南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6): 13-22.doi: 10.12302/j.issn.1000-2006.202204005
所属专题: 乡村振兴视域下的生物质能源树种无患子研究专题
• 专题报道:乡村振兴视域下的生物质能源树种无患子研究专题(执行主编 李维林 方升佐 贾黎明) • 上一篇 下一篇
王冕之1(), 郑玉琳1, 贾黎明1,*(), 李露1, 罗水晶2, 刘济铭1, 刘俊涛1
收稿日期:
2022-04-06
修回日期:
2022-05-11
出版日期:
2024-11-30
发布日期:
2024-12-10
通讯作者:
*贾黎明(jlm@bjfu.edu.cn),教授。作者简介:
王冕之(W_MianZhi@bjfu.edu.cn)。
基金资助:
WANG Mianzhi1(), ZHENG Yulin1, JIA Liming1,*(), LI Lu1, LUO Shuijing2, LIU Jiming1, LIU Juntao1
Received:
2022-04-06
Revised:
2022-05-11
Online:
2024-11-30
Published:
2024-12-10
摘要:
【目的】了解无患子(Sapindus saponaria)关键物候期液流速率特征及其对修剪和气象因子的响应规律,为无患子生殖生长各关键物候期水分的科学管理提供理论参考。【方法】在福建省三明市建宁县无患子国家林木种质资源库试验区,以5年生无患子新品种‘媛华’为试验材料,利用热扩散液流探针和自动气象站监测2021年4月20日—11月9日的树干液流和气象数据分析气象因子和枝叶修剪对无患子液流特征的影响。试验中探针安装于距地面约30 cm处以保证所有处理的探针都安装于第1分枝之下。修剪组样树在花序抽生期长出花序后进行一次性修剪,去掉遮蔽花序阳光的枝组和复叶。对照组样树不做修剪处理。【结果】①无患子日均液流速率随时间在7个生殖生长关键物候期尺度上呈现降低—升高—降低的趋势。在初果期蒸腾活动最强,日均液流速率高达(1.13±0.05)×10-3(修剪)和(1.48±0.05)×10-3cm/s(对照),在果实成熟期蒸腾活动最弱,日均液流速率低至(0.15±0.02)×10-3(修剪)和(0.26±0.03)×10-3 cm/s(对照)。除花芽膨大期外,修剪显著降低了无患子各物候期液流速率,降低作用在树体生长旺盛的晴天较明显、在果实发育末期最强。②太阳辐射、空气温度、风速和饱和水汽压亏缺是无患子液流速率的主要驱动因子,而降水量和空气相对湿度是主要限制因子。持续降水等气象因素是花芽膨大期至开花期前期和果实膨大期中期无患子蒸腾活动的主要限制因素,叶片老化、树体逐渐进入休眠是果实成熟期液流速率低的主要原因。【结论】修剪显著降低了树体蒸腾作用,降低效应随关键物候期向后发展而增强。无患子生殖生长全物候期液流速率波动明显,推测树木和果实生长对水分的需求与树体耗水行为密切相关,而花序生长发育时期持续过量降雨等气象因素不利于无患子蒸腾耗水。
中图分类号:
王冕之,郑玉琳,贾黎明,等. 无患子生殖生长物候期液流特征及其对枝叶修剪的响应[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 13-22.
WANG Mianzhi, ZHENG Yulin, JIA Liming, LI Lu, LUO Shuijing, LIU Jiming, LIU Juntao. The sap flow characteristics and responses to branch and leaf pruning during reproductive phenological periods in Sapindus saponaria[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(6): 13-22.DOI: 10.12302/j.issn.1000-2006.202204005.
表1
无患子样树基本情况"
编号 code | 树高/m tree height | 探针处 树径/cm diameter at probe | 南北冠 幅/m crown width (NS) | 东西冠 幅/m crown width (WE) | 处理 treatment |
---|---|---|---|---|---|
T1 | 2.55 | 10.03 | 2.65 | 2.10 | 修剪pruning |
T2 | 2.80 | 8.00 | 2.30 | 2.30 | 修剪pruning |
T3 | 3.36 | 10.15 | 2.60 | 1.95 | 修剪pruning |
T4 | 3.10 | 8.30 | 2.20 | 2.30 | 对照CK |
T5 | 2.60 | 6.89 | 1.25 | 1.15 | 对照CK |
T6 | 2.75 | 8.50 | 1.70 | 1.62 | 对照CK |
T7 | 2.55 | 7.61 | 2.80 | 2.90 | 对照CK |
T8 | 3.22 | 6.90 | 2.20 | 2.35 | 对照CK |
表2
关键物候期无患子液流速率与气象因子的Pearson相关性"
物候期 phenological stage | 处理 treatment | Rs | RG | AWS | Ta | RHa | Ts | RHs | VPD |
---|---|---|---|---|---|---|---|---|---|
花序抽生期(修剪前) inflorescence growth period (before pruning) | 修剪pruning | 0.867** | -0.045 | 0.392** | 0.751** | -0.751** | -0.243** | -0.055 | 0.774** |
对照CK | 0.829** | -0.061 | 0.404** | 0.729** | -0.697** | -0.212** | -0.043 | 0.718** | |
花序抽生期(修剪后) inflorescence growth period (after pruning) | 修剪pruning | 0.863** | -0.080** | 0.226** | 0.668** | -0.658** | -0.026 | 0.030 | 0.678** |
对照CK | 0.806** | -0.053** | 0.246** | 0.622** | -0.580** | -0.023 | 0.028 | 0.577** | |
花芽膨大期 bud swelling period | 修剪pruning | 0.877** | -0.112** | 0.098** | 0.781** | -0.763** | 0.014 | -0.225** | 0.776** |
对照CK | 0.874** | -0.091** | 0.135** | 0.758** | -0.756** | 0.038 | -0.243** | 0.763** | |
开花期 flowering period | 修剪pruning | 0.898** | -0.101** | 0.419** | 0.737** | -0.751** | 0.160** | -0.319** | 0.769** |
对照CK | 0.897** | -0.098** | 0.415** | 0.733** | -0.713** | 0.150** | -0.301** | 0.731** | |
初果期 early ovary growing period | 修剪pruning | 0.898** | -0.045** | 0.199* | 0.786** | -0.754** | -0.068** | -0.062** | 0.751** |
对照CK | 0.904** | -0.047** | 0.217** | 0.758** | -0.723** | -0.114** | -0.043** | 0.716** | |
果实膨大期 fruit development period | 修剪pruning | 0.872** | -0.037** | 0.036** | 0.818** | -0.787** | -0.050** | 0.119** | 0.806** |
对照CK | 0.913** | -0.041** | 0.039** | 0.821** | -0.755** | -0.117** | 0.071** | 0.774** | |
果实转色期 fruit colour change period | 修剪pruning | 0.902** | -0.044* | -0.004 | 0.661** | -0.757** | 0.248** | 0.090** | 0.772** |
对照CK | 0.904** | -0.044* | -0.004 | 0.644** | -0.370** | 0.216** | 0.103** | 0.747** | |
果实成熟期 fruit maturity period | 修剪pruning | 0.580** | 0.101** | 0.046* | 0.257** | -0.360** | 0.018 | -0.046* | 0.531** |
对照CK | 0.718** | 0.118** | 0.063** | 0.341** | -0.472** | -0.017 | -0.143** | 0.673** |
[1] | OOGATHOO S, HOULE D, DUCHESNE L, et al. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions,even during a short term drought[J]. Agric For Meteor, 2020,291:108063.DOI: 10.1016/j.agrformet.2020.108063. |
[2] | HAN C, CHEN N, ZHANG C K, et al. Sap flow and responses to meteorological about the Larix principis-rupprechtii plantation in Gansu Xinlong Mountain,northwestern China[J]. For Ecol Manag, 2019,451:117519.DOI: 10.1016/j.foreco.2019.117519. |
[3] | PETZOLD R, SCHWÄRZEL K, FEGER K H. Transpiration of a hybrid poplar plantation in Saxony (Germany) in response to climate and soil conditions[J]. Eur J For Res, 2011, 130(5):695-706.DOI: 10.1007/s10342-010-0459-z. |
[4] | MELLANDER P E, BISHOP K, LUNDMARK T. The influence of soil temperature on transpiration:a plot scale manipulation in a young Scots pine stand[J]. For Ecol Manag, 2004, 195(1/2):15-28.DOI: 10.1016/j.foreco.2004.02.051. |
[5] | CHU C R, HSIEH C I, WU S Y, et al. Transient response of sap flow to wind speed[J]. J Exp Bot, 2009, 60(1):249-255.DOI: 10.1093/jxb/ern282. |
[6] | DIXON M, GRACE J. Effect of wind on the transpiration of young trees[J]. Ann Bot, 1984, 53(6):811-819.DOI: 10.1093/oxfordjournals.aob.a086751. |
[7] | IQBAL S, ZHA T S, JIA X, et al. Interannual variation in sap flow response in three xeric shrub species to periodic drought[J]. Agric For Meteor, 2021,297:108276.DOI: 10.1016/j.agrformet.2020.108276. |
[8] | LIU C W, DU T S, LI F S, et al. Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of Northwest China[J]. Agric Water Manag, 2012, 104:193-202.DOI: 10.1016/j.agwat.2011.12.014. |
[9] | GU D X, HE W, HUANG K C, et al. Transpiration of Moso bamboo in southern China is influenced by ramet age,phenology,and drought[J]. For Ecol Manag, 2019,450:117526.DOI: 10.1016/j.foreco.2019.117526. |
[10] | 吴佳伟, 李苇洁, 杨瑞, 等. 红阳猕猴桃生长发育期树干液流特征及其与环境因子的关系[J]. 果树学报, 2021, 39(3):1-25. |
WU G W, LI W J, YANG R, et al. Characteristics of trunk SAP flow and its relationship with environmental factors during growth and development of ‘Hongyang’ kiwifruit[J]. J Fruit Sci, 2021, 39(3):1-25. DOI:10.13925/j.cnki.gsxb.20210178. | |
[11] | 刘济铭, 孙操稳, 何秋阳, 等. 国内外无患子属种质资源研究进展[J]. 世界林业研究, 2017, 30(6):12-18. |
LIU J M, SUN C W, HE Q Y, et al. Research progress in Sapindus L. germplasm resources[J]. World For Res, 2017, 30(6):12-18.DOI: 10.13348/j.cnki.sjlyyj.2017.0071.y. | |
[12] | UPADHYAY A, SINGH D K. Molluscicidal activity of Sapindus mukorossi and Terminalia chebula against the freshwater snail Lymnaea acuminata[J]. Chemosphere, 2011, 83(4):468-474.DOI: 10.1016/j.chemosphere.2010.12.066. |
[13] | MUNTAHA S T, KHAN M N. Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant:a dye surfactant interaction study[J]. J Clean Prod, 2015, 93:145-150.DOI: 10.1016/j.jclepro.2015.01.023. |
[14] | CHAKRABORTY M, BARUAH D C. Production and characterization of biodiesel obtained from Sapindus mukorossi kernel oil[J]. Energy, 2013, 60:159-167.DOI: 10.1016/j.energy.2013.07.065. |
[15] | 刘诗琦, 贾黎明, 苏淑钗, 等. 林业生物质能源“林油一体化”产业高效可持续发展路径研究[J]. 北京林业大学学报, 2019, 41(12):96-107. |
LIU S Q, JIA L M, SU S C, et al. Efficient and sustainable development path of forest-based bioenergy “forestry-oil integration” industry[J]. J Beijing Forestry Univ, 2019, 41(12):96-107. DOI:10.12171/j.1000-1522.20190433. | |
[16] | 张赟齐, 刘晨, 刘阳, 等. 叶幕微域环境对无患子果实产量和品质的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5):189-198. |
ZHANG Y Q, LIU C, LIU Y, et al. Effects of canopy micro-environment on fruit yield and quality characteristics of Sapindus mukorossi[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):189-198.DOI: 10.3969/j.issn.1000-2006.202001031. | |
[17] | 高媛, 贾黎明, 高世轮, 等. 无患子树体合理光环境及高光效调控[J]. 林业科学, 2016, 52(11):29-38. |
GAO Y, JIA L M, GAO S L, et al. Reasonable canopy light intensity and high light efficiency regulation of Sapindus mukorossi[J]. Sci Silvae Sin, 2016, 52(11):29-38.DOI: 10.11707/j.1001-7488.20161104. | |
[18] | ZHANG Y Q, WEN Y, BAI Q, et al. Spatio-temporal effects of canopy microclimate on fruit yield and quality of Sapindus mukorossi Gaertn[J]. Sci Hortic, 2019, 251:136-149.DOI: 10.1016/j.scienta.2019.02.074. |
[19] | GAO Y, GAO S L, JIA L M, et al. Canopy characteristics and light distribution in Sapindus mukorossi Gaertn. are influenced by crown architecture manipulation in the hilly terrain of southeast China[J]. Sci Hortic, 2018, 240:11-22.DOI: 10.1016/j.scienta.2018.05.034. |
[20] | MOLINA A J, ARANDA X, LLORENS P, et al. Sap flow of a wild cherry tree plantation growing under Mediterranean conditions:assessing the role of environmental conditions on canopy conductance and the effect of branch pruning on water productivity[J]. Agric Water Manag, 2019, 218:222-233.DOI: 10.1016/j.agwat.2019.03.019. |
[21] | MA L H, WANG X, GAO Z Y, et al. Canopy pruning as a strategy for saving water in a dry land jujube plantation in a Loess Hilly Region of China[J]. Agric Water Manag, 2019, 216:436-443.DOI: 10.1016/j.agwat.2018.12.007. |
[22] | FORRESTER D I, COLLOPY J J, BEADLE C L, et al. Effect of thinning,pruning and nitrogen fertiliser application on transpiration,photosynthesis and water-use efficiency in a young Eucalyptus nitens plantation[J]. For Ecol Manag, 2012, 266:286-300.DOI: 10.1016/j.foreco.2011.11.019. |
[23] | LI K T, LAKSO A N, PICCIONI R, et al. Summer pruning reduces whole-canopy carbon fixation and transpiration in apple trees[J]. J Hortic Sci Biotechnol, 2003, 78(6):749-754.DOI: 10.1080/14620316.2003.11511694. |
[24] | PINKARD E A, BEADLE C L, DAVIDSON N J, et al. Photosynthetic responses of Eucalyptus nitens (Deane and Maiden) Maiden to green pruning[J]. Trees, 1998, 12(3):119-129.DOI: 10.1007/PL00009702. |
[25] | 孟秦倩. 黄土高原山地苹果园土壤水分消耗规律与果树生长响应[D]. 杨凌: 西北农林科技大学, 2011. |
MENG Q Q. Soil water consumption law and fruit tree growth response in apple orchards in mountainous areas of Loess Plateau[D]. Yangling: Northwest A & F University, 2011. | |
[26] | 刘俊涛, 仲静, 刘济铭, 等. 无患子初果期人工林土壤和叶片C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版), 2021, 45(4):67-75. |
LIU J T, ZHONG J, LIU J M, et al. Stoichiometric characteristics of soil and leaves in Sapindus mukorossi plantation at an early fruiting stage[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):67-75.DOI: 10.12302/j.issn.1000-2006.202104011. | |
[27] | ZHAO G C, GAO Y H, GAO S L, et al. The phenological growth stages of Sapindus mukorossi according to BBCH scale[J]. Forests, 2019, 10(6):462.DOI: 10.3390/f10060462. |
[28] | 高媛, 贾黎明, 苏淑钗, 等. 无患子物候及开花结果特性1)[J]. 东北林业大学学报, 2015, 43(6):34-40,123. |
GAO Y, JIA L M, SU S C, et al. Phenology and blossom-fruiting characteristics of Sapindus mukorossi[J]. J Northeast For Univ, 2015, 43(6):34-40,123.DOI: 10.3969/j.issn.1000-5382.2015.06.007. | |
[29] | 李广德, 张亚雄, 邓坦, 等. 树干液流及其主要影响因子对摘芽强度的响应[J]. 农业工程学报, 2021, 37(5):131-139. |
LI G D, ZHANG Y X, DENG T, et al. Responses of tree stem sap flow and its main influencing factors to bud pruning[J]. Trans Chin Soc Agric Eng, 2021, 37(5):131-139.DOI: 10.11975/j.issn.1002-6819.2021.05.015. | |
[30] | GRANIER A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiol, 1987, 3(4):309-320.DOI: 10.1093/treephys/3.4.309. |
[31] | 刘洋, 王烨, 王斐, 等. 宽窄行栽植下毛白杨不同方位树干液流的差异[J]. 中南林业科技大学学报, 2018, 38(10):95-105. |
LIU Y, WANG Y, WANG F, et al. Azimuthal variation in sap lfux density of Populus tomentosa under wide and narrow row planting scheme[J]. J Cent South Univ For Technol, 2018, 38(10):95-105.DOI: 10.14067/j.cnki.1673-923x.2018.10.015. | |
[32] | 赵飞飞, 马煦, 邸楠, 等. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8):864-874. |
ZHAO F F, MA X, DI N, et al. Azimuthal variation in nighttime sap flow and its mainly influence factors of Populus tomentosa[J]. Chin J Plant Ecol, 2020, 44(8):864-874.DOI: 10.17521/cjpe.2020.0089. | |
[33] | CAMPBELL G S, NORMAN J M. An introduction to environmental biophysics[M]. Berlin: Springer Science & Business Media, 2000. |
[34] | OISHI A C, HAWTHORNE D A, OREN R. Baseliner:an open-source,interactive tool for processing sap flux data from thermal dissipation probes[J]. SoftwareX, 2016, 5:139-143.DOI: 10.1016/j.softx.2016.07.003. |
[35] | HUANG L, ZHANG Z S, LI X R. Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area:Tengger Desert,China[J]. Hydrol Process, 2010, 24(10):1248-1253.DOI: 10.1002/hyp.7584. |
[36] | JARVIS P G, MONTEITH J L, WEATHERLEY P E. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philos T R Soc B, 1976, 273(927):593-610. DOI:10.1098/rstb.1976.0035. |
[37] | VOS J, OYARZÚN P J. Photosynthesis and stomatal conductance of potato leaves-effects of leaf age,irradiance,and leaf water potential[J]. Photosynth Res, 1987, 11(3):253-264.DOI: 10.1007/BF00055065. |
[38] | LAVRIC M, ELER K, FERLAN M, et al. Chronological sequence of leaf phenology,xylem and phloem formation and sap flow of Quercus pubescens from abandoned Karst grasslands[J]. Front Plant Sci, 2017,8:314.DOI: 10.3389/fpls.2017.00314. |
[39] | TANNER W, BEEVERS H. Transpiration,a prerequisite for long-distance transport of minerals in plants?[J]. Proc Natl Acad Sci USA, 2001, 98(16):9443-9447.DOI: 10.1073/pnas.161279898. |
[40] | MENZEL C M, SIMPSON D R. Effects of temperature and leaf water stress on panicle and flower development of Litchi (Litchi chinensis Sonn.)[J]. J Hortic Sci, 1991, 66(3):335-344.DOI: 10.1080/00221589.1991.11516161. |
[41] | 马长明, 袁玉欣, 翟明普. 基于物候期的核桃树干液流特征[J]. 东北林业大学学报, 2008, 36(1):4-5,9. |
MA C M, YUAN Y X, ZHAI M P. Sap flow in Juglans regia during different phenophases[J]. J Northeast For Univ, 2008, 36(1):4-5,9.DOI: 10.3969/j.issn.1000-5382.2008.01.002. | |
[42] | HANSEN P. The effect of fruiting upon transpiration rate and stomatal opening in apple leaves[J]. Physiol Plant, 1971, 25(2):181-183.DOI: 10.1111/j.1399-3054.1971.tb01424.x. |
[43] | 郑玉琳, 刘济铭, 史双龙, 等. 无患子果实成熟过程及其油脂、皂苷动态变化[J]. 南京林业大学学报(自然科学版), 2021, 45(4):76-82. |
ZHENG Y L, LIU J M, SHI S L, et al. Maturation processes and the dynamics of oil and saponin in Sapindus mukorossi[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):76-82. DOI:10.12302/j.issn.1000-2006.202103047. | |
[44] | 黄雅茹, 李永华, 辛智鸣, 等. 不同时间尺度气象因子与柽柳树干液流关系研究[J]. 干旱区资源与环境, 2020, 34(11):149-154. |
HUANG Y R, LI Y H, XIN Z M, et al. Relationships between meteorological factors and Tamarix chinensis’s sap flow at different time scales[J]. J Arid Land Resour Environ, 2020, 34(11):149-154.DOI: 10.13448/j.cnki.jalre.2020.312. | |
[45] | 马文涛, 程平, 李宏, 等. 干旱绿洲区富士苹果树干边材茎流动态及其对环境因子的响应[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4):428-440. |
MA W T, CHENG P, LI H, et al. Stemflow dynamics of Fuji apple trunk sap in arid oasis area and its response to environmental factors[J]. J Zhejiang Univ (Agric Life Sci), 2020, 46(4):428-440.DOI: 10.3785/j.issn.1008-9209.2019.10.281. | |
[46] | 王力, 王艳萍. 黄土塬区苹果树干液流特征[J]. 农业机械学报, 2013, 44(10):152-158,151. |
WANG L, WANG Y P. Characteristics of stem sap flow of apple trees in loess tableland[J]. Trans Chin Soc Agric Mach, 2013, 44(10):152-158,151.DOI: 10.6041/j.issn.1000-1298.2013.10.024. | |
[47] | 党宏忠, 却晓娥, 冯金超, 等. 晋西黄土区苹果树边材液流速率对环境驱动的响应[J]. 应用生态学报, 2019, 30(3):823-831. |
DANG H Z, QUE X E, FENG J C, et al. Response of sap flow rate of apple trees to environmental factors in Loess Platea of western Shanxi Province,China[J]. Chin J Appl Ecol, 2019, 30(3):823-831.DOI: 10.13287/j.1001-9332.201903.015. | |
[48] | 麦合木提·图如普, 周伟权, 丁想, 等. 吐鲁番盆地杏树树干液流变化特征及其对环境因子的响应[J]. 生态学杂志, 2021, 40(8):2378-2387. |
Mahmoodt·Turup, ZHOU W Q, DING X, et al. Sap flow characteristics of Prunus armeniaca L. and its response to environmental factors in Turpan basin[J]. Chin J Ecol, 2021, 40(8):2378-2387. DOI:10.13292/j.1000-4890.202108.014. | |
[49] | 凡超, 邱燕萍, 李志强, 等. 荔枝树干液流速率与气象因子的关系[J]. 生态学报, 2014, 34(9):2401-2410. |
FAN C, QIU Y P, LI Z Q, et al. Relationships between stem sap flow rate of litchi trees and meteorological parameters[J]. Acta Ecol Sin, 2014, 34(9):2401-2410.DOI: 10.5846/stxb201307041839. |
[1] | 叶雨艳, 丁访军, 吴鹏, 周华, 李源永, 周汀, 崔迎春. 喀斯特原生林9个树种水力学性状与解剖结构对树干液流的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 111-120. |
[2] | 刘俊涛, 贾黎明, 闫小莉, 张卫华, 蔡婉婷, 仲静, 王立宪, 曹秋丽, 赵鹏丽, 陈义勇, 余佳欣, 陈娜, 翁学煌. 配方施肥对无患子幼树光合特性和生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 23-33. |
[3] | 蔡婉婷, 贾黎明, 王冕之, 郑玉琳, 李露, 罗水晶. 无患子液流时滞特性及对遮蔽花序枝叶修剪的响应[J]. 南京林业大学学报(自然科学版), 2024, 48(6): 5-12. |
[4] | 王章荣, 季孔庶, 徐立安, 邹秉章, 林能庆, 林景泉. 马尾松实生种子园营建技术、现实增益及多世代低成本经营新模式探讨[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 9-16. |
[5] | 王云霓, 曹恭祥, 徐丽宏, 陈胜楠. 内蒙古大青山华北落叶松人工林蒸散特征及其影响因子[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 148-156. |
[6] | 竹磊, 徐军亮, 章异平, 罗鹏飞, 师志强, 候佳玉, 翟乐鑫. 河南洛阳马尾松树干液流昼夜变化特征及其影响因子分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 92-100. |
[7] | 张瑞婷, 杨金艳, 阮宏华. 树干液流对环境变化响应研究的整合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 113-120. |
[8] | 陈建坤, 牟凤云, 张用川, 田甜, 王俊秀. 基于多机器学习模型的逐小时PM2.5浓度预测对比[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 152-160. |
[9] | 侯秀娟, 闫晓云, 王波, 李心愿, 包红光. 夏季干旱半干旱城市公园绿地空气负离子与空气颗粒物变化特征[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 212-220. |
[10] | 盛后财, 姚月锋, 蔡体久, 郭娜, 琚存勇. 物候变化对落叶松人工林降雨分配过程中钾和钠离子迁移的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 143-150. |
[11] | 罗凤敏, 高君亮, 辛智鸣, 郝玉光, 李新乐, 段瑞兵. 乌兰布和沙漠绿洲防护林体系小气候效应研究[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 143-152. |
[12] | 王福根, 卫星杓, 赵国春, 贾黎明. 无患子细根形态及垂直分布特征对配方施肥措施的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 58-66. |
[13] | 刘俊涛, 仲静, 刘济铭, 罗水晶, 王冕之, 范嘉霖, 贾黎明. 无患子初果期人工林土壤和叶片C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 67-75. |
[14] | 郑玉琳, 刘济铭, 史双龙, 贾黎明, 翁学煌, 罗水晶, 盛克寨. 无患子果实成熟过程及其油脂、皂苷动态变化[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 76-82. |
[15] | 徐圆圆, 周思维, 陈仲, 赵国春, 刘济铭, 王立宪, 王昕, 贾黎明, 张端光. 无患子不同器官中的总皂苷和总黄酮含量[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 83-89. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||