无人机航高对落叶松毛虫虫害遥感监测精度的影响

杨乐, 黄晓君, 包玉海, 包刚, 佟斯琴, 苏都毕力格

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4) : 13-22.

PDF(1674 KB)
PDF(1674 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4) : 13-22. DOI: 10.12302/j.issn.1000-2006.202204047
专题报道:第三届中国林草计算机应用大会论文精选(Ⅱ)(执行主编 李凤日)

无人机航高对落叶松毛虫虫害遥感监测精度的影响

作者信息 +

Effects of UAV flight altitude on the accuracy of monitoring Dendrolimus superans pests by remote sensing

Author information +
文章历史 +

摘要

【目的】探究无人机航高对落叶松毛虫(Dendrolimus superans)虫害监测精度的影响机制,以期构建先进的森林虫害监测技术框架,为无人机近地面森林虫害遥感监测提供重要参考。【方法】以大兴安岭落叶松毛虫虫害频发区为试验区,以无人机不同航高下采集的多光谱遥感影像为基础数据,获得健康、轻度和重度虫害的386株落叶松树冠层光谱指数和纹理特征,通过方差分析法(ANOVA)及连续投影算法(SPA)提取对虫害严重程度敏感的光谱特征,结合随机森林(RF)和支持向量机(SVM)算法构建虫害严重程度监测模型,揭示航高对监测精度的影响。【结果】①光谱指数和纹理特征的总体(轻度+重度)监测精度均随航高上升呈下降趋势,而轻度和重度虫害的监测精度却有不同变化态势。②光谱指数(修正型三角植被指数2、绿光归一化差值植被指数2、绿光归一化差值植被指数、差值植被指数、简单比值指数1)+纹理特征(MEA 3)组合的虫害监测精度达到最优(总体精度和Kappa值分别为92.3%和0.891),但其总体和轻度的监测精度随航高上升呈下降趋势(下降速率分别为0.04%/m和0.03%/m),重度的监测精度有上升趋势(上升速率为0.03%/m)。【结论】航高对无人机近地虫害监测精度具有明显影响,并且轻度和重度监测精度随航高的变化速率和趋势有差异。与重度虫害相比,轻度的监测精度随航高的变化速率较快。无人机对虫害早期高精度遥感识别宜选择低航高,而适当提升航高亦能获得对虫害严重度评估监测的预期效果。

Abstract

【Objective】This study aims to explore the influence of unmanned aerial vehicles(UAV) flight altitude mechanism on the accuracy of monitoring larch caterpillar (Dendrolimus superans) insect pests, and provide an important reference for ground UAV remote sensing monitoring of forest pests.【Method】 The areas known for frequent occurrences of D. superans in Da Hinggan Mountains were selected and multispectral remote sensing images collected by UAV at different flight altitudes were used as the basic data. This study obtained the canopy spectral indexes and texture features of 386 healthy, mild, and severely damaged trees by D. superans. Analysis of variances and continuous projection algorithms were used to extract the spectral features sensitive to pest severity. The pest severity monitoring model was constructed using random forest and support vector machine algorithms, and expounded the influence of flight altitude on monitoring accuracy.【Result】(1) The accuracy of overall (mild + severe) monitoring of the spectral indexes and texture features decreased with an increase in flight altitudes. However, the accuracy of mild and severe monitoring of trees damaged by D. superans exhibited different trends. (2) The pest monitoring accuracy of the combination of spectral indices (MTVI 2, GNDVI 2, DVI, GMI 1 and GNDVI) + texture feature (MEA 3) was the best, and the overall accuracy and Kappa coefficient were 92.3% and 0.891, respectively. However, the overall and accuracy of mild monitoring decreased with an increase in flight altitudes, where the decline rate was 0.04%/m and 0.03%/m, respectively, and the accuracy of severe monitoring increased (the rise rate was 0.03%/m). 【Conclusion】 The flight altitudes significantly impacted the accuracy of UAV ground pest monitoring. There was a difference in the rate and trend between the accuracies of mild and severe monitoring. The rate of change in the accuracy of mild monitoring with flight altitude was faster than that of the accuracy of the severe monitoring. Thus, an early identification of pests using a high-precision UAV remote sensing, adaptable to various flight altitudes, is needed to monitor pest severity and improve the expected effects.

关键词

落叶松毛虫 / 虫害 / 无人机 / 航高 / 多光谱遥感监测

Key words

Dendrolimus superans / insect pest / unmanned aerial vehicles(UAV) / flight altitude / multi-spectral remote sensing monitoring

引用本文

导出引用
杨乐, 黄晓君, 包玉海, . 无人机航高对落叶松毛虫虫害遥感监测精度的影响[J]. 南京林业大学学报(自然科学版). 2023, 47(4): 13-22 https://doi.org/10.12302/j.issn.1000-2006.202204047
YANG Le, HUANG Xiaojun, BAO Yuhai, et al. Effects of UAV flight altitude on the accuracy of monitoring Dendrolimus superans pests by remote sensing[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(4): 13-22 https://doi.org/10.12302/j.issn.1000-2006.202204047
中图分类号: S763.305   

参考文献

[1]
陈科屹, 王建军, 何友均, 等. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9):1725-1734.
CHEN K Y, WANG J J, HE Y J, et al. Assessment of forest carbon storage and carbon sequestration potential in key state-owned forest areas of the Great Khingan Mountains, Heilongjiang Province[J]. Journal of Ecological Environment, 2022, 31(9):1725-1734.DOI:10.16258/j.cnki.1674-5906.2022.09.002.
[2]
潘忠, 张立杰, 孙景波, 等. 大兴安岭林区调研后的思考[J]. 东北林业大学学报, 2004, 32(6):101-102.
PAN Z, ZHANG L J, SUN J B, et al. Thinking after the survey of Greater Khingan Mountains Forest Area[J]. Journal of Northeast Forestry University, 2004, 32(6):101-102. DOI:10.3969/j.issn.1000-5382.2004.06.033.
[3]
黄晓君. 落叶松针叶虫害地面高光谱识别及遥感监测方法研究[D]. 兰州: 兰州大学, 2019.
HUANG X J. Remote sensing identification and monitoring of larch needle pests based on ground hyperspectral data[D]. Lanzhou: Lanzhou University, 2019.
[4]
郝玉山, 周本志. 内蒙古大兴安岭林区主要森林害虫危害的分析[J]. 中国森林病虫, 2003, 22(2):40-41.
HAO Y S, ZHOU B Z. Damage analysis of main forest pests in Daxing 'anling forest region of Inner Mongolia[J]. Forest Pests in China, 2003, 22(2):40-41. DOI:10.3969/j.issn.1671-0886.2003.02.017.
[5]
FRAMPTON W J, DASH J, WATMOUGH G, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation[J]. ISPRS J Photogramm Remote Sens, 2013, 82:83-92. DOI:10.1016/j.isprsjprs.2013.04.007.
[6]
HARATI S, PEREZ L, MOLOWNY-HORAS R. Integrating neighborhood effect and supervised machine learning techniques to model and simulate forest insect outbreaks in British Columbia, Canada[J]. Forests, 2020, 11(11):1215. DOI:10.3390/f11111215.
[7]
BÁRTA V, LUKEŠ P, HOMOLOVÁ L. Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2[J]. Int J Appl Earth Obs Geoinformation, 2021, 100:102335. DOI:10.1016/j.jag.2021.102335.
[8]
HU G S, YIN C J, WAN M Z, et al. Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier[J]. Biosyst Eng, 2020, 194:138-151. DOI:10.1016/j.biosystemseng.2020.03.021.
[9]
白力嘎, 黄晓君, DASHZEBEGD G, 等. 基于高光谱特征的雅氏落叶松尺蠖虫口密度估算[J]. 昆虫学报, 2021, 64(6):711-721.
BAI L G, HUANG X J, DASHZEBEGD G, et al. Estimation of the population density of Erannis jacobsoni (Lepidoptera:Geometridae) based on hyperspectral features[J]. Acta Entomol Sin, 2021, 64(6):711-721. DOI:10.16380/j.kcxb.2021.06.007.
[10]
西桂林, 黄晓君, 包玉海, 等. 雅氏落叶松尺蠖不同危害程度下林木冠层颜色高光谱判别[J]. 光谱学与光谱分析, 2020, 40(9):2925-2931.
XI G L, HUANG X J, BAO Y H, et al. Hyperspectral discrimination of different canopy colors in Erannis jacobsoni Djak-infested larch[J]. Spectrosc Spectr Anal, 2020, 40(9):2925-2931.
[11]
薛大暄, 张瑞瑞, 陈立平, 等. 基于Faster R-CNN的美国白蛾图像识别模型研究[J]. 环境昆虫学报, 2020, 42(6):1502-1509.
XUE D X, ZHANG R R, CHEN L P, et al. Faster R-CNN based image recognition research of Hyphantria cunea[J]. J Environ Entomol, 2020, 42(6):1502-1509.
[12]
ZHANG N, ZHANG X L, YANG G J, et al. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images[J]. Remote Sens Environ, 2018, 217:323-339. DOI:10.1016/j.rse.2018.08.024.
[13]
NÄSI R, HONKAVAARA E, LYYTIKÄINEN-SAARENMAA P, et al. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level[J]. Remote Sens, 2015, 7(11):15467-15493. DOI:10.3390/rs71115467.
[14]
ZHANG N, WANG Y T, ZHANG X L. Extraction of tree crowns damaged by Dendrolimus tabulaeformis Tsai et Liu via spectral-spatial classification using UAV-based hyperspectral images[J]. Plant Methods, 2020, 16(1):1-19. DOI:10.1186/s13007-020-00678-2.
[15]
YU R, LUO Y Q, LI H N, et al. Three-dimensional convolutional neural network model for early detection of pine wilt disease using UAV-based hyperspectral images[J]. Remote Sens, 2021, 13(20):4065. DOI:10.3390/rs13204065.
[16]
黄晓君, 颉耀文, 包玉海, 等. 微分光谱连续小波系数估测雅氏落叶松尺蠖危害下的落叶松失叶率[J]. 光谱学与光谱分析, 2019, 39(9):2732-2738.
HUANG X J, XIE Y W, BAO Y H, et al. Estimation of leaf loss rate in larch infested with Erannis jacobsoni Djak based on differential spectral continuous wavelet coefficient[J]. Spectrosc Spectr Anal, 2019, 39(9):2732-2738.
[17]
YU R, LUO Y Q, ZHOU Q, et al, A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level[J]. Int J Appl Earth Obs Geoinformation, 2021, 101:102363. DOI:10.1016/j.jag.2021.102363.
[18]
GITELSON A A, MERZLYAK M N, CHIVKUNOVA O B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves[J]. Photochem Photobiol, 2007, 74(1):38-45. DOI:10.1562/0031-8655(2001)0740038opaneo2.0.co2.
[19]
GITELSON A A, KAUFMAN Y J, STARK R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sens Environ, 2002, 80(1):76-87. DOI:10.1016/S0034-4257(01)00289-9.
[20]
JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666. DOI:10.2307/1936256.
[21]
PEARSON R L, MILLER L D. Remote mapping of standing crop biomass for estimation of productivity of the shortgrass prairie[J]. Remote Sensing of Environment, 1972,VIII:7-12. DOI:10.1177/002076409904500102.
[22]
LICHTENTHALER H K, LANG M, SOWINSKA M, et al. Detection of vegetation stress via a new high resolution fluorescence imaging system[J]. J Plant Physiol, 1996, 148(5):599-612. DOI:10.1016/S0176-1617(96)80081-2.
[23]
GITELSON A A, MERZLYAK M N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll[J]. J Plant Physiol, 1996, 148(3/4):494-500. DOI:10.1016/S0176-1617(96)80284-7.
[24]
ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation system in the Great Plains with ERTS[C]// NASA Technical Reports Server, 1974, 309-317.
[25]
GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sens Environ, 1996, 58(3):289-298. DOI:10.1016/S0034-4257(96)00072-7.
[26]
HUETE A R, LIU H Q, BATCHILY K, et al. A comparison of vegetation indices over a global set of TM images for EOS-MODIS[J]. Remote Sens Environ, 1997, 59(3):440-451. DOI:10.1016/S0034-4257(96)00112-5.
[27]
HABOUDANE D, MILLER J R, PATTEY E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:modeling and validation in the context of precision agriculture[J]. Remote Sens Environ, 2004, 90(3):337-352. DOI:10.1016/j.rse.2003.12.013.
[28]
BROGE N H, LEBLANC E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sens Environ, 2001, 76(2):156-172. DOI:10.1016/S0034-4257(00)00197-8.
[29]
刘俊, 周靖靖, 菅永峰, 等. Worldview-2不同波段纹理特征对森林蓄积量估算精度影响[J]. 西北林学院学报, 2021, 36(3):175-181.
LIU J, ZHOU J J, JIAN Y F, et al. Effects of texture parameters of different bands of worldview-2 images on the estimation of forest volume[J]. J Northwest For Univ, 2021, 36(3):175-181. DOI: 10.3969/j.issn.1001-7461.2021.03.26.
[30]
牛芳鹏, 李新国, 李新国, 麦麦提吐尔逊·艾则孜, 等. 基于光谱指数的博斯腾湖西岸湖滨绿洲土壤有机碳含量估算模型[J]. 江苏农业学报, 2022, 38(2):414-421.
NIU F P, LI X G, Mamattursun·Eziz, et al. Estimation model of soil organic carbon content in lakeside oasis on the west coast of Bosten Lake based on spectral index[J]. Jiangsu J Agr Sci, 2022, 38(2):414-421.DOI:10.3969/j.issn.1000-4440.2022.02.015.
[31]
王蕾, 骆有庆, 张晓丽, 等. 遥感技术在森林病虫害监测中的应用研究进展[J]. 世界林业研究, 2008, 21(5):37-43.
WANG L, LUO Y Q, ZHANG X L, et al. Application development of remote sensing technology in the assessment of forest pest disaster[J]. World For Res, 2008, 21(5):37-43. DOI:10.13348/j.cnki.sjlyyj.2008.05.002.
[32]
王正兴, 刘闯, ALFREDO H. 植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J]. 生态学报, 2003, 23(5):979-987.
WANG Z X, LIU C, ALFREDO H. From AVHRR-NDVI to MODIS-EVI: advances in vegetation index research[J]. Acta Ecol Sin, 2003, 23(5):979-987. DOI: 10.3321/j.issn:1000-0933.2003.05.020.
[33]
关丽, 刘湘南. 两种用于作物冠层叶绿素含量提取的改进光谱指数[J]. 地球科学进展, 2009, 24(5):548-554.
GUAN L, LIU X N. Two kinds of modified spectral indices for retrieval of crop canopy chlorophyll content[J]. Adv Earth Sci, 2009, 24(5):548-554. DOI: 10.3321/j.issn:1001-8166.2009.05.011.
[34]
陈玲, 郝文乾, 高德亮. 光学影像纹理信息在林业领域的最新应用进展[J]. 北京林业大学学报, 2015, 37(3):1-12.
CHEN L, HAO W Q, GAO D L. The latest applications of optical image texture in forestry[J]. J Beijing For Univ, 2015, 37(3):1-12. DOI:10.13332/j.1000-1522.20140304.
[35]
FUCHS H, MAGDON P, KLEINN C, et al. Estimating aboveground carbon in a catchment of the Siberian forest tundra: combining satellite imagery and field inventory[J]. Remote Sens Environ, 2009, 113(3):518-531. DOI:10.1016/j.rse.2008.07.017.
[36]
ZHOU J J, ZHAO Z, ZHAO J, et al. A comparison of three methods for estimating the LAI of black locust (Robinia pseudoacacia L.) plantations on the Loess Plateau, China[J]. Int J Remote Sens, 2014, 35(1):171-188. DOI:10.1080/01431161.2013.866289.

基金

国家自然科学基金项目(41861056)
内蒙古自然科学基金项目(2022MS04005)
内蒙古自治区科技计划(2021GG0183)
内蒙古高校青年科技英才支持计划(NJYT22030)
内蒙古师范大学引进高层次人才科研启动经费项目(2020YJRC051)

编辑: 王国栋
PDF(1674 KB)

Accesses

Citation

Detail

段落导航
相关文章

/