C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响

孙劲伟, 王圣燕, 范弟武, 朱咏莉

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1) : 140-146.

PDF(2075 KB)
PDF(2075 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1) : 140-146. DOI: 10.12302/j.issn.1000-2006.202204011
研究论文

C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响

作者信息 +

Effects of C, N and P additions on soil respiration in woodland under Cd stress

Author information +
文章历史 +

摘要

【目的】研究C源与矿质营养氮磷(NP)添加对土壤呼吸作用毒物兴奋效应(Hormesis)的影响。【方法】以模式土壤为对象,接种杨树林地土壤微生物,设置单独添加葡萄糖(GC)、单独添加矿质营养NP(NP)、同时添加葡萄糖和NP(GC+NP),以及二者均无添加的对照(CK)4个处理,研究Cd胁迫下土壤呼吸作用潜在的Hormesis效应。【结果】①NP和GC+NP处理,林地土壤呼吸速率在Cd剂量为0.02、0.10、0.40、2.50、13.00 mg/kg时均显著高于对照,且表现出显著的多重Hormesis效应交替出现的现象,刺激幅度变化在66.6%~262.6%。②土壤中不添加Cd时,GC与NP处理土壤呼吸速率之和大于GC+NP处理,土壤呼吸对二者的添加表现为拮抗效应;当Cd剂量在0.01~0.20 mg/kg区间时,GC与NP处理土壤呼吸速率之和小于GC+NP处理,C源与NP添加对土壤呼吸的影响表现为协同效应;Cd剂量>0.20 mg/kg时,二者之间表现为协同与拮抗效应的交替出现。【结论】外源添加N、P条件下,Cd诱导林地土壤呼吸表现出显著的Hormesis效应。当面临逐渐增加的Cd胁迫时,C源与NP添加对土壤呼吸的交互作用表现为由拮抗向协同效应转变。

Abstract

【Objective】 Artificial standard soil was used to investigate the potential stimulatory effects of low-dose C, N, and P additions on soil respiration and Hormesis under heavy metal stress. 【Method】The four treatments were: GC (glucose), NP (nitrogen and phosphorus), GC+NP (glucose, nitrogen and phosphorus), and, no additions (CK). The soil samples were inoculated with soil microorganisms from forest land to determine the potential Hormesis effect of exogenous addition of glucose, N and P on soil respiration under Cd stress. 【Result】In the case of the NP and GC+NP treatments, the soil respiration rate was significantly higher than that of the control at Cd doses of 0.02, 0.10, 0.40, 2.50, and 13.00 mg/kg, respectively. There was a significant alternating phenomenon of multiple hormetic effects with stimulation amplitudes between 66.6% and 262.6%. When there was no Cd added to the soil, the sum of the soil respiration rates in the GC and NP treatments was greater than that in the GC+NP treatment. The interaction between C source and NP addition on soil respiration showed an antagonistic effect. When the Cd dose was 0.01 to 0.20 mg/kg, the sum of soil respiration rates in GC and NP treatments was lower than the corresponding rates in GC+NP treatments, and the effects of C source and NP additions on soil respiration showed a synergistic effect. Synergistic and antagonistic effects appeared alternately when the Cd dose was over 0.20 mg/kg. 【Conclusion】The Cd-induced soil respiration rate had a significant Hormesis effect under exogenous NP addition. With increasing Cd stress, the interaction between the C source and NP addition on soil respiration changed from antagonistic to synergistic effects.

关键词

土壤呼吸 / Cd胁迫 / 毒物兴奋效应 / 模式土壤 / 葡萄糖 / 氮磷添加

Key words

soil respiration / cadmium stress / hormesis / artificial standard soil / glucose / nitrogen and phosphorus addition

引用本文

导出引用
孙劲伟, 王圣燕, 范弟武, . C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响[J]. 南京林业大学学报(自然科学版). 2024, 48(1): 140-146 https://doi.org/10.12302/j.issn.1000-2006.202204011
SUN Jinwei, WANG Shengyan, FAN Diwu, et al. Effects of C, N and P additions on soil respiration in woodland under Cd stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 140-146 https://doi.org/10.12302/j.issn.1000-2006.202204011
中图分类号: X71;S141.4;S714   

参考文献

[1]
CALABRESE E J, BALDWIN L A. Toxicology rethinks its central belief[J]. Nature, 2003, 421(6924):691-692.DOI: 10.1038/421691a.
[2]
CALABRESE E J, BLAIN R B. Hormesis and plant biology[J]. Environ Pollut, 2009, 157(1):42-48.DOI: 10.1016/j.envpol.2008.07.028.
[3]
EROFEEVA E A. Hormesis and paradoxical effects of wheat seedling (Triticum aestivum L.) parameters upon exposure to different pollutants in a wide range of doses[J]. Dose Response, 2013, 12(1):121-135.DOI: 10.2203/dose-response.13-017.Erofeeva.
[4]
FARGASOVÁ A. Comparative toxicity of five metals on various biological subjects[J]. Bull Environ Contam Toxicol, 1994, 53(2):317-324.DOI: 10.1007/BF00192051.
[5]
GHOSH S K, DOCTOR P B, KULKAMI P K. Toxicity of zinc in three microbial test systems[J]. Environ Toxicol Water Qual,1996, 11(1):13-19.DOI: 10.1002/(SICI)1098-2256(1996)11:113:AID-TOX3>3.0.CO;2-C.
[6]
JOHNSON T E, BRUUNSGAARD H. Implications of hormesis for biomedical aging research[J]. Hum Exp Toxicol, 1998, 17(5):263-265.DOI: 10.1191/096032798678908729.
[7]
HAN J G, WANG S Y, FAN D W, et al. Time-dependent hormetic response of soil alkaline phosphatase induced by Cd and the association with bacterial community composition[J]. Microb Ecol, 2019, 78(4):961-973.DOI: 10.1007/s00248-019-01371-1.
[8]
WANG S Y, HUANG B, FAN D W, et al. Hormetic responses of soil microbiota to exogenous Cd:a step toward linking community-level hormesis to ecological risk assessment[J]. J Hazard Mater, 2021, 416:125760.DOI: 10.1016/j.jhazmat.2021.125760.
[9]
FAN D W, WANG S Y, GUO Y H, et al. The role of bacterial communities in shaping Cd-induced hormesis in ‘living’ soil as a function of land-use change[J]. J Hazard Mater, 2021, 409:124996.DOI: 10.1016/j.jhazmat.2020.124996.
[10]
CHEN Y P, LIU Q, LIU Y J, et al. Responses of soil microbial activity to cadmium pollution and elevated CO2[J]. Sci Rep, 2014, 4:4287.DOI: 10.1038/srep04287.
[11]
ZALAGHI R, NOROUZI MASIR M, MOEZZI A. Effects of Cd on soil microbial biomass depend upon its soil fraction distribution[J]. Toxicol Environ Chem, 2019, 101(9/10):486-496.DOI: 10.1080/02772248.2020.1742715.
[12]
YAO B, HU Q W, ZHANG G H, et al. Effects of elevated CO2 concentration and nitrogen addition on soil respiration in a Cd-contaminated experimental forest microcosm[J]. Forests, 2020, 11(3):260.DOI: 10.3390/f11030260.
[13]
FAN D W, HAN J G, CHEN Y, et al. Hormetic effects of Cd on alkaline phosphatase in soils across particle-size fractions in a typical coastal wetland[J]. Sci Total Environ, 2018, 613/614:792-797.DOI: 10.1016/j.scitotenv.2017.09.089.
[14]
TANG H, YAN Q R, WANG X H, et al. Earthworm (Eisenia fetida) behavioral and respiration responses to sublethal mercury concentrations in an artificial soil substrate[J]. Appl Soil Ecol, 2016, 104:48-53.DOI: 10.1016/j.apsoil.2015.12.008.
[15]
YU Y J, LI X F, YANG G L, et al. Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida)[J]. Chemosphere, 2019, 227:489-495.DOI: 10.1016/j.chemosphere.2019.04.064.
[16]
NING Y C, ZHOU H R, WANG E Z, et al. Study of cadmium (Cd)-induced oxidative stress in Eisenia fetida based on mathematical modelling[J]. Pedosphere, 2021, 31(3):460-470.DOI: 10.1016/S1002-0160(20)60085-6.
[17]
FAJANA H O, HOGAN N S, SICILIANO S D. Does habitat quality matter to soil invertebrates in metal-contaminated soils?[J]. J Hazard Mater, 2021, 409:124969.DOI: 10.1016/j.jhazmat.2020.124969.
[18]
RIEPERT F, RÖMBKE J, MOSER T. Earthworm reproduction tests[C]// Ecotoxicological Characterization of Waste. New York: Springer, 2009:171-176.DOI: 10.1007/978-0-387-88959-7_17.
[19]
Ministry of the Environment, Government of Japan. Environmental quality standards for soil pollution[S].[2022-04-18]. www.env.go.jp/en/water/soil/sp.html, 2011.
[20]
王国庆, 邓绍坡, 冯艳红, 等. 国内外重金属土壤环境标准值比较:镉[J]. 生态与农村环境学报, 2015, 31(6):808-821.
WANG G Q, DENG S P, FENG Y H, et al. Comparative study on soil environmental standards for heavy metals in China and other countries:cadmium[J]. J Ecol Rural Environ, 2015, 31(6):808-821.DOI: 10.11934/j.issn.1673-4831.2015.06.004.
[21]
王小庆, 马义兵, 黄占斌. 痕量金属元素土壤环境质量基准研究进展[J]. 土壤通报, 2013, 44(2):505-512.
WANG X Q, MA Y B, HUANG Z B. Research and prospect on soil quality benchmark for trace elements[J]. Chin J Soil Sci, 2013, 44(2):505-512.DOI: 10.19336/j.cnki.trtb.2013.02.042.
[22]
USEPA United States Environmental Protection Agency. Ecological soil screening levels[R/OL]. [2022-04-18]. http://www.epa.gov/ecotox/ecossl, 2011.
[23]
GEMS D, PARTRIDGE L. Stress-response hormesis and aging:that which does not kill us makes us stronger[J]. Cell Metab, 2008, 7(3):200-203.DOI: 10.1016/j.cmet.2008.01.001.
[24]
ROZHKO T V, KOLESNIK O V, BADUN G A, et al. Humic substances mitigate the impact of tritium on luminous marine bacteria: involvement of reactive oxygen species[J]. Int J Mol Sci, 2020, 21(18):6783.DOI: 10.3390/ijms21186783.
[25]
XIE M D, CHEN W Q, DAI H B, et al. Cadmium-induced hormesis effect in medicinal herbs improves the efficiency of safe utilization for low cadmium-contaminated farmland soil[J]. Ecotoxicol Environ Saf, 2021, 225:112724.DOI: 10.1016/j.ecoenv.2021.112724.
[26]
FAN D W, WANG S Y, GUO Y H, et al. Cd induced biphasic response in soil alkaline phosphatase and changed soil bacterial community composition:the role of background Cd contamination and time as additional factors[J]. Sci Total Environ, 2021, 757:143771.DOI: 10.1016/j.scitotenv.2020.143771.
[27]
周涵君, 于晓娜, 秦燚鹤, 等. 施用生物炭对Cd污染土壤生物学特性及土壤呼吸速率的影响[J]. 中国烟草学报, 2017, 23(6):61-68.
ZHOU H J, YU X N, QIN Y H, et al. Effect of biochar application on soil biological characteristics and soil respiration rate in Cd contaminated soil[J]. Acta Tabacaria Sin, 2017, 23(6):61-68.DOI: 10.16472/j.chinatobacco.2017.177.
[28]
ALFARO M R, MARTÍN B C, UGARTE O M, et al. Heavy metal concentrations and basal respiration in contaminated substrates used in the Cuban urban agriculture[J]. Water Air Soil Pollut, 2021, 232(3):1-11.DOI: 10.1007/s11270-021-05073-8.
[29]
STEFANOWICZ A M, KAPUSTA P, ZUBEK S, et al. Soil organic matter prevails over heavy metal pollution and vegetation as a factor shaping soil microbial communities at historical Zn-Pb mining sites[J]. Chemosphere, 2020, 240:124922.DOI: 10.1016/j.chemosphere.2019.124922.
[30]
CHEN X M, ZHAO Y, ZHAO X Y, et al. Selective pressures of heavy metals on microbial community determine microbial functional roles during composting:sensitive,resistant and actor[J]. J Hazard Mater, 2020, 398:122858.DOI: 10.1016/j.jhazmat.2020.122858.
[31]
ZHAO X, SHEN J P, ZHANG L M, et al. Arsenic and cadmium as predominant factors shaping the distribution patterns of antibiotic resistance genes in polluted paddy soils[J]. J Hazard Mater, 2020, 389:121838.DOI: 10.1016/j.jhazmat.2019.121838.
[32]
WANG R, HU Y X, WANG Y, et al. Nitrogen application increases soil respiration but decreases temperature sensitivity:combined effects of crop and soil properties in a semiarid agroecosystem[J]. Geoderma, 2019, 353:320-330.DOI: 10.1016/j.geoderma.2019.07.019.
[33]
LIU Z Q, SHI Z J, WEI H, et al. Acid rain reduces soil CO2 emission and promotes soil organic carbon accumulation in association with decreasing the biomass and biological activity of ecosystems:a meta-analysis[J]. CATENA, 2022, 208:105714.DOI: 10.1016/j.catena.2021.105714.
[34]
TAO B X, ZHANG B H, DONG J, et al. Antagonistic effect of nitrogen additions and warming on litter decomposition in the coastal wetland of the Yellow River Delta,China[J]. Ecol Eng, 2019, 131:1-8.DOI: 10.1016/j.ecoleng.2019.02.024.
[35]
MYERS B, WEBSTER K L, MCLAUGHLIN J W, et al. Microbial activity across a boreal peatland nutrient gradient:the role of fungi and bacteria[J]. Wetlands Ecol Manage, 2012, 20(2):77-88.DOI: 10.1007/s11273-011-9242-2.
[36]
CAMPOS D, ALVES A, LEMOS M F L, et al. Effects of cadmium and resource quality on freshwater detritus processing chains:a microcosm approach with two insect species[J]. Ecotoxicology, 2014, 23(5):830-839.DOI: 10.1007/s10646-014-1223-9.
[37]
ZHANG H Y, ZIEGLER W, HAN X G, et al. Plant carbon limitation does not reduce nitrogen transfer from arbuscular mycorrhizal fungi to Plantago lanceolata[J]. Plant Soil, 2015, 396(1):369-380.DOI: 10.1007/s11104-015-2599-x.
[38]
MAESTRE F T, MARTÍNEZ I, ESCOLAR C, et al. On the relationship between abiotic stress and co-occurrence patterns:an assessment at the community level using soil lichen communities and multiple stress gradients[J]. Oikos, 2009, 118(7):1015-1022.DOI: 10.1111/j.1600-0706.2009.17362.x.

基金

国家自然科学基金项目(41977354)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 郑琰燚
PDF(2075 KB)

Accesses

Citation

Detail

段落导航
相关文章

/