南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1): 59-66.doi: 10.12302/j.issn.1000-2006.202204044
所属专题: 森林生态系统生物多样性研究专题
• 专题报道Ⅱ:森林生态系统生物多样性研究专题(执行主编 薛建辉 方炎明) • 上一篇 下一篇
收稿日期:
2022-04-19
修回日期:
2022-05-11
出版日期:
2024-01-30
发布日期:
2024-01-24
通讯作者:
毛岭峰
基金资助:
XING Bingbing(), LI Yao, MAO Lingfeng()
Received:
2022-04-19
Revised:
2022-05-11
Online:
2024-01-30
Published:
2024-01-24
Contact:
MAO Lingfeng
摘要:
【目的】株高是植物生态策略的核心部分。本研究旨在揭示中国被子植物最大株高的系统发育保守性,探明其类群、地理分异规律及与环境因子的关联。【方法】利用中国20 295种被子植物的最大株高和地理分布数据,检测不同生长型、不同类群和不同植被区域植物最大株高的系统发育保守性,分析系统发育信号(Pagel’s λ值)与纬度、温度和降水量等因子的关联。【结果】中国被子植物最大株高的系统发育保守性较强(Pagel’s λ = 0.893)。其中,草本植物的系统发育保守性程度略低于木本植物,豆目(Fabales)、石竹目(Caryophyllales)、天门冬目(Asparagales)、唇形目(Lamiales)、伞形目(Apiales)、虎耳草目(Saxifragales)等6个目的系统发育信号均高于0.9。所有被子植物与木本植物的系统发育信号与纬度、温度均呈单峰曲线关系,但与降水量呈负相关。草本植物系统发育信号的纬度格局不明显,与温度、降水量均呈多峰曲线关系。【结论】中国被子植物最大株高的系统发育保守性具有明显的地理格局,但趋势因生长型而异。总体来说,中纬度地区被子植物整体及木本植物株高的系统发育保守性强于高、低纬度地区。
中图分类号:
邢冰冰,李垚,毛岭峰. 植物功能性状系统发育保守性的类群和地理分异研究——以中国被子植物最大株高为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 59-66.
XING Bingbing, LI Yao, MAO Lingfeng. Taxonomic and geographic differentiation of phylogenetic conservatism of plant functional traits: a case study of maximum plant height of Chinese angiosperms[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(1): 59-66.DOI: 10.12302/j.issn.1000-2006.202204044.
[1] | SIEBEN E J J, LE ROUX P C. Functional traits, spatial patterns and species associations: what is their combined role in the assembly of wetland plant communities?[J]. Plant Ecol, 2017, 218(4):433-445. DOI:10.1007/s11258-017-0701-6. |
[2] | 霍佳璇, 任梁, 潘莹萍, 等. 柴达木盆地荒漠植物功能性状及其对环境因子的响应[J]. 生态学报, 2022, 42(11):4494-4503. |
HUO J X, REN L, PAN Y P, et al. Functional traits of desert plants and their responses to environmental factors in Qaidam Basin,China[J]. Acta Ecol Sin, 2022, 42(11):4494-4503.DOI: 10.5846/stxb202105311432. | |
[3] | 贾婷, 宋武云, 关新贤, 等. 湿地松针叶功能性状及其对磷添加的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(6):65-71. |
JIA T, SONG W Y, GUAN X X, et al. Responses of needle functional traits of Pinus elliottii to phosphorus addition[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(6): 65-71. DOI: 10.12302/j.issn.1000-2006.202101021. | |
[4] | KUNSTLER G, FALSTER D, COOMES D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529(7585):204-207. DOI:10.1038/nature16476. |
[5] | AHMAD R, KHUROO A A, CHARLES B, et al. Global distributionmodelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change[J]. Sci Rep, 2019, 9:11395. DOI:10.1038/s41598-019-47859-1. |
[6] | MASTROTHEODOROS T, PAPPAS C, MOLNAR P, et al. Linking plant functional trait plasticity and the large increase in forest water use efficiency[J]. JGR Biogeosciences, 2017, 122(9):2393-2408.DOI: 10.1002/2017jg003890. |
[7] | FLYNN D F B, MIROTCHNICK N, JAIN M, et al. Functional and phylogenetic diversity as predictors of biodiversity: ecosystem-function relationships[J]. Ecology, 2011, 92(8):1573-1581. DOI:10.1890/10-1245.1. |
[8] | CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335. DOI:10.1071/bt02124. |
[9] | AMES G M, ANDERSON S M, UNGBERG E A, et al. Functional traits of the understory plant community of a pyrogenic longleaf pine forest across environmental gradients[J]. Ecology, 2017, 98(8):2225. DOI:10.1002/ecy.1886. |
[10] | WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827. DOI:10.1038/nature02403. |
[11] | SWENSON N G, ENQUIST B J, PITHER J, et al. The biogeography and filtering of woody plant functional diversity in north and south America[J]. Glob Ecol Biogeogr, 2012, 21(8):798-808. DOI:10.1111/j.1466-8238.2011.00727.x. |
[12] | ACKERLY D D. Community assembly, niche conservatism, and adaptive evolution in changing environments[J]. Int J Plant Sci, 2003, 164(S3):S165-S184. DOI:10.1086/368401. |
[13] | MOLINA-VENEGAS R, MORENO-SAIZ J C, CASTRO PARGA I, et al. Assessing among-lineage variability in phylogenetic imputation of functional trait datasets[J]. Ecography, 2018, 41(10):1740-1749. DOI:10.1111/ecog.03480. |
[14] | FRECKLETON R P, HARVEY P H, PAGEL M. Phylogenetic analysis and comparative data: a test and review of evidence[J]. Am Nat, 2002, 160(6):712-726. DOI:10.1086/343873. |
[15] | 许格希, 史作民, 刘顺, 等. 尖峰岭热带山地雨林林冠层乔木某些功能性状的系统发育信号、关联性及其演化模式[J]. 生态学报, 2017, 37(17):5691-5703. |
XU G X, SHI Z M, LIU S, et al. Phylogenetic signals, correlations, and evolutionary patterns of some functional traits for forest canopy trees in Jianfengling tropical montane rainforest[J]. Chin J Plant Ecol, 2017, 37(17):5691-5703. DOI:10.5846/stxb201606131132. | |
[16] | CAVENDER-BARES J, KEEN A, MILES B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale[J]. Ecology, 2006, 87(sp7):S109-S122. DOI:10.1890/0012-9658(2006)87[109:psofpc]2.0.co;2. |
[17] | KIA S H, GLYNOU K, NAU T, et al. Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants[J]. ISME J, 2017, 11(3):777-790. DOI:10.1038/ismej.2016.140. |
[18] | WEBB C O, LOSOS J B, AGRAWAL A A. Integrating phylogenies into community ecology1[J]. Ecology,2006, 87(sp7):S1-S2.DOI: 10.1890/0012-9658(2006)87[1:ipice]2.0.co;2. |
[19] | KRAFT N J B, ACKERLY D D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest[J]. Ecol Monogr, 2010, 80(3):401-422. DOI:10.1890/09-1672.1. |
[20] | VALLADARES F, BASTIAS C C, GODOY O, et al. Species coexistence in a changing world[J]. Front Plant Sci, 2015, 6:866. DOI:10.3389/fpls.2015.00866. |
[21] | MACARTHUR R, LEVINS R. The limiting similarity, convergence, and divergence of coexisting species[J]. Am Nat, 1967, 101(921):377-385. DOI:10.1086/282505. |
[22] | KERKHOFF A J, FAGAN W F, ELSER J J, et al. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants[J]. Am Nat, 2006, 168(4):E103-E122. DOI:10.1086/507879. |
[23] | KLUGE J, KESSLER M. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient[J]. J Biogeogr, 2011, 38(2):394-405. DOI:10.1111/j.1365-2699.2010.02433.x. |
[24] | SWENSON N G, WEISER M D, MAO L F, et al. Phylogeny and the prediction of tree functional diversity across novel continental settings[J]. Glob Ecol Biogeogr, 2017, 26(5):553-562. DOI:10.1111/geb.12559. |
[25] | ENGEMANN K, ENQUIST B J, SANDEL B, et al. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot[J]. Ecol Evol, 2015, 5(3):807-820. DOI:10.1002/ece3.1405. |
[26] | DRAY S, JOSSE J. Principal component analysis with missing values: a comparative survey of methods[J]. Plant Ecol, 2015, 216(5):657-667. DOI:10.1007/s11258-014-0406-z. |
[27] | MOLES A T, ACKERLY D D, WEBB C O, et al. Factors that shape seed mass evolution[J]. Proc Natl Acad Sci U S A, 2005, 102(30):10540-10544. DOI:10.1073/pnas.0501473102. |
[28] | WANG Z, LI Y, SU X, et al. Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to primary productivity[J]. J Plant Ecol, 2019, 12(5): 791-803. DOI:10.1093/jpe/rtz025. |
[29] | CAHILL J F, KEMBEL S W, LAMB E G, et al. Does phylogenetic relatedness influence the strength of competition among vascular plants?[J]. Perspect Plant Ecol Evol Syst, 2008, 10(1):41-50.DOI: 10.1016/j.ppees.2007.10.001. |
[30] | DU Y J, MAO L F, QUEENBOROUGH S A, et al. Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China[J]. Glob Ecol Biogeogr, 2015, 24(8):928-938. DOI:10.1111/geb.12303. |
[31] | LI D F, DU Y J, XU W B, et al. Phylogenetic conservatism of fruit development time in Chinese angiosperms and the phylogenetic and climatic correlates[J]. Glob Ecol Conserv, 2021, 27:e01543. DOI:10.1016/j.gecco.2021.e01543. |
[32] | YANG J, CI X Q, LU M M, et al. Functional traits of tree species with phylogenetic signal co-vary with environmental niches in two large forest dynamics plots[J]. J Plant Ecol, 2014, 7(2):115-125.DOI: 10.1093/jpe/rtt070. |
[33] | MOLES A T, WARTON D I, WARMAN L, et al. Global patterns in plant height[J]. J Ecol, 2009, 979(5):923-932. DOI:10.1111/j.1365-2745.2009.01526.x. |
[34] | 邱思玉, 曹元帅, 孙玉军, 等. 杉木人工林与年龄无关的优势高生长模型[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 121-127. |
QIU S Y, CAO Y S, SUN Y J, et al. Age-independent dominant height growth model for Chinese fir plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(5):121-127. DOI:10.3969/j.issn.1000-2006.201904046. | |
[35] | 毛岭峰. 中国种子植物多样性的空间格局-环境关系分异研究[D]. 北京: 中国科学院植物研究所, 2013. |
[36] | LU L M, MAO L F, YANG T, et al. Evolutionary history of the angiosperm flora of China[J]. Nature, 2018, 554(7691):234-238. DOI:10.1038/nature25485. |
[37] | SMITH S A, BROWN J W. Constructing a broadly inclusive seed plant phylogeny[J]. Am J Bot, 2018, 105(3):302-314. DOI:10.1002/ajb2.1019. |
[38] | JIN Y, QIAN H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants[J]. Ecography, 2019, 42(8):1353-1359. DOI:10.1111/ecog.04434. |
[39] | BLOMBERG S P, GARLAND T Jr, IVES A R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile[J]. Evolution, 2003, 57(4):717-745. DOI:10.1111/j.0014-3820.2003.tb00285.x. |
[40] | LOSOS J B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species[J]. Ecol Lett, 2008, 11(10):995-1003. DOI:10.1111/j.1461-0248.2008.01229.x. |
[41] | PAGEL M. Inferring the historical patterns of biological evolution[J]. Nature, 1999, 401(6756):877-884. DOI:10.1038/44766. |
[42] | BOYLE E E, ADAMOWICZ S J. Community phylogenetics: assessing tree reconstruction methods and the utility of DNA barcodes[J]. PLoS One, 2015, 10(6):e0126662. DOI:10.1371/journal.pone.0126662. |
[43] | REVELL L J. Phytools: an R package for phylogenetic comparative biology (and other things)[J]. Methods Ecol Evol, 2012, 3(2):217-223. DOI:10.1111/j.2041-210x.2011.00169.x. |
[44] | TAP Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV[J]. Bot J Linn Soc, 2016, 181(1):1-20. DOI: 10.1111/boj.12385. |
[45] | CLEVELAND W S. LOWESS: a program for smoothing scatterplots by robust locally weighted regression[J]. Am Stat, 1981, 35(1):54. DOI:10.2307/2683591. |
[46] | HIJMANS R J, CAMERON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. Int J Climatol, 2005, 25(15):1965-1978. DOI:10.1002/joc.1276. |
[47] | FITZJOHN R G, PENNELL M W, ZANNE A E, et al. How much of the world is woody?[J]. J Ecol, 2014, 102(5):1266-1272. DOI:10.1111/1365-2745.12260. |
[48] | 郄亚栋, 蒋腊梅, 吕光辉, 等. 温带荒漠植物叶片功能性状对土壤水盐的响应[J]. 生态环境学报, 2018, 27(11):2000-2010. |
QIE Y D, JIANG L M, LV G H, et al. Response of plant leaf functional traits to soil aridity and salinity in temperate desert ecosystem[J]. Ecol Environ Sci, 2018, 27(11):2000-2010. DOI:10.16258/j.cnki.1674-5906.2018.11.004. | |
[49] | ZANNE A E, TANK D C, CORNWELL W K, et al. Three keys to the radiation of angiosperms into freezing environments[J]. Nature, 2014, 506(7486):89-92. DOI:10.1038/nature12872. |
[50] | 邵晨, 李耀琪, 罗奥, 等. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5):575-585. |
SHAO C, LI Y Q, LUO A, et al. Relationship between functional traits and genome size variation of angiosperms with different life forms[J]. Biodivers Sci, 2021, 29(5):575-585. DOI:10.17520/biods.2020450. | |
[51] | 袁泉, 曹嘉瑜, 刘建峰, 等. 生长型分类方案不同导致森林生态系统植物功能性状的统计偏差[J]. 生态学报, 2021, 41(3):1106-1115. |
YUAN Q, CAO J Y, LIU J F, et al. Statistical bias of plant functional traits in forest ecosystems caused by different classifications of growth form[J]. Chin J Plant Ecol, 2021, 41(3):1106-1115. DOI:10.5846/stxb202002010188. | |
[52] | SMITH S A, BEAULIEU J M. Life history influences rates of climatic niche evolution in flowering plants[J]. Proc Biol Sci, 2009, 276(1677):4345-4352. DOI:10.1098/rspb.2009.1176. |
[53] | SOLTIS D E, MORT M E, LATVIS M, et al. Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach[J]. Am J Bot, 2013, 100(5):916-929. DOI:10.3732/ajb.1300044. |
[54] | WAGNER G P, SCHWENK K. Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability[M]. Springer US, 2000. DOI:10.1007/978-1-4615-4185-1_4. |
[55] | CRISP M D, COOK L G. Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes?[J]. New Phytol, 2012, 196(3):681-694. DOI:10.1111/j.1469-8137.2012.04298.x. |
[56] | ZHANG M G, SLIK J W F, MA K P. Using species distributionmodeling to delineate the botanical richness patterns and phytogeographical regions of China[J]. Sci Rep, 2016, 6:22400. DOI:10.1038/srep22400. |
[1] | 尹增芳, 欧香, 陈瑶, 杨爱香, 孙李勇. 望春玉兰生物学基础研究进展与展望[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 256-262. |
[2] | 范明阳, 胡萌, 杨园, 方炎明. 中国东部地区马尾松与黄山松群落分类及群落结构和物种多样性特征[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 47-58. |
[3] | 罗建勋, 刘芙蓉, 宋鹏, 赖世会. 柳杉新品种‘福胖’[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 241-242. |
[4] | 肖诗雅, 高翠青. 尖长蝽科一中国新记录属种(半翅目:异翅亚目)[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 165-168. |
[5] | 贾婷, 宋武云, 关新贤, 魏智文, 陈涵, 易敏, 熊启慧, 张露. 湿地松针叶功能性状及其对磷添加的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 65-71. |
[6] | 廖逸宁, 郭素娟, 王芳芳, 马雅莉, 刘亚斌. 有机-无机肥配施对板栗园土壤肥力及根系功能性状的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 84-92. |
[7] | 高沁怡, 潘春霞, 刘强, 顾光同, 祝雅璐, 吴伟光. 基于贝叶斯网络的林业碳汇项目风险评价[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 210-218. |
[8] | 邓睿, 张梅丽, 周明, 郑宝江. 中国茶藨子属1新记录种[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 231-233. |
[9] | 何斌, 李青, 冯图, 薛晓辉, 李望军, 刘勇. 不同林龄马尾松人工林针叶功能性状及其与土壤养分的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 181-190. |
[10] | 谢辉,程语,葛煜喆,毛华松. 中国古典园林水声景的空间营造手法探析[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 123-130. |
[11] | 王瑾,聂影. 中国松香贸易风险的综合评价方法研究[J]. 南京林业大学学报(自然科学版), 2018, 42(02): 207-212. |
[12] | 欧晓岚,刘艳红. 不同坡向及径级油松异龄叶的功能性状[J]. 南京林业大学学报(自然科学版), 2017, 41(04): 80-88. |
[13] | 刘广路,范少辉,蔡春菊,刘希珍. 毛竹向撂荒地扩展过程中叶功能性状变化[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 41-46. |
[14] | 王瑾,聂影. 中国松香产业内贸易类型评价[J]. 南京林业大学学报(自然科学版), 2017, 41(02): 203-206. |
[15] | 高媛赟,温小荣,林国忠,佘光辉,王凯. 基于奇异值分解的中国资源一号02C卫星数据的融合评价及应用[J]. 南京林业大学学报(自然科学版), 2015, 39(03): 29-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||