南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (4): 1-7.doi: 10.12302/j.issn.1000-2006.202204039
收稿日期:
2022-04-08
修回日期:
2022-05-10
出版日期:
2022-07-30
发布日期:
2022-08-01
通讯作者:
叶建仁
基金资助:
DING Xiaolei(), ZHANG Yue, LIN Sixi, YE Jianren()
Received:
2022-04-08
Revised:
2022-05-10
Online:
2022-07-30
Published:
2022-08-01
Contact:
YE Jianren
摘要:
松材线虫(Bursaphelenchus xylophilus)是松树萎蔫病的病原,严重威胁欧亚等国的松林资源和生态安全。自2011年松材线虫基因组首次公布以来,高通量测序技术成为该病害的重要研究手段之一。笔者从松材线虫的功能基因、非编码RNA、转录表达差异和基因组学等方面综述其致病机理,认为随着高通量测序技术的快速发展,在转录组相关研究方面,可尝试开展空间转录组、单细胞测序等新技术,在染色体基因组的支持下寻找松材线虫中具有潜在调控功能的长链非编码RNA、融合基因和环状RNA等罕见核酸分子,挖掘可能存在的甲基化、RNA编辑、结构变异等未知现象;在基因组学研究方面,可以开展基因家族扩增、大样本全基因组关联分析和数量性状定位等研究,以挖掘与松材线虫致病力和繁殖力等重要性状紧密关联的基因或位点,阐明松材线虫不同种群在进化过程中发生的适应性变化。
中图分类号:
丁晓磊,张悦,林司曦,等. 基于高通量测序技术的松材线虫研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 1-7.
DING Xiaolei, ZHANG Yue, LIN Sixi, YE Jianren. An overview of high-throughput sequencing techniques applied on Bursaphelenchus xylophilus[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(4): 1-7.DOI: 10.12302/j.issn.1000-2006.202204039.
[1] | 万方浩, 郭建英, 王德辉. 中国外来入侵生物的危害与管理对策[J]. 生物多样性, 2002, 10(1):119-125. |
WAN F H, GUO J Y, WANG D H. Alien invasive species in China: their damages and management strategies[J]. Biodivers Sci, 2002, 10(1):119-125. DOI:10.3321/j.issn:1005-0094.2002.01.015. | |
[2] | MAMIYA Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus[J]. Annu Rev Phytopathol, 1983, 21:201-220. DOI:10.1146/annurev.py.21.090183.001221. |
[3] | MAMIYA Y. History of pine wilt disease in Japan[J]. J Nematol, 1988, 20(2):219-226. |
[4] | INÁCIO M L, NÓBREGA F, VIEIRA P, et al. First detection of Bursaphelenchus xylophilus associated with Pinus nigra in Portugal and in Europe[J]. For Pathol, 2015, 45(3):235-238. DOI:10.1111/efp.12162. |
[5] | MOTA M M, BRAASCH H, BRAVO M A, et al. First report of Bursaphelenchus xylophilus in Portugal and in Europe[J]. Nematology, 1999, 1(7):727-734. DOI:10.1163/156854199508757. |
[6] | 叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9):1-10. |
YE J R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures[J]. Sci Silvae Sin, 2019, 55(9):1-10. DOI:10.11707/j.1001-7488.20190901. | |
[7] | TANAKA S E, DAYI M, MAEDA Y, et al. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle[J]. Sci Rep, 2019, 9(1):6080. DOI:10.1038/s41598-019-42570-7. |
[8] | TSAI I J, TANAKA R, KANZAKI N, et al. Transcriptional and morphological changes in the transition from mycetophagous to phytophagous phase in the plant-parasitic nematode Bursaphelenchus xylophilus[J]. Mol Plant Pathol, 2016, 17(1):77-83. DOI:10.1111/mpp.12261. |
[9] | ESPADA M, SILVA A C, VAN DEN AKKER S E, et al. Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy[J]. Mol Plant Pathol, 2016, 17(2):286-295. DOI:10.1111/mpp.12280. |
[10] | WANG Z, WANG C Y, FANG Z M, et al. Advances in research of pathogenic mechanism of pine wilt disease[J]. Afr J Microbiol Res, 2010, 4(6): 437-442. DOI:10.5897/AJMR.9000023. |
[11] | ZHAO B G, WANG H L, HAN S F, et al. Distribution and pathogenicity of bacteria species carried by Bursaphelenchus xylophilus in China[J]. Nematology, 2003, 5(6):899-906. DOI:10.1163/156854103773040817. |
[12] | ZHANG Q, BAI G, YANG W B, et al. Pathogenic cellulase assay of pine wilt disease and immunological localization[J]. Biosci Biotechnol Biochem, 2006, 70(11):2727-2732. DOI:10.1271/bbb.60330. |
[13] | UTSUZAWA S, FUKUDA K, SAKAUE D. Use of magnetic resonance microscopy for the nondestructive observation of xylem cavitation caused by pine wilt disease[J]. Phytopathology, 2005, 95(7):737-743. DOI:10.1094/phyto-95-0737. |
[14] | KIKUCHI T, SHIBUYA H, AIKAWA T, et al. Cloning and characterization of pectate lyases expressed in the esophageal gland of the pine wood nematode Bursaphelenchus xylophilus[J]. Mol Plant Microbe Interact, 2006, 19(3):280-287. DOI:10.1094/MPMI-19-0280. |
[15] | KANG J S, LEE H, MOON I S, et al. Construction and characterization of subtractive stage-specific expressed sequence tag (EST) libraries of the pinewood nematode Bursaphelenchus xylophilus[J]. Genomics, 2009, 94(1):70-77. DOI:10.1016/j.ygeno.2009.03.001. |
[16] | ESPADA M, DEN AKKER S E V, MAIER T, et al. STATAWAARS:a promoter motif associated with spatial expression in the major effector-producing tissues of the plant-parasitic nematode Bursaphelenchus xylophilus[J]. BMC Genomics, 2018, 19(1):553. DOI:10.1186/s12864-018-4908-2. |
[17] | HIRAO T, FUKATSU E, WATANABE A. Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization[J]. BMC Plant Biol, 2012, 12:13. DOI:10.1186/1471-2229-12-13. |
[18] | KIKUCHI T, COTTON J A, DALZELL J J, et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus[J]. PLoS Pathog, 2011, 7(9):e1002219. DOI:10.1371/journal.ppat.1002219. |
[19] | FIGUEIREDO J, SIMÕES M J, GOMES P, et al. Assessment of the geographic origins of pinewood nematode isolates via single nucleotide polymorphism in effector genes[J]. PLoS One, 2013, 8(12):e83542. DOI:10.1371/journal.pone.0083542. |
[20] | PALOMARES-RIUS J E, TSAI I J, KARIM N, et al. Genome-wide variation in the pinewood nematode Bursaphelenchus xylophilus and its relationship with pathogenic traits[J]. BMC Genomics, 2015, 16:845. DOI:10.1186/s12864-015-2085-0. |
[21] | LI Y X, MENG F L, DENG X, et al. Comparative transcriptome analysis of the pinewood nematode Bursaphelenchus xylophilus reveals the molecular mechanism underlying its defense response to host-derived α-pinene[J]. Int J Mol Sci, 2019, 20(4):911. DOI:10.3390/ijms20040911. |
[22] | DING X L, YE J R, WU X Q, et al. Deep sequencing analyses of pine wood nematode Bursaphelenchus xylophilus microRNAs reveal distinct miRNA expression patterns during the pathological process of pine wilt disease[J]. Gene, 2015, 555(2):346-356. DOI:10.1016/j.gene.2014.11.030. |
[23] | KIKUCHI T, JONES J T, AIKAWA T, et al. A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus[J]. FEBS Lett, 2004, 572(1/2/3):201-205. DOI:10.1016/j.febslet.2004.07.039. |
[24] | PALOMARES-RIUS J E, HIROOKA Y, TSAI I J, et al. Distribution and evolution of glycoside hydrolase family 45 cellulases in Nematodes and fungi[J]. BMC Evol Biol, 2014, 14:69. DOI:10.1186/1471-2148-14-69. |
[25] | RUAN J, LI H. Fast and accurate long-read assembly with wtdbg2[J]. Nat Methods, 2020, 17(2):155-158. DOI:10.1038/s41592-019-0669-3. |
[26] | SHI L L, GUO Y F, DONG C L, et al. Long-read sequencing and de novo assembly of a Chinese genome[J]. Nat Commun, 2016, 7:12065. DOI:10.1038/ncomms12065. |
[27] | GORDON D, HUDDLESTON J, CHAISSON M J P, et al. Long-read sequence assembly of the Gorilla genome[J]. Science, 2016, 352(6281):aae0344. DOI:10.1126/science.aae0344. |
[28] | DING X L, GUO Y F, YE J R, et al. Population differentiation and epidemic tracking of Bursaphelenchus xylophilus in China based on chromosome-level assembly and whole-genome sequencing data[J]. Pest Manag Sci, 2022, 78(3):1213-1226. DOI:10.1002/ps.6738. |
[29] | DAYI M, SUN S M, MAEDA Y, et al. Nearly complete genome assembly of the pinewood nematode Bursaphelenchus xylophilus strain Ka4C1[J]. Microbiol Resour Announc, 2020, 9(42):e01002-e01020. DOI:10.1128/MRA.01002-20. |
[30] | QIU X W, WU X Q, HUANG L, et al. Specifically expressed genes of the nematode Bursaphelenchus xylophilus involved with early interactions with pine trees[J]. PLoS One, 2013, 8(10):e78063. DOI:10.1371/journal.pone.0078063. |
[31] | LI Z, LIU X X, CHU Y N, et al. Cloning and characterization of a 2-cys peroxiredoxin in the pine wood nematode,Bursaphelenchus xylophilus,a putative genetic factor facilitating the infestation[J]. Int J Biol Sci, 2011, 7(6):823-836. DOI:10.7150/ijbs.7.823. |
[32] | WANG X R, CHENG X, LI Y D, et al. Cloning arginine kinase gene and its RNAi in Bursaphelenchus xylophilus causing pine wilt disease[J]. Eur J Plant Pathol, 2012, 134(3):521-532. DOI:10.1007/s10658-012-0035-0. |
[33] | XU X L, WU X Q, YE J R, et al. Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida:Aphelenchoidoidea)[J]. Int J Mol Sci, 2015, 16(3):5216-5234. DOI:10.3390/ijms16035216. |
[34] | LIU H B, RUI L, FENG Y Q, et al. Autophagy contributes to resistance to the oxidative stress induced by pine reactive oxygen species metabolism,promoting infection by Bursaphelenchus xylophilus[J]. Pest Manag Sci, 2020, 76(8):2755-2767. DOI:10.1002/ps.5823. |
[35] | YAN X, CHENG X Y, WANG Y S, et al. Comparative transcriptomics of two pathogenic pinewood Nematodes yields insights into parasitic adaptation to life on pine hosts[J]. Gene, 2012, 505(1):81-90. DOI:10.1016/j.gene.2012.05.041. |
[36] | DING X L, YE J R, LIN S X, et al. Deciphering the molecular variations of pine wood nematode Bursaphelenchus xylophilus with different virulence[J]. PLoS One, 2016, 11(5):e0156040. DOI:10.1371/journal.pone.0156040. |
[37] | HU L J, WU X Q, LI H Y, et al. An effector,BxSapB1,induces cell death and contributes to virulence in the pine wood nematode Bursaphelenchus xylophilus[J]. Mol Plant Microbe Interactions, 2019, 32(4):452-463. DOI:10.1094/mpmi-10-18-0275-r. |
[38] | ZHAO Q, HU L J, WU X Q, et al. A key effector,BxSapB2,plays a role in the pathogenicity of the pine wood nematode Bursaphelenchus xylophilus[J]. For Pathol, 2020, 50(3):e12600. DOI:10.1111/efp.12600. |
[39] | WANG B W, HAO X, XU J Y, et al. Transcriptome-based analysis reveals a crucial role of BxGPCR17454 in low temperature response of pine wood nematode (Bursaphelenchus xylophilus)[J]. Int J Mol Sci, 2019, 20(12):2898. DOI:10.3390/ijms20122898. |
[40] | CHEN Q L, ZHANG R Z, LI D L, et al. Trehalose in pine wood nematode participates in DJ3 formation and confers resistance to low-temperature stress[J]. BMC Genomics, 2021, 22(1):524. DOI:10.1186/s12864-021-07839-0. |
[41] | LU F, GUO K, CHEN A L, et al. Transcriptomic profiling of effects of emamectin benzoate on the pine wood nematode Bursaphelenchus xylophilus[J]. Pest Manag Sci, 2020, 76(2):747-757. DOI:10.1002/ps.5575. |
[42] | XUE Q, WU X Q, WU F, et al. Transcriptome analysis of Bursaphelenchus xylophilus uncovers the impact of Stenotrophomonas maltophilia on nematode and pine wilt disease[J]. Forests, 2020, 11(9):908. DOI:10.3390/f11090908. |
[43] | 刘振凯, 崔晶, 理永霞, 等. α和β-蒎烯胁迫下松材线虫转录组特征[J]. 东北林业大学学报, 2020, 48(5):93-98. |
LIU Z K, CUI J, LI Y X, et al. Transcriptome characteristics of pine wood nematode in response to α-and β-pinene stress[J]. J Northeast For Univ, 2020, 48(5):93-98. DOI:10.3969/j.issn.1000-5382.2020.05.018. | |
[44] | 陈阳雪, 赵晓佳, 谈家金. 松树内生细菌GD2对松材线虫入侵寄主时转录组的影响[J]. 华中农业大学学报, 2021, 40(5):37-45. |
CHEN Y X, ZHAO X J, TAN J J. Effect of Bacillus cereus GD2 on transcriptome of pine wood nematode invading host[J]. J Huazhong Agric Univ, 2021, 40(5):37-45. DOI:10.13300/j.cnki.hnlkxb.2021.05.006. | |
[45] | HUANG Q X, CHENG X Y, MAO Z C, et al. MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing[J]. PLoS One, 2010, 5(10):e13271. DOI:10.1371/journal.pone.0013271. |
[46] | MODESTO I, INÁCIO V, VAN DE PEER Y, et al. MicroRNA-mediated post-transcriptional regulation of Pinus pinaster response and resistance to pinewood nematode[J]. Sci Rep, 2022, 12(1):5160. DOI:10.1038/s41598-022-09163-3. |
[47] | XIE W F, HUANG A Z, LI H M, et al. Identification and comparative analysis of microRNAs in Pinus massoniana infected by Bursaphelenchus xylophilus[J]. Plant Growth Regul, 2017, 83(2):223-232. DOI:10.1007/s10725-016-0221-8. |
[48] | CAI P F, GOBERT G N, MCMANUS D P. MicroRNAs in parasitic helminthiases:current status and future perspectives[J]. Trends Parasitol, 2016, 32(1):71-86. DOI:10.1016/j.pt.2015.09.003. |
[49] | CHENG X Y, TIAN X L, WANG Y S, et al. Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation[J]. Sci Rep, 2013, 3:1869. DOI:10.1038/srep01869. |
[50] | XIANG Y, WU X Q, ZHOU A D. Bacterial diversity and community structure in the pine wood nematode Bursaphelenchus xylophilus and B.mucronatus with different virulence by high-throughput sequencing of the 16S rDNA[J]. PLoS One, 2015, 10(9):e0137386. DOI:10.1371/journal.pone.0137386. |
[51] | WU X Q, XUE Q, XIANG Y, et al. Community and functional diversity of bacteria associated with propagative and dispersal forms of Bursaphelenchus xylophilus[J]. Nematology, 2016, 18(10):1185-1198. DOI:10.1163/15685411-00003024. |
[52] | 芦伟, 谈家金. 松材线虫侵染对马尾松茎干内生细菌群落结构的影响[J]. 东北林业大学学报, 2022, 50(1):105-110,122. |
LU W, TAN J J. Effects of pine wood nematode infection on the endophytic bacterial community structure in the stems of Pinus massoniana[J]. J Northeast For Univ, 2022, 50(1):105-110,122. DOI:10.13759/j.cnki.dlxb.2022.01.005. | |
[53] | 尹诗恒, 张绍勇, 刘骕骦, 等. 松材线虫侵染对马尾松苗不同部位内生细菌菌群结构的影响[J]. 浙江农林大学学报, 2021, 38(4):846-853. |
YIN S H, ZHANG S Y, LIU S S, et al. Effect of Bursaphelenchus xylophilus infection on the endophytic bacterial community structure in different parts of Pinus massoniana seedlings[J]. J Zhejiang A&F Univ, 2021, 38(4):846-853. DOI:10.11833/j.issn.2095-0756.20200562. | |
[54] | DENG J, YU D, ZHOU W, et al. Variations of phyllosphere and rhizosphere microbial communities of Pinus koraiensis infected by Bursaphelenchus xylophilus[J]. Microb Ecol, 2021:2021Sep6. DOI:10.1007/s00248-021-01850-4. |
[55] | ZHANG W, YU H Y, LYU Y X, et al. Gene family expansion of pinewood nematode to detoxify its host defence chemicals[J]. Mol Ecol, 2020, 29(5):940-955. DOI:10.1111/mec.15378. |
[56] | FILIPIAK A, MALEWSKI T, MATCZYNSKA E, et al. Molecular variation among virulent and avirulent strains of the quarantine nematode Bursaphelenchus xylophilus[J]. Mol Genet Genomics, 2021, 296(2):259-269. DOI:10.1007/s00438-020-01739-w. |
[57] | 黄金思, 奚晓桐, 丁晓磊, 等. 基于SNP标记的广东省松材线虫种群分化研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6):25-31. |
HUANG J S, XI X T, DING X L, et al. Study on the population differentiation of Bursaphelenchus xylophilus in Guangdong Province by SNP markers[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6):25-31. DOI:10.3969/j.issn.1000-2006.201903007. | |
[58] | POP M, SALZBERG S L. Bioinformatics challenges of new sequencing technology[J]. Trends Genet, 2008, 24(3):142-149. DOI:10.1016/j.tig.2007.12.006. |
[59] | 李亦学, 李轩. 新一代测序技术的发展和应用[J]. 中国科技投资, 2012(7):21-22. |
LI Y X, LI X. Development and application of next-generation sequencing technology[J]. Venture Cap, 2012(7):21-22. DOI:10.3969/j.issn.1673-5811.2012.07.005. | |
[60] | 乌日拉嘎, 徐海燕, 冯淑贞, 等. 测序技术的研究进展及三代测序的应用[J]. 中国乳品工业, 2016, 44(4):33-37. |
WURILAGA, XU H Y, FENG S Z, et al. Research progress of sequencing technologies and the application of third generation sequencing[J]. China Dairy Ind, 2016, 44(4):33-37. DOI:10.3969/j.issn.1001-2230.2016.04.009. | |
[61] | GIACOMELLO S. A new era for plant science:spatial single-cell transcriptomics[J]. Curr Opin Plant Biol, 2021, 60:102041. DOI:10.1016/j.pbi.2021.102041. |
[62] | SHAPIRO E, BIEZUNER T, LINNARSSON S. Single-cell sequencing-based technologies will revolutionize whole-organism science[J]. Nat Rev Genet, 2013, 14(9):618-630. DOI:10.1038/nrg3542. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 方炎明, 朱福远, 李垚, 李璇. 基于基因组学的栎树生物学研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 64-72. |
[3] | 王子玥, 甄艳, 刘光欣, 席梦利. 染色质转座酶可及性测序及其在木本植物中的应用前景[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 1-10. |
[4] | 韦鹏飞, 理永霞, 冯宇倩, 刘振凯, 张星耀. 松材线虫性别决定基因Bx-sex-1表达特征和生物学功能分析[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 15-20. |
[5] | 汪青桐, 丁晓磊, 叶建仁, 史秀峰. 基于SNP分子标记的华东地区松材线虫种群遗传分化研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 21-28. |
[6] | 王立超, 苏胜荣, 陈凤毛, 董晓燕, 田成连, 王洋. 黄山马尾松林天牛及携带线虫种类初步调查[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 29-35. |
[7] | 王磊, 叶建仁, 史丽娜. 利用腐生线虫加速替代疫木中松材线虫种群数量研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 36-44. |
[8] | 江奕, 陈凤毛. 喜旱莲子草与乌蔹莓等植物提取物对松材线虫的毒杀活性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 45-52. |
[9] | 吴佳雯, 尹艳楠, 谈家金, 郝德君. 蜡样芽孢杆菌NJSZ-13菌株诱导马尾松抗松材线虫病研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 53-58. |
[10] | 张瑞芝, 姜生伟, 吴昊, 陈俏丽, 李丹蕾, 王峰. 松材线虫Bx-HSF-1转录激活活性研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 8-14. |
[11] | 高景斌, 徐六一, 叶建仁. 马尾松松材线虫病抗性无性系的筛选和遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 109-118. |
[12] | 许嘉麟, 谈家金, 郝德君. 蜡样芽孢杆菌NJSZ-13菌株对松材线虫产卵和繁殖的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 209-214. |
[13] | 蒙海勤, 叶建仁, 王旻嘉, 曹伊扬. 木腐真菌对松材线虫病疫木处理初探[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 183-189. |
[14] | 尹艳楠, 谈家金, 李梦伟, 许嘉麟, 郝德君. 蜡样芽孢杆菌NJSZ-13菌株防治松材线虫病研究[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 152-158. |
[15] | 陈秀波, 段文标, 陈立新, 朱德全, 赵晨晨, 刘东旭. 小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 77-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||