koraiensis has higher photosynthetic potential and material consumption capacity, so it assimilates more carbon under light conditions and improves energy conversion efficiency; this results in it storing more starch and NSC during the growing season, providing nutritional support for fruit development.

关键词

红松 / 光响应参数 / 非结构性碳水化合物 / 季节动态

Key words

Pinus koraiensis (Korean pine) / photosynthetic parameters / non-structural carbohydrates / seasonal dynamics

引用本文

导出引用
林强, 陆天宇, 沈海龙, . 长期结实和不结实红松针叶光合生理参数的差异[J]. 南京林业大学学报(自然科学版). 2023, 47(3): 137-146 https://doi.org/10.12302/j.issn.1000-2006.202203032
LIN Qiang, LU Tianyu, SHEN Hailong, et al. Analysis of needle photosynthetic index characteristics for long period seed setting and non-setting trees of Pinus koraiensis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 137-146 https://doi.org/10.12302/j.issn.1000-2006.202203032
中图分类号: S791.247   

参考文献

[1]
BAKER E J, MILES E A, CALDER P C. A review of the functional effects of pine nut oil,pinolenic acid and its derivative eicosatrienoic acid and their potential health benefits[J]. Prog Lipid Res, 2021, 82:101097.DOI:10.1016/j.plipres.2021.101097.
[2]
SHEN H L. Korean pine as a nut production species in China-present situation and future development[J]. Acta Hortic, 2003(620):187-191.DOI:10.17660/actahortic.2003.620.20.
[3]
NGUYEN T T, 沈海龙, 王琴香, 等. 截顶后红松幼树光合生理响应研究[J]. 森林工程, 2017, 33(4):1-7.
NGUYEN T T, SHEN H L, WANG Q X, et al. Response of photosynthetic physiology to top pruning of young Pinus koraiensis[J]. For Eng, 2017, 33(4):1-7.DOI:10.16270/j.cnki.slgc.2017.04.001.
[4]
姜国云, 蒋路平, 宋双林, 等. 红松半同胞家系遗传变异分析及果材兼用优良家系选择[J]. 植物研究, 2018, 38(5):775-784.
JIANG G Y, JIANG L P, SONG S L, et al. Genetic variance analysis and excellent fruit-timber families selection of half-sib Pinus koraiensis[J]. Bull Bot Res, 2018, 38(5):775-784.
[5]
WU H B, YIN D S, RODRÍGUEZ-CALCERRADA J, et al. Cone-bearing effects on photosynthetic traits do not change with needle age in Pinus koraiensis trees[J]. New For, 2022, 53(4):607-626.DOI:10.1007/s11056-021-09874-x.
[6]
蒋路平, 王景源, 张鹏, 等. 170个红松无性系生长及结实性状变异及选择[J]. 林业科学研究, 2019, 32(1):58-64.
JIANG L P, WANG J Y, ZHANG P, et al. Variation and selection of growth and fruit traits among 170 Pinus koraiensis clones[J]. For Res, 2019, 32(1):58-64.DOI:10.13275/j.cnki.lykxyj.2019.01.008.
[7]
王芳, 王元兴, 王成录, 等. 红松优树半同胞子代家系生长、结实及抗病虫能力的变异特征[J]. 应用生态学报, 2019, 30(5):1679-1686.
WANG F, WANG Y X, WANG C L, et al. Variation of the growth,fruiting and resistance to disease and insect of the half-sib families of Pinus koraiensis superior trees[J]. Chin J Appl Ecol, 2019, 30(5):1679-1686.DOI:10.13287/j.1001-9332.201905.016.
[8]
倪建中, 王伟, 郁书君, 等. 不同种源木棉生长及光合特性研究[J]. 南京林业大学学报(自然科学版), 2015, 39(6):185-189.
NI J Z, WANG W, YU S J, et al. Analysis of growth traits and photosynthetic characteristics of Bombax ceiba among different provenances[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(6):185-189.
[9]
叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报, 2010, 34(6):727-740.
YE Z P. A review on modeling of responses of photosynthesis to light and CO2[J]. Chin J Plant Ecol, 2010, 34(6):727-740.
[10]
梁德洋, 金允哲, 赵光浩, 等. 红松无性系光合特性比较研究[J]. 基因组学与应用生物学, 2018, 37(9):3996-4006.
LIANG D Y, JIN Y Z, ZHAO G H, et al. Comparative study of photosynthetic characteristics of Pinus koraiensis clones[J]. Genom Appl Biol, 2018, 37(9):3996-4006.DOI:10.13417/j.gab.037.003996.
[11]
徐自恒, 房丽莎, 刘震, 等. 不同种源山桐子光合特性分析[J]. 河南农业大学学报, 2021, 55(1):44-51.
XU Z H, FANG L S, LIU Z, et al. Analysis on photosynthetic characteristics of different provenances of Idesia polycarpa[J]. J Henan Agric Univ, 2021, 55(1):44-51.DOI:10.16445/j.cnki.1000-2340.20210122.011.
[12]
DE ÁVILA S L, CONDORI-APFATA J A, MARCELINO M M, et al. Nitrogen differentially modulates photosynthesis,carbon allocation and yield related traits in two contrasting Capsicum chinense cultivars[J]. Plant Sci, 2019, 283:224-237.DOI:10.1016/j.plantsci.2019.02.014.
[13]
BRESTIC M, YANG X H, LI X N, et al. Crop photosynthesis for the twenty-first century[J]. Photosynth Res, 2021, 150(1):1-3.DOI:10.1007/s11120-021-00869-5.
[14]
叶子飘, 王建林. 植物光合-光响应模型的比较分析[J]. 井冈山大学学报(自然科学版), 2009(2):9-13.
YE Z P, WANG J L. Comparison and analysis of light-response models of plant photosynthesis[J]. J Jinggangshan Univ (Nat Sci), 2009(2):9-13.
[15]
叶子飘, 于强. 一个光合作用光响应新模型与传统模型的比较[J]. 沈阳农业大学学报, 2007, 38(6):771-775.
YE Z P, YU Q. Comparison of a new model of light response of photosynthesis with traditional models[J]. J Shenyang Agric Univ, 2007, 38(6):771-775.
[16]
梁文超, 步行, 罗思谦, 等. 氮磷钾复合肥对增温促花后‘长寿冠’海棠生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 81-88.
LIANG W C, BU X, LUO S Q, et al. Effects of nitrogen, phosphorus and potassium compound fertilization on the physiological characteristics of Chaenomeles speciosa ‘Changshouguan’ after processing of warming in the post floral stage[J]. J Nanjing For Univ (Nat Sci Edi), 2022, 46(5): 81-88.DOI: 10.12302/j.issn.1000-2006.202109025.
[17]
于立忠, 苗杰, 张金鑫, 等. 不同透光环境下红松光合色素含量的季节变动及应对策略[J]. 生态学报, 2014, 34(14):3924-3931.
YU L Z, MIAO J, ZHANG J X, et al. Seasonal variation of photosynthetic pigment content in Pinus koraiensis:the role of different light-induced strategies[J]. Acta Ecol Sin, 2014, 34(14):3924-3931.
[18]
NIINEMETS Ü. Photosynthesis and resource distribution through plant canopies[J]. Plant Cell Environ, 2007, 30(9):1052-1071.DOI:10.1111/j.1365-3040.2007.01683.x.
[19]
孙小玲, 许岳飞, 马鲁沂, 等. 植株叶片的光合色素构成对遮阴的响应[J]. 植物生态学报, 2010, 34(8):989-999.
SUN X L, XU Y F, MA L Y, et al. A review of acclimation of photosynthetic pigment composition in plant leaves to shade environment[J]. Chin J Plant Ecol, 2010, 34(8):989-999.
[20]
GALVAGNO M, ROSSINI M, MIGLIAVACCA M, et al. Seasonal course of photosynthetic efficiency in Larix decidua Mill.in response to temperature and change in pigment composition during senescence[J]. Int J Biometeorol, 2013, 57(6):871-880.DOI:10.1007/s00484-012-0614-y.
[21]
李轩然, 刘琪璟, 蔡哲, 等. 千烟洲针叶林的比叶面积及叶面积指数[J]. 植物生态学报, 2007, 31(1):93-101.
LI X R, LIU Q J, CAI Z, et al. Specific leaf area and leaf area index of conifer plantations in Qianyanzhou Station of subtropical China[J]. J Plant Ecol, 2007, 31(1):93-101.
[22]
胡耀升, 么旭阳, 刘艳红. 长白山森林不同演替阶段比叶面积及其影响因子[J]. 生态学报, 2015, 35(5):1480-1487.
HU Y S, YAO X Y, LIU Y H. Specific leaf area and its influencing factors of forests at different succession stages in Changbai Mountains[J]. Acta Ecol Sin, 2015, 35(5):1480-1487.
[23]
张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6):844-852.
ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Chin J Plant Ecol, 2004, 28(6):844-852.
[24]
焦娟玉, 尹春英, 陈珂. 土壤水、氮供应对麻疯树幼苗光合特性的影响[J]. 植物生态学报, 2011, 35(1):91-99.
JIAO J Y, YIN C Y, CHEN K. Effects of soil water and nitrogen supply on the photosynthetic characteristics of Jatropha curcas seedlings[J]. Chin J Plant Ecol, 2011, 35(1):91-99.
[25]
霍宏, 王传宽. 冠层部位和叶龄对红松光合蒸腾特性的影响[J]. 应用生态学报, 2007, 18(6):1181-1186.
HUO H, WANG C K. Effects of canopy position and leaf age on photosynthesis and transpiration of Pinus koraiensis[J]. Chin J Appl Ecol, 2007, 18(6):1181-1186.
[26]
YANG H B, AN S Q, SUN O J, et al. Seasonal variation and correlation with environmental factors of photosynthesis and water use efficiency of Juglans regia and Ziziphus jujuba[J]. J Integr Plant Biol, 2008, 50(2):210-220.DOI:10.1111/j.1744-7909.2007.00391.x.
[27]
徐孟亮, 丁绿萍, 罗佳, 等. 超级稻超高产形成的光合机制研究进展[J]. 生命科学研究, 2021, 25(5):386-392.
XU M L, DING L P, LUO J, et al. Research progress of photosynthetic mechanisms of super high-grain-yield rice[J]. Life Sci Res, 2021, 25(5):386-392.DOI:10.16605/j.cnki.1007-7847.2021.08.0195.
[28]
夏国威, 孙晓梅, 陈东升, 等. 日本落叶松冠层光合特性的空间变化[J]. 林业科学, 2019, 55(6):13-21.
XIA G W, SUN X M, CHEN D S, et al. Spatial variation of photosynthetic characteristics in canopy of Larix kaempferi[J]. Sci Silvae Sin, 2019, 55(6):13-21.DOI:10.11707/j.1001-7488.20190602.
[29]
ELLSWORTH D S, REICH P B. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest[J]. Oecologia, 1993, 96(2):169-178.DOI:10.1007/BF00317729.
[30]
KOIKE T, KITAO M, MARUYAMA Y, et al. Leaf morphology and photosynthetic adjustments among deciduous broad-leaved trees within the vertical canopy profile[J]. Tree Physiol, 2001, 21(12/13):951-958.DOI:10.1093/treephys/21.12-13.951.
[31]
HOCH G, RICHTER A, KÖRNER C. Non-structural carbon compounds in temperate forest trees[J]. Plant Cell Environ, 2003, 26(7):1067-1081.DOI:10.1046/j.0016-8025.2003.01032.x.
[32]
OVERDIECK D, FENSELAU K. Elevated CO2 concentration and temperature effects on the partitioning of chemical components along juvenile Scots pine(Pinus sylvestris L.) stems[J]. Trees, 2009, 23(4):771-786.DOI:10.1007/s00468-009-0319-y.
[33]
WU H B, YIN D S, SALOMÓN R L, et al. Cone-bearing branches of Pinus koraiensis are not carbon autonomous during cone development[J]. Forests, 2021, 12(9):1257.DOI:10.3390/f12091257.
[34]
周光, 徐玮泽, 万静, 等. 长白山阔叶红松林不同演替阶段林下红松幼苗能量与养分季节动态[J]. 应用生态学报, 2021, 32(5):1663-1672.
ZHOU G, XU W Z, WAN J, et al. Seasonal dynamics of energy and nutrients of Pinus koraiensis seedlings in different successional stages of broadleaved Korean pine forest in Changbai Mountain,China[J]. Chin J Appl Ecol, 2021, 32(5):1663-1672.DOI:10.13287/j.1001-9332.202105.001.
[35]
WIMMER R, GRABNER M. Effects of climate on vertical resin duct density and radial growth of Norway spruce[Picea abies (L.) Karst.][J]. Trees, 1997, 11(5):271-276.DOI:10.1007/PL00009673.
[36]
YANG X H, CHEN L S, CHENG L L. Leaf photosynthesis and carbon metabolism adapt to crop load in ‘Gala’ apple trees[J]. Horticulturae, 2021, 7(3):47.DOI:10.3390/horticulturae7030047.
[37]
崔西甜, 袁凤辉, 王安志, 等. 树木叶片光合能力随叶龄变化研究进展[J]. 世界林业研究, 2017, 30(3):18-23.
CUI X T, YUAN F H, WANG A Z, et al. Research progress in changes of leave photosynthetic capacities at different leaf age[J]. World For Res, 2017, 30(3):18-23.DOI:10.13348/j.cnki.sjlyyj.2017.0020.y.
[38]
朱振家, 姜成英, 史艳虎, 等. 库源比改变对油橄榄产量及源叶光合作用的调节[J]. 中国农业科学, 2015, 48(3):546-554.
ZHU Z J, JIANG C Y, SHI Y H, et al. Response of yield and leaf photosynthesis to sink-source ratio altering demand in olive[J]. Sci Agric Sin, 2015, 48(3):546-554.DOI:10.3864/j.issn.0578-1752.2015.03.14.
[39]
李卫东, 李绍华, 吴本宏, 等. 果实不同发育阶段去果对桃源叶光合作用的影响[J]. 中国农业科学, 2005, 38(3):565-570.
LI W D, LI S H, WU B H, et al. Leaf photosynthesis in response to fruit thining at different phenological stages of fruit development in peach trees[J]. Sci Agric Sin, 2005, 38(3):565-570.
[40]
丰亚南, 郑国生, 王宗正, 等. 牡丹开花前后碳水化合物的分配与光合速率的关系[J]. 园艺学报, 2007, 34(1):153-156.
FENG Y N, ZHENG G S, WANG Z Z, et al. Relationship between carbohydrate allocation and photosynthesis during florescence and flower senescence period in tree peony[J]. Acta Hortic Sin, 2007, 34(1):153-156.DOI:10.16420/j.issn.0513-353x.2007.01.031.

基金

国家重点研发计划(2017YFD0600601)

编辑: 郑琰燚 , 孟苗婧
PDF(1744 KB)

Accesses

Citation

Detail

段落导航
相关文章

/