基于TLS辅助的长白落叶松一级枝条生物量模型构建

唐依人, 贾炜玮, 王帆, 孙毓蔓, 张颖

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2) : 130-140.

PDF(2430 KB)
PDF(2430 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (2) : 130-140. DOI: 10.12302/j.issn.1000-2006.202204037
研究论文

基于TLS辅助的长白落叶松一级枝条生物量模型构建

作者信息 +

Constructing a biomass model of Larix olgensis primary branches based on TLS

Author information +
文章历史 +

摘要

【目的】探究利用地基激光雷达(terrestrial laser scanning,TLS)点云数据估测枝条生物量的可行性,构建预测长白落叶松(黄花落叶松)枝条生物量的最优模型。【方法】以利用孟家岗林场26株长白落叶松点云数据提取出的733个一级枝条的特征因子[枝长(LBL)、弦长(LBCL)、基径(dB)、着枝角度(AB)、弓高(HBAH)、枝条基部断面积(SBAB)、相对着枝深度(dRDINC)]和对应的实测数据为数据源,分别建立枝条水平上的一级枝条生物量基础模型,通过对比基础模型之间的差异来分析利用TLS数据建立枝条生物量模型的可行性。最后利用TLS数据分别对比基础模型、混合效应模型和随机森林模型的预测效果。【结果】基础模型中最终选定的自变量为SBABLBCL。利用TLS数据建立的枝条生物量基础模型具有更好的预测精度。对比3种模型预测能力结果显示,随机森林模型无论在训练集还是测试集上都表现出最好的效果,具体顺序为:随机森林模型>混合效应模型>基础模型。其中随机森林模型的决定系数(R2)相较于混合模型和基础模型分别提高了1.32%和4.89%,均方根误差(RMSE)分别降低了11.23%和13.60%。【结论】基于TLS利用随机森林算法能够准确对枝条生物量进行估测,不仅为随机森林算法在林分生长模型上的应用奠定了一定的实践基础,也为TLS在树冠结构研究中的应用提供了重要的参考价值。

Abstract

【Objective】 To explore the feasibility of using terrestrial laser scanning (TLS) point cloud data to estimate branch biomass and find the optimum model to predict the branch biomass of Larix olgensis. 【Method】 The characteristic factors (branch length (LBL), branch chord length (LBCL), branch diameter (dB), branch angle (AB), branch arch height (HBAH), basal area of branches (SBAB), and relative depth within the crown (dRDINC)) of 733 first-order branches extracted using point cloud data of 26 artificial larch plants and the corresponding measured data from Mengjiagang Forestry Farm were used as data sources to establish first-level branch biomass base models at the branch level. Additionally, the feasibility of using TLS data to establish branch biomass models by comparing the differences between base models were analyzed. Finally, the prediction effects of the base model, mixed-effects model, and random forest model were compared separately using TLS data. 【Result】 The independent variables selected in the base model were SBAB and LBCL. Using TLS data to build the branch biomass base model had a better prediction accuracy. Comparing the results of the three models showed that the random forest model showed the best results both on the training and test sets, in the following order: random forest model > mixed-effects model > base model. The R2 of the random forest model improved by 1.32% and 4.89%, and the RMSE decreased by 11.23% and 13.60%, respectively, compared to the mixed model and the base model. 【Conclusion】 The results of this paper proved that the branch biomass can be estimated accurately based on TLS using the random forest algorithm, which not only laid a practical foundation for the application of the random forest algorithm on stand growth models, but also provided an important reference value for the application of TLS in the study of crown structure.

关键词

长白落叶松(黄花落叶松) / 点云数据 / 枝条特征因子 / 枝条生物量 / 混合模型 / 随机森林

Key words

Larix olgensis / point cloud data / branch characterization factor / branch biomass / mixed-effects model / random forest

引用本文

导出引用
唐依人, 贾炜玮, 王帆, . 基于TLS辅助的长白落叶松一级枝条生物量模型构建[J]. 南京林业大学学报(自然科学版). 2023, 47(2): 130-140 https://doi.org/10.12302/j.issn.1000-2006.202204037
TANG Yiren, JIA Weiwei, WANG Fan, et al. Constructing a biomass model of Larix olgensis primary branches based on TLS[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(2): 130-140 https://doi.org/10.12302/j.issn.1000-2006.202204037
中图分类号: S758   

参考文献

[1]
董利虎, 李凤日, 贾炜玮. 基于线性混合效应的红松人工林枝条生物量模型[J]. 应用生态学报, 2013, 24(12): 3391-3398.
DONG L H, LI F R, JIA W W. Linear mixed modeling of branch biomass for Korean pine plantation[J]. Chin J Appl Ecol, 2013, 24(12): 3391-3398.DOI:10.13287/j.1001-9332.2013.0571.
[2]
DELUCIA E H M H C E V. Climate-driven changes in biomass allocation in pines[J]. Glob Change Bio, 2000, 6(5):587-593.
[3]
HELMISAARI H S, MAKKONEN K, KELLOMÄKI S, et al. Below-and above-ground biomass, production and nitrogen use in eastern Finland[J]. For Ecol Manag, 2002, 165(1/2/3):317-326.DOI:10.1016/s0378-1127(01)00648-x.
[4]
MÄKINEN H, MÄKELÄ A. Predicting basal area of Scots pine branches[J]. For Ecol Manag, 2003, 179(1/2/3): 351-362. DOI:10.1016/S0378-1127(02)00551-0.
[5]
GONZALEZ DE TANAGO J, LAU A, BARTHOLOMEUS H, et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR[J]. Methods Ecol Evol, 2018, 9(2): 223-234. DOI: 10.1111/2041-210x.12904.
[6]
STOVALL A E L, VORSTER A G, ANDERSON R S, et al. Non-destructive aboveground biomass estimation of coniferous trees using terrestrial LiDAR[J]. Remote Sens Environ, 2017, 200: 31-42.DOI:10.1016/j.rse.2017.08.013.
[7]
ATKINS J W, BOHRER G, FAHEY R T, et al. Quantifying vegetation and canopy structural complexity from terrestrial Li DAR data using the forest package[J]. Methods Ecol Evol, 2018, 9(10): 2057-2066. DOI:10.1111/2041-210X.13061.
[8]
卢军, 刘宪钊, 孟维亮, 等. 基于地面激光点云数据的单木三维重建方法[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 193-199.
LU J, LIU X Z, MENG W L, et al. Methodology of individual tree 3D reconstruction based on terrestrial laser scanning point cloud data[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(6): 193-199.
[9]
张颖, 贾炜玮. 基于地基激光雷达的落叶松人工林枝条因子提取和建模[J]. 应用生态学报, 2021, 32(7): 2505-2513.
ZHANG Y, JIA W W. Extraction of branch factors and model construction for Larix plantation using terrestrial laser scanning (TLS)[J]. Chin J Appl Ecol, 2021, 32(7): 2505-2513. DOI:10.13287/j.1001-9332.202107.034.
[10]
范伟伟, 刘浩然, 徐永胜, 等. 基于地基激光雷达和手持式移动激光雷达的单木结构参数提取精度对比[J]. 中南林业科技大学学报, 2020, 40(8): 63-74.
FAN W W, LIU H R, XU Y S, et al. Comparison of extraction precision of individual tree structure parameters based on terrestrial laser scanning and hand-held mobile laser scanning[J]. J Central South Univ For & Technol, 2020, 40(8): 63-74. DOI:10.14067/j.cnki.1673-923x.2020.08.008.
[11]
MÄKELÄ A. A carbon balance model of growth and self-pruning in trees based on structural relationships[J]. For Sc, 1997, 43(1): 7-24. DOI:10.1093/FORESTSCIENCE/43.1.7.
[12]
MEDHURST J L, BATTAGLIA M, CHERRY M L, et al. Allometric relationships for Eucalyptus nitens (Deane and Maiden) Maiden plantations[J]. Trees, 1999, 14(2): 91-101. DOI: 10.1007/PL00009756.
[13]
LEHTONEN A, MÄKIPÄÄ R, HEIKKINEN J, et al. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests[J]. For Ecol Manag, 2004, 188(1/2/3): 211-224. DOI: 10.1016/j.foreco.2003.07.008.
[14]
REPOLA J. Biomass equations for Scots pine and Norway spruce in Finland[J]. Silva Fenn, 2009, 43(4): 4-184.DOI: 10.14214/sf.184.
[15]
贾炜玮, 李凤日, 董利虎, 等. 基于相容性生物量模型的樟子松林碳密度与碳储量研究[J]. 北京林业大学学报, 2012, 34(1): 6-13.
JIA W W, LI F R, DONG L H, et al. Carbon density and storage for Pinus sylvestris var. mongolica plantation based on compatible biomass models[J]. J Beijing For Univ, 2012, 34(1): 6-13. DOI:10.13332/j.1000-1522.2012.01.018.
[16]
曾伟生, 唐守正. 利用度量误差模型方法建立相容性立木生物量方程系统[J]. 林业科学研究, 2010, 23(6): 797-803.
ZENG W S, TANG S Z. Using measurement error modeling method to establish compatible single-tree biomass equations system[J]. For Res, 2010, 23(6): 797-803. DOI:10.13275/j.cnki.lykxyj.2010.06.004.
[17]
许昊, 孙玉军, 王新杰, 等. 利用线性混合效应模型模拟杉木人工林枝条生物量[J]. 应用生态学报, 2015, 26(10): 2969-2977.
XU H, SUN Y J, WANG X J, et al. Simulation of the branch biomass for Chinese fir plantation using the linear mixed effects model[J]. Chin J Appl Ecol, 2015, 26(10): 2969-2977. DOI:10.13287/j.1001-9332.20150921.026.
[18]
董灵波, 刘兆刚, 李凤日, 等. 基于线性混合模型的红松人工林一级枝条大小预测模拟[J]. 应用生态学报, 2013, 24(9): 2447-2456.
DONG L B, LIU Z G, LI F R, et al. Primary branch size of Pinus koraiensis plantation: a prediction based on linear mixed effect model[J]. Chin J Appl Ecol, 2013, 24(9): 2447-2456. DOI:10.13287/j.1001-9332.2013.0490.
[19]
姜立春, 张锐, 李凤日. 基于线性混合模型的落叶松枝条长度和角度模型[J]. 林业科学, 2012, 48(5): 53-60.
JIANG L C, ZHANG R, LI F R. Modeling branch length and branch angle with linear mixed effects for Dahurian larch[J]. Sci Silvae Sin, 2012, 48(5): 53-60. DOI:10.11707/j.1001-7488.20120508.
[20]
姜立春, 李凤日, 张锐. 基于线性混合模型的落叶松枝条基径模型[J]. 林业科学研究, 2012, 25(4): 464-469.
JIANG L C, LI F R, ZHANG R. Modeling branch diameter with linear mixed effects for Dahurian larch[J]. For Res, 2012, 25(4): 464-469. DOI:10.13275/j.cnki.lykxyj.2012.04.013.
[21]
HAUGLIN M, ASTRUP R, GOBAKKEN T, et al. Estimating single-tree branch biomass of Norway spruce with terrestrial laser scanning using voxel-based and crown dimension features[J]. Scand J For Res, 2013, 28(5): 456-469. DOI:10.1080/02827581.2013.777772.
[22]
GONZALEZ DE TANAGO J, LAU A, BARTHOLOMEUS H, et al. Estimation of above-ground biomass of large tropical trees with terrestrial LiDAR[J]. Methods Ecol Evol, 2018, 9(2): 223-234. DOI:10.1111/2041-210x.12904.
[23]
LAU A, BENTLEY L P, MARTIUS C, et al. Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling[J]. Trees, 2018, 32(5): 1219-1231. DOI:10.1007/s00468-018-1704-1.
[24]
陈世林. 激光雷达单木参数提取与生物量估算研究[D]. 北京: 北京林业大学, 2020.
CHEN S L. Research on extraction of single tree parameters and biomass estimation based on LiDAR[D]. Beijing: Beijing Forestry University, 2020.
[25]
胡靖扬, 贾宝军, 林宽, 等. 辽东山区长白落叶松枝叶生物量模型建立与评估[J]. 西南林业大学学报, 2016, 36(5): 52-57,117.
HU J Y, JIA B J, LIN K, et al. Establishment and evaluation of biomass models of branches and leaves for Larix olgensis plantation in montane region of eastern Liaoning Province[J]. J Southwest For Univ, 2016, 36(5):52-57,117.
[26]
ASHRAF M I, ZHAO Z Y, BOURQUE C P A, et al. Integrating biophysical controls in forest growth and yield predictions with artificial intelligence technology[J]. Can J For Res, 2013, 43(12): 1162-1171. DOI:10.1139/cjfr-2013-0090.
[27]
BREIMAN L. Random forests[J]. Mach Learn, 2001, 45(1):5-32.DOI:10.1023/A:1010933404324.
[28]
CUTLER D R, EDWARDS T C Jr, BEARD K H, et al. Random forests for classification in ecology[J]. Ecology, 2007, 88(11): 2783-2792. DOI: 10.1890/07-0539.1.
[29]
高若楠, 苏喜友, 谢阳生, 等. 基于随机森林的杉木适生性预测研究[J]. 北京林业大学学报, 2017, 39(12): 36-43.
GAO R N, SU X Y, XIE Y S, et al. Prediction of adaptability of Cunninghamia lanceolata based on random forest[J]. J Beijing For Univ, 2017, 39(12): 36-43. DOI:10.13332/j.1000-1522.20170260.
[30]
欧强新, 李海奎, 雷相东, 等. 基于清查数据的福建省马尾松生物量转换和扩展因子估算差异解析:3种集成学习决策树模型的比较[J]. 应用生态学报, 2018, 29(6): 2007-2016.
OU Q X, LI H K, LEI X D, et al. Difference analysis in estimating biomass conversion and expansion factors of Masson pine in Fujian Province, China based on national forest inventory data: a comparison of three decision tree models of ensemble learning[J]. Chin J Appl Ecol, 2018, 29(6): 2007-2016. DOI:10.13287/j.1001-9332.201806.019.
[31]
欧强新, 雷相东, 沈琛琛, 等. 基于随机森林算法的落叶松-云冷杉混交林单木胸径生长预测[J]. 北京林业大学学报, 2019, 41(9): 9-19.
OU Q X, LEI X D, SHEN C C, et al. Individual tree DBH growth prediction of larch-spruce-fir mixed forests based on random forest algorithm[J]. J Beijing For Univ, 2019, 41(9): 9-19. DOI:10.13332/j.1000-1522.20180266.
[32]
卢婧, 冯仲科. 运用随机森林模型对北京市林分蓄积生长量的预测[J]. 东北林业大学学报, 2020, 48(5): 7-11.
LU J, FENG Z K. Forecast of stand volume growth in Beijing by using random forest[J]. J Northeast For Univ, 2020, 48(5): 7-11. DOI:10.13759/j.cnki.dlxb.2020.05.002.

基金

国家自然科学基金区域联合基金项目(U21A20244)

编辑: 李燕文
PDF(2430 KB)

Accesses

Citation

Detail

段落导航
相关文章

/