[1] |
OOGATHOO S, HOULE D, DUCHESNE L, et al. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions,even during a short term drought[J]. Agric For Meteor, 2020,291:108063.DOI: 10.1016/j.agrformet.2020.108063.
|
[2] |
HAN C, CHEN N, ZHANG C K, et al. Sap flow and responses to meteorological about the Larix principis-rupprechtii plantation in Gansu Xinlong Mountain,northwestern China[J]. For Ecol Manag, 2019,451:117519.DOI: 10.1016/j.foreco.2019.117519.
|
[3] |
PETZOLD R, SCHWÄRZEL K, FEGER K H. Transpiration of a hybrid poplar plantation in Saxony (Germany) in response to climate and soil conditions[J]. Eur J For Res, 2011, 130(5):695-706.DOI: 10.1007/s10342-010-0459-z.
|
[4] |
MELLANDER P E, BISHOP K, LUNDMARK T. The influence of soil temperature on transpiration:a plot scale manipulation in a young Scots pine stand[J]. For Ecol Manag, 2004, 195(1/2):15-28.DOI: 10.1016/j.foreco.2004.02.051.
|
[5] |
CHU C R, HSIEH C I, WU S Y, et al. Transient response of sap flow to wind speed[J]. J Exp Bot, 2009, 60(1):249-255.DOI: 10.1093/jxb/ern282.
|
[6] |
DIXON M, GRACE J. Effect of wind on the transpiration of young trees[J]. Ann Bot, 1984, 53(6):811-819.DOI: 10.1093/oxfordjournals.aob.a086751.
|
[7] |
IQBAL S, ZHA T S, JIA X, et al. Interannual variation in sap flow response in three xeric shrub species to periodic drought[J]. Agric For Meteor, 2021,297:108276.DOI: 10.1016/j.agrformet.2020.108276.
|
[8] |
LIU C W, DU T S, LI F S, et al. Trunk sap flow characteristics during two growth stages of apple tree and its relationships with affecting factors in an arid region of Northwest China[J]. Agric Water Manag, 2012, 104:193-202.DOI: 10.1016/j.agwat.2011.12.014.
|
[9] |
GU D X, HE W, HUANG K C, et al. Transpiration of Moso bamboo in southern China is influenced by ramet age,phenology,and drought[J]. For Ecol Manag, 2019,450:117526.DOI: 10.1016/j.foreco.2019.117526.
|
[10] |
吴佳伟, 李苇洁, 杨瑞, 等. 红阳猕猴桃生长发育期树干液流特征及其与环境因子的关系[J]. 果树学报, 2021, 39(3):1-25.
|
|
WU G W, LI W J, YANG R, et al. Characteristics of trunk SAP flow and its relationship with environmental factors during growth and development of ‘Hongyang’ kiwifruit[J]. J Fruit Sci, 2021, 39(3):1-25. DOI:10.13925/j.cnki.gsxb.20210178.
|
[11] |
刘济铭, 孙操稳, 何秋阳, 等. 国内外无患子属种质资源研究进展[J]. 世界林业研究, 2017, 30(6):12-18.
|
|
LIU J M, SUN C W, HE Q Y, et al. Research progress in Sapindus L. germplasm resources[J]. World For Res, 2017, 30(6):12-18.DOI: 10.13348/j.cnki.sjlyyj.2017.0071.y.
|
[12] |
UPADHYAY A, SINGH D K. Molluscicidal activity of Sapindus mukorossi and Terminalia chebula against the freshwater snail Lymnaea acuminata[J]. Chemosphere, 2011, 83(4):468-474.DOI: 10.1016/j.chemosphere.2010.12.066.
|
[13] |
MUNTAHA S T, KHAN M N. Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant:a dye surfactant interaction study[J]. J Clean Prod, 2015, 93:145-150.DOI: 10.1016/j.jclepro.2015.01.023.
|
[14] |
CHAKRABORTY M, BARUAH D C. Production and characterization of biodiesel obtained from Sapindus mukorossi kernel oil[J]. Energy, 2013, 60:159-167.DOI: 10.1016/j.energy.2013.07.065.
|
[15] |
刘诗琦, 贾黎明, 苏淑钗, 等. 林业生物质能源“林油一体化”产业高效可持续发展路径研究[J]. 北京林业大学学报, 2019, 41(12):96-107.
|
|
LIU S Q, JIA L M, SU S C, et al. Efficient and sustainable development path of forest-based bioenergy “forestry-oil integration” industry[J]. J Beijing Forestry Univ, 2019, 41(12):96-107. DOI:10.12171/j.1000-1522.20190433.
|
[16] |
张赟齐, 刘晨, 刘阳, 等. 叶幕微域环境对无患子果实产量和品质的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5):189-198.
|
|
ZHANG Y Q, LIU C, LIU Y, et al. Effects of canopy micro-environment on fruit yield and quality characteristics of Sapindus mukorossi[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):189-198.DOI: 10.3969/j.issn.1000-2006.202001031.
|
[17] |
高媛, 贾黎明, 高世轮, 等. 无患子树体合理光环境及高光效调控[J]. 林业科学, 2016, 52(11):29-38.
|
|
GAO Y, JIA L M, GAO S L, et al. Reasonable canopy light intensity and high light efficiency regulation of Sapindus mukorossi[J]. Sci Silvae Sin, 2016, 52(11):29-38.DOI: 10.11707/j.1001-7488.20161104.
|
[18] |
ZHANG Y Q, WEN Y, BAI Q, et al. Spatio-temporal effects of canopy microclimate on fruit yield and quality of Sapindus mukorossi Gaertn[J]. Sci Hortic, 2019, 251:136-149.DOI: 10.1016/j.scienta.2019.02.074.
|
[19] |
GAO Y, GAO S L, JIA L M, et al. Canopy characteristics and light distribution in Sapindus mukorossi Gaertn. are influenced by crown architecture manipulation in the hilly terrain of southeast China[J]. Sci Hortic, 2018, 240:11-22.DOI: 10.1016/j.scienta.2018.05.034.
|
[20] |
MOLINA A J, ARANDA X, LLORENS P, et al. Sap flow of a wild cherry tree plantation growing under Mediterranean conditions:assessing the role of environmental conditions on canopy conductance and the effect of branch pruning on water productivity[J]. Agric Water Manag, 2019, 218:222-233.DOI: 10.1016/j.agwat.2019.03.019.
|
[21] |
MA L H, WANG X, GAO Z Y, et al. Canopy pruning as a strategy for saving water in a dry land jujube plantation in a Loess Hilly Region of China[J]. Agric Water Manag, 2019, 216:436-443.DOI: 10.1016/j.agwat.2018.12.007.
|
[22] |
FORRESTER D I, COLLOPY J J, BEADLE C L, et al. Effect of thinning,pruning and nitrogen fertiliser application on transpiration,photosynthesis and water-use efficiency in a young Eucalyptus nitens plantation[J]. For Ecol Manag, 2012, 266:286-300.DOI: 10.1016/j.foreco.2011.11.019.
|
[23] |
LI K T, LAKSO A N, PICCIONI R, et al. Summer pruning reduces whole-canopy carbon fixation and transpiration in apple trees[J]. J Hortic Sci Biotechnol, 2003, 78(6):749-754.DOI: 10.1080/14620316.2003.11511694.
|
[24] |
PINKARD E A, BEADLE C L, DAVIDSON N J, et al. Photosynthetic responses of Eucalyptus nitens (Deane and Maiden) Maiden to green pruning[J]. Trees, 1998, 12(3):119-129.DOI: 10.1007/PL00009702.
|
[25] |
孟秦倩. 黄土高原山地苹果园土壤水分消耗规律与果树生长响应[D]. 杨凌: 西北农林科技大学, 2011.
|
|
MENG Q Q. Soil water consumption law and fruit tree growth response in apple orchards in mountainous areas of Loess Plateau[D]. Yangling: Northwest A & F University, 2011.
|
[26] |
刘俊涛, 仲静, 刘济铭, 等. 无患子初果期人工林土壤和叶片C、N、P化学计量特征[J]. 南京林业大学学报(自然科学版), 2021, 45(4):67-75.
|
|
LIU J T, ZHONG J, LIU J M, et al. Stoichiometric characteristics of soil and leaves in Sapindus mukorossi plantation at an early fruiting stage[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):67-75.DOI: 10.12302/j.issn.1000-2006.202104011.
|
[27] |
ZHAO G C, GAO Y H, GAO S L, et al. The phenological growth stages of Sapindus mukorossi according to BBCH scale[J]. Forests, 2019, 10(6):462.DOI: 10.3390/f10060462.
|
[28] |
高媛, 贾黎明, 苏淑钗, 等. 无患子物候及开花结果特性1)[J]. 东北林业大学学报, 2015, 43(6):34-40,123.
|
|
GAO Y, JIA L M, SU S C, et al. Phenology and blossom-fruiting characteristics of Sapindus mukorossi[J]. J Northeast For Univ, 2015, 43(6):34-40,123.DOI: 10.3969/j.issn.1000-5382.2015.06.007.
|
[29] |
李广德, 张亚雄, 邓坦, 等. 树干液流及其主要影响因子对摘芽强度的响应[J]. 农业工程学报, 2021, 37(5):131-139.
|
|
LI G D, ZHANG Y X, DENG T, et al. Responses of tree stem sap flow and its main influencing factors to bud pruning[J]. Trans Chin Soc Agric Eng, 2021, 37(5):131-139.DOI: 10.11975/j.issn.1002-6819.2021.05.015.
|
[30] |
GRANIER A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiol, 1987, 3(4):309-320.DOI: 10.1093/treephys/3.4.309.
|
[31] |
刘洋, 王烨, 王斐, 等. 宽窄行栽植下毛白杨不同方位树干液流的差异[J]. 中南林业科技大学学报, 2018, 38(10):95-105.
|
|
LIU Y, WANG Y, WANG F, et al. Azimuthal variation in sap lfux density of Populus tomentosa under wide and narrow row planting scheme[J]. J Cent South Univ For Technol, 2018, 38(10):95-105.DOI: 10.14067/j.cnki.1673-923x.2018.10.015.
|
[32] |
赵飞飞, 马煦, 邸楠, 等. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8):864-874.
|
|
ZHAO F F, MA X, DI N, et al. Azimuthal variation in nighttime sap flow and its mainly influence factors of Populus tomentosa[J]. Chin J Plant Ecol, 2020, 44(8):864-874.DOI: 10.17521/cjpe.2020.0089.
|
[33] |
CAMPBELL G S, NORMAN J M. An introduction to environmental biophysics[M]. Berlin: Springer Science & Business Media, 2000.
|
[34] |
OISHI A C, HAWTHORNE D A, OREN R. Baseliner:an open-source,interactive tool for processing sap flux data from thermal dissipation probes[J]. SoftwareX, 2016, 5:139-143.DOI: 10.1016/j.softx.2016.07.003.
|
[35] |
HUANG L, ZHANG Z S, LI X R. Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area:Tengger Desert,China[J]. Hydrol Process, 2010, 24(10):1248-1253.DOI: 10.1002/hyp.7584.
|
[36] |
JARVIS P G, MONTEITH J L, WEATHERLEY P E. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field[J]. Philos T R Soc B, 1976, 273(927):593-610. DOI:10.1098/rstb.1976.0035.
|
[37] |
VOS J, OYARZÚN P J. Photosynthesis and stomatal conductance of potato leaves-effects of leaf age,irradiance,and leaf water potential[J]. Photosynth Res, 1987, 11(3):253-264.DOI: 10.1007/BF00055065.
|
[38] |
LAVRIC M, ELER K, FERLAN M, et al. Chronological sequence of leaf phenology,xylem and phloem formation and sap flow of Quercus pubescens from abandoned Karst grasslands[J]. Front Plant Sci, 2017,8:314.DOI: 10.3389/fpls.2017.00314.
|
[39] |
TANNER W, BEEVERS H. Transpiration,a prerequisite for long-distance transport of minerals in plants?[J]. Proc Natl Acad Sci USA, 2001, 98(16):9443-9447.DOI: 10.1073/pnas.161279898.
|
[40] |
MENZEL C M, SIMPSON D R. Effects of temperature and leaf water stress on panicle and flower development of Litchi (Litchi chinensis Sonn.)[J]. J Hortic Sci, 1991, 66(3):335-344.DOI: 10.1080/00221589.1991.11516161.
|
[41] |
马长明, 袁玉欣, 翟明普. 基于物候期的核桃树干液流特征[J]. 东北林业大学学报, 2008, 36(1):4-5,9.
|
|
MA C M, YUAN Y X, ZHAI M P. Sap flow in Juglans regia during different phenophases[J]. J Northeast For Univ, 2008, 36(1):4-5,9.DOI: 10.3969/j.issn.1000-5382.2008.01.002.
|
[42] |
HANSEN P. The effect of fruiting upon transpiration rate and stomatal opening in apple leaves[J]. Physiol Plant, 1971, 25(2):181-183.DOI: 10.1111/j.1399-3054.1971.tb01424.x.
|
[43] |
郑玉琳, 刘济铭, 史双龙, 等. 无患子果实成熟过程及其油脂、皂苷动态变化[J]. 南京林业大学学报(自然科学版), 2021, 45(4):76-82.
|
|
ZHENG Y L, LIU J M, SHI S L, et al. Maturation processes and the dynamics of oil and saponin in Sapindus mukorossi[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):76-82. DOI:10.12302/j.issn.1000-2006.202103047.
|
[44] |
黄雅茹, 李永华, 辛智鸣, 等. 不同时间尺度气象因子与柽柳树干液流关系研究[J]. 干旱区资源与环境, 2020, 34(11):149-154.
|
|
HUANG Y R, LI Y H, XIN Z M, et al. Relationships between meteorological factors and Tamarix chinensis’s sap flow at different time scales[J]. J Arid Land Resour Environ, 2020, 34(11):149-154.DOI: 10.13448/j.cnki.jalre.2020.312.
|
[45] |
马文涛, 程平, 李宏, 等. 干旱绿洲区富士苹果树干边材茎流动态及其对环境因子的响应[J]. 浙江大学学报(农业与生命科学版), 2020, 46(4):428-440.
|
|
MA W T, CHENG P, LI H, et al. Stemflow dynamics of Fuji apple trunk sap in arid oasis area and its response to environmental factors[J]. J Zhejiang Univ (Agric Life Sci), 2020, 46(4):428-440.DOI: 10.3785/j.issn.1008-9209.2019.10.281.
|
[46] |
王力, 王艳萍. 黄土塬区苹果树干液流特征[J]. 农业机械学报, 2013, 44(10):152-158,151.
|
|
WANG L, WANG Y P. Characteristics of stem sap flow of apple trees in loess tableland[J]. Trans Chin Soc Agric Mach, 2013, 44(10):152-158,151.DOI: 10.6041/j.issn.1000-1298.2013.10.024.
|
[47] |
党宏忠, 却晓娥, 冯金超, 等. 晋西黄土区苹果树边材液流速率对环境驱动的响应[J]. 应用生态学报, 2019, 30(3):823-831.
|
|
DANG H Z, QUE X E, FENG J C, et al. Response of sap flow rate of apple trees to environmental factors in Loess Platea of western Shanxi Province,China[J]. Chin J Appl Ecol, 2019, 30(3):823-831.DOI: 10.13287/j.1001-9332.201903.015.
|
[48] |
麦合木提·图如普, 周伟权, 丁想, 等. 吐鲁番盆地杏树树干液流变化特征及其对环境因子的响应[J]. 生态学杂志, 2021, 40(8):2378-2387.
|
|
Mahmoodt·Turup, ZHOU W Q, DING X, et al. Sap flow characteristics of Prunus armeniaca L. and its response to environmental factors in Turpan basin[J]. Chin J Ecol, 2021, 40(8):2378-2387. DOI:10.13292/j.1000-4890.202108.014.
|
[49] |
凡超, 邱燕萍, 李志强, 等. 荔枝树干液流速率与气象因子的关系[J]. 生态学报, 2014, 34(9):2401-2410.
|
|
FAN C, QIU Y P, LI Z Q, et al. Relationships between stem sap flow rate of litchi trees and meteorological parameters[J]. Acta Ecol Sin, 2014, 34(9):2401-2410.DOI: 10.5846/stxb201307041839.
|