南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4): 13-22.doi: 10.12302/j.issn.1000-2006.202204047
所属专题: 第三届中国林草计算机应用大会论文精选(Ⅱ)
• 专题报道:第三届中国林草计算机应用大会论文精选(Ⅱ)(执行主编 李凤日) • 上一篇 下一篇
杨乐1(), 黄晓君1,*(), 包玉海1, 包刚1, 佟斯琴1, 苏都毕力格2
收稿日期:
2022-04-25
修回日期:
2023-04-16
出版日期:
2023-07-30
发布日期:
2023-07-20
通讯作者:
* 黄晓君(作者简介:
杨乐(基金资助:
YANG Le1(), HUANG Xiaojun1,*(), BAO Yuhai1, BAO Gang1, TONG Siqin1, Sudubilig 2
Received:
2022-04-25
Revised:
2023-04-16
Online:
2023-07-30
Published:
2023-07-20
摘要:
【目的】探究无人机航高对落叶松毛虫(Dendrolimus superans)虫害监测精度的影响机制,以期构建先进的森林虫害监测技术框架,为无人机近地面森林虫害遥感监测提供重要参考。【方法】以大兴安岭落叶松毛虫虫害频发区为试验区,以无人机不同航高下采集的多光谱遥感影像为基础数据,获得健康、轻度和重度虫害的386株落叶松树冠层光谱指数和纹理特征,通过方差分析法(ANOVA)及连续投影算法(SPA)提取对虫害严重程度敏感的光谱特征,结合随机森林(RF)和支持向量机(SVM)算法构建虫害严重程度监测模型,揭示航高对监测精度的影响。【结果】①光谱指数和纹理特征的总体(轻度+重度)监测精度均随航高上升呈下降趋势,而轻度和重度虫害的监测精度却有不同变化态势。②光谱指数(修正型三角植被指数2、绿光归一化差值植被指数2、绿光归一化差值植被指数、差值植被指数、简单比值指数1)+纹理特征(MEA 3)组合的虫害监测精度达到最优(总体精度和Kappa值分别为92.3%和0.891),但其总体和轻度的监测精度随航高上升呈下降趋势(下降速率分别为0.04%/m和0.03%/m),重度的监测精度有上升趋势(上升速率为0.03%/m)。【结论】航高对无人机近地虫害监测精度具有明显影响,并且轻度和重度监测精度随航高的变化速率和趋势有差异。与重度虫害相比,轻度的监测精度随航高的变化速率较快。无人机对虫害早期高精度遥感识别宜选择低航高,而适当提升航高亦能获得对虫害严重度评估监测的预期效果。
中图分类号:
杨乐,黄晓君,包玉海,等. 无人机航高对落叶松毛虫虫害遥感监测精度的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 13-22.
YANG Le, HUANG Xiaojun, BAO Yuhai, BAO Gang, TONG Siqin, Sudubilig . Effects of UAV flight altitude on the accuracy of monitoring Dendrolimus superans pests by remote sensing[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(4): 13-22.DOI: 10.12302/j.issn.1000-2006.202204047.
表1
光谱指数及其计算公式依据"
光谱指数 spectral index | 公式 formula | 参考文献 reference |
---|---|---|
花青素反射指数1 ARI 1 | (1/B2)-(1/B4) | Gitelson等[ |
类胡萝卜素反射指数1 CRI 1 | (1/B2)-(1/B3) | Gitelson等[ |
差值植被指数DVI | B5-B3 | Jordan[ |
增强植被指数EVI | B5/B3 | Pearson等[ |
简单比值指数GMI 1 | B1/B4 | Lichtenthaler[ |
绿光归一化差值植被指数GNDVI | B4/B2 | Gitelson等[ |
绿光归一化差值植被指数2 GNDVI 2 | (B5-B3)/(B5+B3) | Rouse等[ |
利希滕塔莱指数LIC 3 | (B5-B2)/(B5+B2) | Gitelson等[ |
修正型三角植被指数MTVI 2 | (B4-B2)/(B4+B2) | Gitelson等[ |
归一化植被指数NDVI | 2.5(B5-B3)/[1+B5+6B3-7.5B1] | Huete等[ |
比值植被指数RVI | 1.5[1.2(B5-B2)-2.5(B3-B2)]/ (6B5- | Haboudane等[ |
三角形植被指数TVI | 0.5[120(B4-B2)-200(B3-B2)] | Broge等[ |
图1
光谱指数(a)和纹理特征(b)的方差图 F.方差值distance value; ARI 1.花青素反射指数1 anthocyanin reflectance index 1; CRI 1.类胡萝卜素反射指数1 carotenoid reflectance index 1; DVI.差值植被指数 difference vegetation index; EVI. 增强植被指数 enhanced vegetation index; GMI.简单比值指数 simple ratio index; GNDVI.绿光归一化差值植被指数 green normalized difference vegetation index; GNDVI 2.绿光归一化差值植被指数2 green normalized difference vegetation index 2; LIC 3.利希滕塔莱指数3 Lichtentale index 3; MTVI 2. 修正型三角植被指数2 modified triangular vegetation index 2; NDVI 归一化植被指数 normalized vegetation index; RVI.比值植被指数 ratio vegetation index; TVI.三角形植被指数 triangular vegetation index; MEA.均值 mean; VAR.方差variance; HOM.协同性 homogeneity; CON.对比度 contrast; DIS.相异性 dissimilarity; ENT. 信息熵entropy; SM.二阶矩 second order moment; COR.相关性correlation。下同。The same below。"
表2
基于不同模型光谱指数的虫害严重程度监测精度"
模型 model | 光谱指数 spectral index | 不同航高OA/% overall accuracy for different flight altitude | 不同航高Kappa值 Kappa for different flight altitude | ||||
---|---|---|---|---|---|---|---|
100 m | 150 m | 200 m | 100 m | 150 m | 200 m | ||
支持向量机 SVM | ARI 1 | 50.0 | 56.4 | 51.3 | 0.424 | 0.472 | 0.426 |
CRI 1 | 85.9 | 82.1 | 82.1 | 0.806 | 0.761 | 0.764 | |
DVI | 88.5 | 75.6 | 85.9 | 0.838 | 0.689 | 0.806 | |
EVI | 85.9 | 76.9 | 69.2 | 0.806 | 0.695 | 0.607 | |
GMI 1 | 89.7 | 84.6 | 84.6 | 0.856 | 0.791 | 0.792 | |
GNDVI | 83.3 | 82.1 | 79.5 | 0.780 | 0.764 | 0.734 | |
GNDVI 2 | 91.0 | 84.6 | 80.8 | 0.874 | 0.793 | 0.751 | |
LIC 3 | 89.7 | 79.5 | 85.9 | 0.854 | 0.732 | 0.805 | |
MTVI 2 | 92.3 | 91.9 | 88.5 | 0.889 | 0.874 | 0.840 | |
NDVI | 92.9 | 91.0 | 88.5 | 0.884 | 0.871 | 0.840 | |
RVI | 92.3 | 89.7 | 85.9 | 0.890 | 0.855 | 0.808 | |
TVI | 89.7 | 83.3 | 78.2 | 0.854 | 0.776 | 0.721 | |
随机森林 RF | ARI1 | 47.4 | 35.9 | 39.7 | 0.403 | 0.287 | 0.318 |
CRI 1 | 76.9 | 75.6 | 69.2 | 0.704 | 0.683 | 0.623 | |
DVI | 84.6 | 73.1 | 76.9 | 0.792 | 0.657 | 0.703 | |
EVI | 79.5 | 55.1 | 53.8 | 0.732 | 0.460 | 0.457 | |
GMI 1 | 84.6 | 78.2 | 73.1 | 0.792 | 0.716 | 0.662 | |
GNDVI | 80.8 | 79.5 | 73.1 | 0.749 | 0.730 | 0.666 | |
GNDVI 2 | 88.5 | 79.5 | 76.9 | 0.841 | 0.725 | 0.706 | |
LIC 3 | 87.2 | 73.1 | 84.6 | 0.821 | 0.661 | 0.794 | |
MTVI 2 | 90.6 | 89.7 | 85.9 | 0.867 | 0.854 | 0.809 | |
NDVI | 88.5 | 85.9 | 84.6 | 0.840 | 0.809 | 0.788 | |
RVI | 80.8 | 78.2 | 76.1 | 0.744 | 0.720 | 0.708 | |
TVI | 80.8 | 76.9 | 75.6 | 0.742 | 0.704 | 0.688 |
表3
基于纹理特征的虫害严重程度监测模型参数"
模型 model | 航高/m flight- altitude | 窗口 大小 window size | 均值 mean | 方差 variance | 协同性 homogeneity | 对比度 contrast | 相异性 dissimilarity | 信息熵 entropy | 二阶矩 second moment | 相关性 correlation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OA/% | Kappa | OA/% | Kappa | OA/% | Kappa | OA/% | Kappa | OA/% | Kappa | OA/% | Kappa | OA/% | Kappa | OA/% | Kappa | ||||
支持向量机 SVM | 100 | 3×3 | 85.9 | 0.806 | 56.4 | 0.468 | 65.4 | 0.555 | 55.1 | 0.459 | 64.1 | 0.543 | 62.8 | 0.530 | 64.1 | 0.543 | 51.3 | 0.426 | |
5×5 | 83.3 | 0.776 | 60.3 | 0.505 | 66.7 | 0.568 | 56.4 | 0.470 | 64.1 | 0.543 | 65.4 | 0.554 | 64.1 | 0.543 | 43.6 | 0.333 | |||
7×7 | 84.6 | 0.791 | 60.3 | 0.505 | 60.3 | 0.505 | 61.5 | 0.518 | 64.1 | 0.543 | 65.4 | 0.554 | 65.4 | 0.555 | 43.6 | 0.333 | |||
9×9 | 84.6 | 0.791 | 60.3 | 0.505 | 66.7 | 0.568 | 57.7 | 0.477 | 64.1 | 0.543 | 65.4 | 0.554 | 65.4 | 0.555 | 44.9 | 0.353 | |||
150 | 3×3 | 67.9 | 0.594 | 48.7 | 0.402 | 52.6 | 0.437 | 48.7 | 0.396 | 50.0 | 0.407 | 57.7 | 0.482 | 57.7 | 0.480 | 48.7 | 0.395 | ||
5×5 | 69.2 | 0.610 | 53.8 | 0.442 | 50.0 | 0.414 | 50.0 | 0.404 | 51.3 | 0.420 | 56.4 | 0.469 | 59.0 | 0.494 | 50.0 | 0.402 | |||
7×7 | 66.7 | 0.577 | 57.7 | 0.481 | 52.6 | 0.440 | 55.1 | 0.468 | 52.6 | 0.437 | 55.1 | 0.457 | 57.7 | 0.481 | 52.6 | 0.436 | |||
9×9 | 62.8 | 0.536 | 57.7 | 0.491 | 55.1 | 0.466 | 55.1 | 0.455 | 52.6 | 0.438 | 53.8 | 0.444 | 57.7 | 0.481 | 51.3 | 0.414 | |||
200 | 3×3 | 74.4 | 0.675 | 56.4 | 0.481 | 53.8 | 0.441 | 51.3 | 0.415 | 51.3 | 0.415 | 53.8 | 0.452 | 57.7 | 0.490 | 43.6 | 0.334 | ||
5×5 | 73.1 | 0.662 | 57.7 | 0.492 | 56.4 | 0.475 | 53.8 | 0.449 | 55.1 | 0.462 | 55.1 | 0.462 | 59.0 | 0.504 | 43.6 | 0.337 | |||
7×7 | 76.9 | 0.702 | 59.0 | 0.504 | 53.8 | 0.450 | 57.7 | 0.490 | 53.8 | 0.456 | 57.7 | 0.483 | 56.4 | 0.476 | 46.2 | 0.365 | |||
9×9 | 75.6 | 0.687 | 60.3 | 0.519 | 57.7 | 0.490 | 56.4 | 0.466 | 59.0 | 0.504 | 55.1 | 0.453 | 59.0 | 0.504 | 44.9 | 0.353 | |||
随机森林 RF | 100 | 3×3 | 73.1 | 0.651 | 51.3 | 0.443 | 48.7 | 0.399 | 55.1 | 0.478 | 57.7 | 0.501 | 46.2 | 0.384 | 51.3 | 0.438 | 35.9 | 0.280 | |
5×5 | 74.4 | 0.669 | 43.6 | 0.355 | 46.2 | 0.370 | 47.4 | 0.389 | 51.3 | 0.434 | 51.3 | 0.424 | 47.4 | 0.388 | 41.0 | 0.328 | |||
7×7 | 75.6 | 0.685 | 46.2 | 0.384 | 46.2 | 0.384 | 47.4 | 0.388 | 57.7 | 0.503 | 52.6 | 0.450 | 53.8 | 0.460 | 34.6 | 0.263 | |||
9×9 | 73.1 | 0.661 | 46.2 | 0.387 | 52.6 | 0.445 | 51.3 | 0.443 | 51.3 | 0.436 | 47.4 | 0.403 | 53.8 | 0.462 | 39.7 | 0.318 | |||
150 | 3×3 | 56.4 | 0.473 | 43.6 | 0.360 | 44.9 | 0.367 | 44.9 | 0.370 | 42.3 | 0.351 | 51.3 | 0.444 | 35.9 | 0.281 | 37.2 | 0.291 | ||
5×5 | 61.5 | 0.533 | 42.3 | 0.334 | 47.4 | 0.402 | 53.8 | 0.461 | 39.7 | 0.317 | 44.9 | 0.369 | 44.9 | 0.372 | 47.4 | 0.400 | |||
7×7 | 60.3 | 0.520 | 48.7 | 0.410 | 41.0 | 0.329 | 39.7 | 0.319 | 39.7 | 0.319 | 47.4 | 0.396 | 48.7 | 0.410 | 39.7 | 0.324 | |||
9×9 | 56.4 | 0.488 | 48.7 | 0.406 | 46.2 | 0.385 | 39.7 | 0.331 | 42.3 | 0.330 | 47.4 | 0.393 | 42.3 | 0.342 | 42.3 | 0.345 | |||
200 | 3×3 | 69.2 | 0.623 | 51.3 | 0.434 | 38.5 | 0.298 | 39.7 | 0.311 | 44.9 | 0.376 | 46.2 | 0.385 | 37.2 | 0.282 | 41.0 | 0.335 | ||
5×5 | 59.0 | 0.516 | 47.4 | 0.404 | 37.2 | 0.277 | 44.9 | 0.370 | 50.0 | 0.429 | 41.0 | 0.331 | 42.3 | 0.337 | 33.3 | 0.248 | |||
7×7 | 66.7 | 0.602 | 43.6 | 0.356 | 48.7 | 0.414 | 56.4 | 0.493 | 53.8 | 0.464 | 47.4 | 0.400 | 48.7 | 0.415 | 44.9 | 0.377 | |||
9×9 | 72.6 | 0.653 | 38.5 | 0.298 | 56.4 | 0.494 | 47.4 | 0.397 | 55.1 | 0.480 | 50.0 | 0.425 | 60.3 | 0.529 | 38.5 | 0.304 |
表4
基于光谱指数与纹理特征的虫害严重程度监测模型精度"
模型 model | 组合光谱指数 combine spectral signatures | 不同航高OA/% overall accuracy for different flight altitude | 不同航高Kappa值 Kappa for different flight altitude | ||||
---|---|---|---|---|---|---|---|
100 m | 150 m | 200 m | 100 m | 150 m | 200 m | ||
SVM 支持向量机 | SI1+TF(3) | 92.3 | 89.7 | 88.5 | 0.891 | 0.857 | 0.842 |
SI2+TF(5) | 92.3 | 88.5 | 85.9 | 0.891 | 0.841 | 0.810 | |
SI3+TF(7) | 92.3 | 89.7 | 87.2 | 0.891 | 0.857 | 0.825 | |
SI4+TF(9) | 92.3 | 89.7 | 87.2 | 0.891 | 0.857 | 0.825 | |
RF 随机森林 | SI1+TF(3) | 93.6 | 91.0 | 84.6 | 0.908 | 0.874 | 0.794 |
SI2+TF(5) | 93.5 | 92.3 | 83.3 | 0.907 | 0.890 | 0.778 | |
SI3+TF(7) | 91.0 | 91.0 | 87.2 | 0.874 | 0.874 | 0.825 | |
SI4+TF(9) | 92.3 | 91.0 | 87.2 | 0.890 | 0.874 | 0.825 |
[1] | 陈科屹, 王建军, 何友均, 等. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9):1725-1734. |
CHEN K Y, WANG J J, HE Y J, et al. Assessment of forest carbon storage and carbon sequestration potential in key state-owned forest areas of the Great Khingan Mountains, Heilongjiang Province[J]. Journal of Ecological Environment, 2022, 31(9):1725-1734.DOI:10.16258/j.cnki.1674-5906.2022.09.002. | |
[2] | 潘忠, 张立杰, 孙景波, 等. 大兴安岭林区调研后的思考[J]. 东北林业大学学报, 2004, 32(6):101-102. |
PAN Z, ZHANG L J, SUN J B, et al. Thinking after the survey of Greater Khingan Mountains Forest Area[J]. Journal of Northeast Forestry University, 2004, 32(6):101-102. DOI:10.3969/j.issn.1000-5382.2004.06.033. | |
[3] | 黄晓君. 落叶松针叶虫害地面高光谱识别及遥感监测方法研究[D]. 兰州: 兰州大学, 2019. |
HUANG X J. Remote sensing identification and monitoring of larch needle pests based on ground hyperspectral data[D]. Lanzhou: Lanzhou University, 2019. | |
[4] | 郝玉山, 周本志. 内蒙古大兴安岭林区主要森林害虫危害的分析[J]. 中国森林病虫, 2003, 22(2):40-41. |
HAO Y S, ZHOU B Z. Damage analysis of main forest pests in Daxing 'anling forest region of Inner Mongolia[J]. Forest Pests in China, 2003, 22(2):40-41. DOI:10.3969/j.issn.1671-0886.2003.02.017. | |
[5] | FRAMPTON W J, DASH J, WATMOUGH G, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation[J]. ISPRS J Photogramm Remote Sens, 2013, 82:83-92. DOI:10.1016/j.isprsjprs.2013.04.007. |
[6] | HARATI S, PEREZ L, MOLOWNY-HORAS R. Integrating neighborhood effect and supervised machine learning techniques to model and simulate forest insect outbreaks in British Columbia, Canada[J]. Forests, 2020, 11(11):1215. DOI:10.3390/f11111215. |
[7] | BÁRTA V, LUKEŠ P, HOMOLOVÁ L. Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2[J]. Int J Appl Earth Obs Geoinformation, 2021, 100:102335. DOI:10.1016/j.jag.2021.102335. |
[8] | HU G S, YIN C J, WAN M Z, et al. Recognition of diseased Pinus trees in UAV images using deep learning and AdaBoost classifier[J]. Biosyst Eng, 2020, 194:138-151. DOI:10.1016/j.biosystemseng.2020.03.021. |
[9] | 白力嘎, 黄晓君, DASHZEBEGD G, 等. 基于高光谱特征的雅氏落叶松尺蠖虫口密度估算[J]. 昆虫学报, 2021, 64(6):711-721. |
BAI L G, HUANG X J, DASHZEBEGD G, et al. Estimation of the population density of Erannis jacobsoni (Lepidoptera:Geometridae) based on hyperspectral features[J]. Acta Entomol Sin, 2021, 64(6):711-721. DOI:10.16380/j.kcxb.2021.06.007. | |
[10] | 西桂林, 黄晓君, 包玉海, 等. 雅氏落叶松尺蠖不同危害程度下林木冠层颜色高光谱判别[J]. 光谱学与光谱分析, 2020, 40(9):2925-2931. |
XI G L, HUANG X J, BAO Y H, et al. Hyperspectral discrimination of different canopy colors in Erannis jacobsoni Djak-infested larch[J]. Spectrosc Spectr Anal, 2020, 40(9):2925-2931. | |
[11] | 薛大暄, 张瑞瑞, 陈立平, 等. 基于Faster R-CNN的美国白蛾图像识别模型研究[J]. 环境昆虫学报, 2020, 42(6):1502-1509. |
XUE D X, ZHANG R R, CHEN L P, et al. Faster R-CNN based image recognition research of Hyphantria cunea[J]. J Environ Entomol, 2020, 42(6):1502-1509. | |
[12] | ZHANG N, ZHANG X L, YANG G J, et al. Assessment of defoliation during the Dendrolimus tabulaeformis Tsai et Liu disaster outbreak using UAV-based hyperspectral images[J]. Remote Sens Environ, 2018, 217:323-339. DOI:10.1016/j.rse.2018.08.024. |
[13] | NÄSI R, HONKAVAARA E, LYYTIKÄINEN-SAARENMAA P, et al. Using UAV-based photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree-level[J]. Remote Sens, 2015, 7(11):15467-15493. DOI:10.3390/rs71115467. |
[14] | ZHANG N, WANG Y T, ZHANG X L. Extraction of tree crowns damaged by Dendrolimus tabulaeformis Tsai et Liu via spectral-spatial classification using UAV-based hyperspectral images[J]. Plant Methods, 2020, 16(1):1-19. DOI:10.1186/s13007-020-00678-2. |
[15] | YU R, LUO Y Q, LI H N, et al. Three-dimensional convolutional neural network model for early detection of pine wilt disease using UAV-based hyperspectral images[J]. Remote Sens, 2021, 13(20):4065. DOI:10.3390/rs13204065. |
[16] | 黄晓君, 颉耀文, 包玉海, 等. 微分光谱连续小波系数估测雅氏落叶松尺蠖危害下的落叶松失叶率[J]. 光谱学与光谱分析, 2019, 39(9):2732-2738. |
HUANG X J, XIE Y W, BAO Y H, et al. Estimation of leaf loss rate in larch infested with Erannis jacobsoni Djak based on differential spectral continuous wavelet coefficient[J]. Spectrosc Spectr Anal, 2019, 39(9):2732-2738. | |
[17] | YU R, LUO Y Q, ZHOU Q, et al, A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level[J]. Int J Appl Earth Obs Geoinformation, 2021, 101:102363. DOI:10.1016/j.jag.2021.102363. |
[18] | GITELSON A A, MERZLYAK M N, CHIVKUNOVA O B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves[J]. Photochem Photobiol, 2007, 74(1):38-45. DOI:10.1562/0031-8655(2001)0740038opaneo2.0.co2. |
[19] | GITELSON A A, KAUFMAN Y J, STARK R, et al. Novel algorithms for remote estimation of vegetation fraction[J]. Remote Sens Environ, 2002, 80(1):76-87. DOI:10.1016/S0034-4257(01)00289-9. |
[20] | JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4):663-666. DOI:10.2307/1936256. |
[21] | PEARSON R L, MILLER L D. Remote mapping of standing crop biomass for estimation of productivity of the shortgrass prairie[J]. Remote Sensing of Environment, 1972,VIII:7-12. DOI:10.1177/002076409904500102. |
[22] | LICHTENTHALER H K, LANG M, SOWINSKA M, et al. Detection of vegetation stress via a new high resolution fluorescence imaging system[J]. J Plant Physiol, 1996, 148(5):599-612. DOI:10.1016/S0176-1617(96)80081-2. |
[23] | GITELSON A A, MERZLYAK M N. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll[J]. J Plant Physiol, 1996, 148(3/4):494-500. DOI:10.1016/S0176-1617(96)80284-7. |
[24] | ROUSE J W, HAAS R H, SCHELL J A, et al. Monitoring vegetation system in the Great Plains with ERTS[C]// NASA Technical Reports Server, 1974, 309-317. |
[25] | GITELSON A A, KAUFMAN Y J, MERZLYAK M N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sens Environ, 1996, 58(3):289-298. DOI:10.1016/S0034-4257(96)00072-7. |
[26] | HUETE A R, LIU H Q, BATCHILY K, et al. A comparison of vegetation indices over a global set of TM images for EOS-MODIS[J]. Remote Sens Environ, 1997, 59(3):440-451. DOI:10.1016/S0034-4257(96)00112-5. |
[27] | HABOUDANE D, MILLER J R, PATTEY E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies:modeling and validation in the context of precision agriculture[J]. Remote Sens Environ, 2004, 90(3):337-352. DOI:10.1016/j.rse.2003.12.013. |
[28] | BROGE N H, LEBLANC E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sens Environ, 2001, 76(2):156-172. DOI:10.1016/S0034-4257(00)00197-8. |
[29] | 刘俊, 周靖靖, 菅永峰, 等. Worldview-2不同波段纹理特征对森林蓄积量估算精度影响[J]. 西北林学院学报, 2021, 36(3):175-181. |
LIU J, ZHOU J J, JIAN Y F, et al. Effects of texture parameters of different bands of worldview-2 images on the estimation of forest volume[J]. J Northwest For Univ, 2021, 36(3):175-181. DOI: 10.3969/j.issn.1001-7461.2021.03.26. | |
[30] | 牛芳鹏, 李新国, 李新国, 麦麦提吐尔逊·艾则孜, 等. 基于光谱指数的博斯腾湖西岸湖滨绿洲土壤有机碳含量估算模型[J]. 江苏农业学报, 2022, 38(2):414-421. |
NIU F P, LI X G, Mamattursun·Eziz, et al. Estimation model of soil organic carbon content in lakeside oasis on the west coast of Bosten Lake based on spectral index[J]. Jiangsu J Agr Sci, 2022, 38(2):414-421.DOI:10.3969/j.issn.1000-4440.2022.02.015. | |
[31] | 王蕾, 骆有庆, 张晓丽, 等. 遥感技术在森林病虫害监测中的应用研究进展[J]. 世界林业研究, 2008, 21(5):37-43. |
WANG L, LUO Y Q, ZHANG X L, et al. Application development of remote sensing technology in the assessment of forest pest disaster[J]. World For Res, 2008, 21(5):37-43. DOI:10.13348/j.cnki.sjlyyj.2008.05.002. | |
[32] | 王正兴, 刘闯, ALFREDO H. 植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J]. 生态学报, 2003, 23(5):979-987. |
WANG Z X, LIU C, ALFREDO H. From AVHRR-NDVI to MODIS-EVI: advances in vegetation index research[J]. Acta Ecol Sin, 2003, 23(5):979-987. DOI: 10.3321/j.issn:1000-0933.2003.05.020. | |
[33] | 关丽, 刘湘南. 两种用于作物冠层叶绿素含量提取的改进光谱指数[J]. 地球科学进展, 2009, 24(5):548-554. |
GUAN L, LIU X N. Two kinds of modified spectral indices for retrieval of crop canopy chlorophyll content[J]. Adv Earth Sci, 2009, 24(5):548-554. DOI: 10.3321/j.issn:1001-8166.2009.05.011. | |
[34] | 陈玲, 郝文乾, 高德亮. 光学影像纹理信息在林业领域的最新应用进展[J]. 北京林业大学学报, 2015, 37(3):1-12. |
CHEN L, HAO W Q, GAO D L. The latest applications of optical image texture in forestry[J]. J Beijing For Univ, 2015, 37(3):1-12. DOI:10.13332/j.1000-1522.20140304. | |
[35] | FUCHS H, MAGDON P, KLEINN C, et al. Estimating aboveground carbon in a catchment of the Siberian forest tundra: combining satellite imagery and field inventory[J]. Remote Sens Environ, 2009, 113(3):518-531. DOI:10.1016/j.rse.2008.07.017. |
[36] | ZHOU J J, ZHAO Z, ZHAO J, et al. A comparison of three methods for estimating the LAI of black locust (Robinia pseudoacacia L.) plantations on the Loess Plateau, China[J]. Int J Remote Sens, 2014, 35(1):171-188. DOI:10.1080/01431161.2013.866289. |
[1] | 牛弘健, 刘文萍, 陈日强, 宗世祥, 骆有庆. 基于Resnet的林地无人机图像去雾改进算法[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 175-18. |
[2] | 张华聪, 谭新建, 喻龙华, 厉月桥, 陈永富, 刘仁, 张怀清. 基于增强Frost局部滤波及单木距离图重构标记的CHM树冠分割[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 9-18. |
[3] | 高家军, 张旭, 郭颖, 刘昱坤, 郭安琪, 石蒙蒙, 王鹏, 袁莹. 融合Swin Transformer的虫害图像实例分割优化方法研究[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 1-10. |
[4] | 杨堃, 范习健, 薄维昊, 刘婕, 王俊玲. 基于视觉加强注意力模型的植物病虫害检测[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 11-18. |
[5] | 吴炅, 蒋馥根, 彭邵锋, 马开森, 陈松, 孙华. 结合树冠体积的油茶树高与产量估测研究[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 53-62. |
[6] | 赵颖慧, 杨海城, 甄贞. 基于ULS、TLS和超声测高仪的天然次生林中不同林冠层树高估测[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 23-32. |
[7] | 程建斌,汪继斌,王年金,姚小华. 无人机辅助授薄壳山核桃花粉对山核桃的结实效应[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 199-202. |
[8] | 陶欢,李存军,谢春春,周静平,淮贺举,蒋丽雅,李凤涛. 基于HSV阈值法的无人机影像变色松树识别[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 99-106. |
[9] | 薛羿,孟昭军,董效文,牛豪杰,严善春. 5种林分中性信息素对亚洲型舞毒蛾的诱捕作用[J]. 南京林业大学学报(自然科学版), 2018, 42(05): 71-76. |
[10] | 代婷婷,马骏,徐雁南. 基于Agisoft PhotoScan 的无人机影像自动拼接在风景园林规划中的应用[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 165-170. |
[11] | 王玮,王浩,李卫正,乌日汗,田晓冬,郭苏明,陈周翔,张浩峰. 基于小型无人机摄影测量的江南景观水资源综合利用分析[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 7-14. |
[12] | 张青萍,梁慧琳,李卫正,杨梦珂,朱灵茜,黄安. 数字化测绘技术在私家园林中的应用研究[J]. 南京林业大学学报(自然科学版), 2018, 42(01): 1-6. |
[13] | 金兰,茹煜,孙曼利,贾志成,王秉玺. 圆锥管状电极式航空静电喷头的性能试验[J]. 南京林业大学学报(自然科学版), 2015, 39(05): 155-160. |
[14] | 张慧春,郑加强,周宏平. 基于决策树技术的智能植保机械决策支持系统[J]. 南京林业大学学报(自然科学版), 2011, 35(01): 95-98. |
[15] | 茹煜,周宏平,贾志成,吴小伟,范庆妮. 航空静电喷雾系统的设计及应用[J]. 南京林业大学学报(自然科学版), 2011, 35(01): 91-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||