[1] |
CALABRESE E J, BALDWIN L A. Toxicology rethinks its central belief[J]. Nature, 2003, 421(6924):691-692.DOI: 10.1038/421691a.
|
[2] |
CALABRESE E J, BLAIN R B. Hormesis and plant biology[J]. Environ Pollut, 2009, 157(1):42-48.DOI: 10.1016/j.envpol.2008.07.028.
|
[3] |
EROFEEVA E A. Hormesis and paradoxical effects of wheat seedling (Triticum aestivum L.) parameters upon exposure to different pollutants in a wide range of doses[J]. Dose Response, 2013, 12(1):121-135.DOI: 10.2203/dose-response.13-017.Erofeeva.
|
[4] |
FARGASOVÁ A. Comparative toxicity of five metals on various biological subjects[J]. Bull Environ Contam Toxicol, 1994, 53(2):317-324.DOI: 10.1007/BF00192051.
|
[5] |
GHOSH S K, DOCTOR P B, KULKAMI P K. Toxicity of zinc in three microbial test systems[J]. Environ Toxicol Water Qual,1996, 11(1):13-19.DOI: 10.1002/(SICI)1098-2256(1996)11:113:AID-TOX3>3.0.CO;2-C.
|
[6] |
JOHNSON T E, BRUUNSGAARD H. Implications of hormesis for biomedical aging research[J]. Hum Exp Toxicol, 1998, 17(5):263-265.DOI: 10.1191/096032798678908729.
|
[7] |
HAN J G, WANG S Y, FAN D W, et al. Time-dependent hormetic response of soil alkaline phosphatase induced by Cd and the association with bacterial community composition[J]. Microb Ecol, 2019, 78(4):961-973.DOI: 10.1007/s00248-019-01371-1.
|
[8] |
WANG S Y, HUANG B, FAN D W, et al. Hormetic responses of soil microbiota to exogenous Cd:a step toward linking community-level hormesis to ecological risk assessment[J]. J Hazard Mater, 2021, 416:125760.DOI: 10.1016/j.jhazmat.2021.125760.
|
[9] |
FAN D W, WANG S Y, GUO Y H, et al. The role of bacterial communities in shaping Cd-induced hormesis in ‘living’ soil as a function of land-use change[J]. J Hazard Mater, 2021, 409:124996.DOI: 10.1016/j.jhazmat.2020.124996.
|
[10] |
CHEN Y P, LIU Q, LIU Y J, et al. Responses of soil microbial activity to cadmium pollution and elevated CO2[J]. Sci Rep, 2014, 4:4287.DOI: 10.1038/srep04287.
|
[11] |
ZALAGHI R, NOROUZI MASIR M, MOEZZI A. Effects of Cd on soil microbial biomass depend upon its soil fraction distribution[J]. Toxicol Environ Chem, 2019, 101(9/10):486-496.DOI: 10.1080/02772248.2020.1742715.
|
[12] |
YAO B, HU Q W, ZHANG G H, et al. Effects of elevated CO2 concentration and nitrogen addition on soil respiration in a Cd-contaminated experimental forest microcosm[J]. Forests, 2020, 11(3):260.DOI: 10.3390/f11030260.
|
[13] |
FAN D W, HAN J G, CHEN Y, et al. Hormetic effects of Cd on alkaline phosphatase in soils across particle-size fractions in a typical coastal wetland[J]. Sci Total Environ, 2018, 613/614:792-797.DOI: 10.1016/j.scitotenv.2017.09.089.
|
[14] |
TANG H, YAN Q R, WANG X H, et al. Earthworm (Eisenia fetida) behavioral and respiration responses to sublethal mercury concentrations in an artificial soil substrate[J]. Appl Soil Ecol, 2016, 104:48-53.DOI: 10.1016/j.apsoil.2015.12.008.
|
[15] |
YU Y J, LI X F, YANG G L, et al. Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida)[J]. Chemosphere, 2019, 227:489-495.DOI: 10.1016/j.chemosphere.2019.04.064.
|
[16] |
NING Y C, ZHOU H R, WANG E Z, et al. Study of cadmium (Cd)-induced oxidative stress in Eisenia fetida based on mathematical modelling[J]. Pedosphere, 2021, 31(3):460-470.DOI: 10.1016/S1002-0160(20)60085-6.
|
[17] |
FAJANA H O, HOGAN N S, SICILIANO S D. Does habitat quality matter to soil invertebrates in metal-contaminated soils?[J]. J Hazard Mater, 2021, 409:124969.DOI: 10.1016/j.jhazmat.2020.124969.
|
[18] |
RIEPERT F, RÖMBKE J, MOSER T. Earthworm reproduction tests[C]// Ecotoxicological Characterization of Waste. New York: Springer, 2009:171-176.DOI: 10.1007/978-0-387-88959-7_17.
|
[19] |
Ministry of the Environment, Government of Japan. Environmental quality standards for soil pollution[S].[2022-04-18]. ://www.env.go.jp/en/water/soil/sp.html, 2011.
|
[20] |
王国庆, 邓绍坡, 冯艳红, 等. 国内外重金属土壤环境标准值比较:镉[J]. 生态与农村环境学报, 2015, 31(6):808-821.
|
|
WANG G Q, DENG S P, FENG Y H, et al. Comparative study on soil environmental standards for heavy metals in China and other countries:cadmium[J]. J Ecol Rural Environ, 2015, 31(6):808-821.DOI: 10.11934/j.issn.1673-4831.2015.06.004.
|
[21] |
王小庆, 马义兵, 黄占斌. 痕量金属元素土壤环境质量基准研究进展[J]. 土壤通报, 2013, 44(2):505-512.
|
|
WANG X Q, MA Y B, HUANG Z B. Research and prospect on soil quality benchmark for trace elements[J]. Chin J Soil Sci, 2013, 44(2):505-512.DOI: 10.19336/j.cnki.trtb.2013.02.042.
|
[22] |
USEPA United States Environmental Protection Agency. Ecological soil screening levels[R/OL]. [2022-04-18]. http://www.epa.gov/ecotox/ecossl, 2011.
|
[23] |
GEMS D, PARTRIDGE L. Stress-response hormesis and aging:that which does not kill us makes us stronger[J]. Cell Metab, 2008, 7(3):200-203.DOI: 10.1016/j.cmet.2008.01.001.
|
[24] |
ROZHKO T V, KOLESNIK O V, BADUN G A, et al. Humic substances mitigate the impact of tritium on luminous marine bacteria: involvement of reactive oxygen species[J]. Int J Mol Sci, 2020, 21(18):6783.DOI: 10.3390/ijms21186783.
|
[25] |
XIE M D, CHEN W Q, DAI H B, et al. Cadmium-induced hormesis effect in medicinal herbs improves the efficiency of safe utilization for low cadmium-contaminated farmland soil[J]. Ecotoxicol Environ Saf, 2021, 225:112724.DOI: 10.1016/j.ecoenv.2021.112724.
|
[26] |
FAN D W, WANG S Y, GUO Y H, et al. Cd induced biphasic response in soil alkaline phosphatase and changed soil bacterial community composition:the role of background Cd contamination and time as additional factors[J]. Sci Total Environ, 2021, 757:143771.DOI: 10.1016/j.scitotenv.2020.143771.
|
[27] |
周涵君, 于晓娜, 秦燚鹤, 等. 施用生物炭对Cd污染土壤生物学特性及土壤呼吸速率的影响[J]. 中国烟草学报, 2017, 23(6):61-68.
|
|
ZHOU H J, YU X N, QIN Y H, et al. Effect of biochar application on soil biological characteristics and soil respiration rate in Cd contaminated soil[J]. Acta Tabacaria Sin, 2017, 23(6):61-68.DOI: 10.16472/j.chinatobacco.2017.177.
|
[28] |
ALFARO M R, MARTÍN B C, UGARTE O M, et al. Heavy metal concentrations and basal respiration in contaminated substrates used in the Cuban urban agriculture[J]. Water Air Soil Pollut, 2021, 232(3):1-11.DOI: 10.1007/s11270-021-05073-8.
|
[29] |
STEFANOWICZ A M, KAPUSTA P, ZUBEK S, et al. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn-Pb mining sites[J]. Chemosphere, 2020, 240:124922.DOI: 10.1016/j.chemosphere.2019.124922.
|
[30] |
CHEN X M, ZHAO Y, ZHAO X Y, et al. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting:sensitive,resistant and actor[J]. J Hazard Mater, 2020, 398:122858.DOI: 10.1016/j.jhazmat.2020.122858.
|
[31] |
ZHAO X, SHEN J P, ZHANG L M, et al. Arsenic and cadmium as predominant factors shaping the distribution patterns of antibiotic resistance genes in polluted paddy soils[J]. J Hazard Mater, 2020, 389:121838.DOI: 10.1016/j.jhazmat.2019.121838.
|
[32] |
WANG R, HU Y X, WANG Y, et al. Nitrogen application increases soil respiration but decreases temperature sensitivity:combined effects of crop and soil properties in a semiarid agroecosystem[J]. Geoderma, 2019, 353:320-330.DOI: 10.1016/j.geoderma.2019.07.019.
|
[33] |
LIU Z Q, SHI Z J, WEI H, et al. Acid rain reduces soil CO2 emission and promotes soil organic carbon accumulation in association with decreasing the biomass and biological activity of ecosystems:a meta-analysis[J]. CATENA, 2022, 208:105714.DOI: 10.1016/j.catena.2021.105714.
|
[34] |
TAO B X, ZHANG B H, DONG J, et al. Antagonistic effect of nitrogen additions and warming on litter decomposition in the coastal wetland of the Yellow River Delta,China[J]. Ecol Eng, 2019, 131:1-8.DOI: 10.1016/j.ecoleng.2019.02.024.
|
[35] |
MYERS B, WEBSTER K L, MCLAUGHLIN J W, et al. Microbial activity across a boreal peatland nutrient gradient:the role of fungi and bacteria[J]. Wetlands Ecol Manage, 2012, 20(2):77-88.DOI: 10.1007/s11273-011-9242-2.
|
[36] |
CAMPOS D, ALVES A, LEMOS M F L, et al. Effects of cadmium and resource quality on freshwater detritus processing chains:a microcosm approach with two insect species[J]. Ecotoxicology, 2014, 23(5):830-839.DOI: 10.1007/s10646-014-1223-9.
|
[37] |
ZHANG H Y, ZIEGLER W, HAN X G, et al. Plant carbon limitation does not reduce nitrogen transfer from arbuscular mycorrhizal fungi to Plantago lanceolata[J]. Plant Soil, 2015, 396(1):369-380.DOI: 10.1007/s11104-015-2599-x.
|
[38] |
MAESTRE F T, MARTÍNEZ I, ESCOLAR C, et al. On the relationship between abiotic stress and co-occurrence patterns:an assessment at the community level using soil lichen communities and multiple stress gradients[J]. Oikos, 2009, 118(7):1015-1022.DOI: 10.1111/j.1600-0706.2009.17362.x.
|