
无人机航高对落叶松毛虫虫害遥感监测精度的影响
杨乐, 黄晓君, 包玉海, 包刚, 佟斯琴, 苏都毕力格
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (4) : 13-22.
无人机航高对落叶松毛虫虫害遥感监测精度的影响
Effects of UAV flight altitude on the accuracy of monitoring Dendrolimus superans pests by remote sensing
【目的】探究无人机航高对落叶松毛虫(Dendrolimus superans)虫害监测精度的影响机制,以期构建先进的森林虫害监测技术框架,为无人机近地面森林虫害遥感监测提供重要参考。【方法】以大兴安岭落叶松毛虫虫害频发区为试验区,以无人机不同航高下采集的多光谱遥感影像为基础数据,获得健康、轻度和重度虫害的386株落叶松树冠层光谱指数和纹理特征,通过方差分析法(ANOVA)及连续投影算法(SPA)提取对虫害严重程度敏感的光谱特征,结合随机森林(RF)和支持向量机(SVM)算法构建虫害严重程度监测模型,揭示航高对监测精度的影响。【结果】①光谱指数和纹理特征的总体(轻度+重度)监测精度均随航高上升呈下降趋势,而轻度和重度虫害的监测精度却有不同变化态势。②光谱指数(修正型三角植被指数2、绿光归一化差值植被指数2、绿光归一化差值植被指数、差值植被指数、简单比值指数1)+纹理特征(MEA 3)组合的虫害监测精度达到最优(总体精度和Kappa值分别为92.3%和0.891),但其总体和轻度的监测精度随航高上升呈下降趋势(下降速率分别为0.04%/m和0.03%/m),重度的监测精度有上升趋势(上升速率为0.03%/m)。【结论】航高对无人机近地虫害监测精度具有明显影响,并且轻度和重度监测精度随航高的变化速率和趋势有差异。与重度虫害相比,轻度的监测精度随航高的变化速率较快。无人机对虫害早期高精度遥感识别宜选择低航高,而适当提升航高亦能获得对虫害严重度评估监测的预期效果。
【Objective】This study aims to explore the influence of unmanned aerial vehicles(UAV) flight altitude mechanism on the accuracy of monitoring larch caterpillar (Dendrolimus superans) insect pests, and provide an important reference for ground UAV remote sensing monitoring of forest pests.【Method】 The areas known for frequent occurrences of D. superans in Da Hinggan Mountains were selected and multispectral remote sensing images collected by UAV at different flight altitudes were used as the basic data. This study obtained the canopy spectral indexes and texture features of 386 healthy, mild, and severely damaged trees by D. superans. Analysis of variances and continuous projection algorithms were used to extract the spectral features sensitive to pest severity. The pest severity monitoring model was constructed using random forest and support vector machine algorithms, and expounded the influence of flight altitude on monitoring accuracy.【Result】(1) The accuracy of overall (mild + severe) monitoring of the spectral indexes and texture features decreased with an increase in flight altitudes. However, the accuracy of mild and severe monitoring of trees damaged by D. superans exhibited different trends. (2) The pest monitoring accuracy of the combination of spectral indices (MTVI 2, GNDVI 2, DVI, GMI 1 and GNDVI) + texture feature (MEA 3) was the best, and the overall accuracy and Kappa coefficient were 92.3% and 0.891, respectively. However, the overall and accuracy of mild monitoring decreased with an increase in flight altitudes, where the decline rate was 0.04%/m and 0.03%/m, respectively, and the accuracy of severe monitoring increased (the rise rate was 0.03%/m). 【Conclusion】 The flight altitudes significantly impacted the accuracy of UAV ground pest monitoring. There was a difference in the rate and trend between the accuracies of mild and severe monitoring. The rate of change in the accuracy of mild monitoring with flight altitude was faster than that of the accuracy of the severe monitoring. Thus, an early identification of pests using a high-precision UAV remote sensing, adaptable to various flight altitudes, is needed to monitor pest severity and improve the expected effects.
落叶松毛虫 / 虫害 / 无人机 / 航高 / 多光谱遥感监测
Dendrolimus superans / insect pest / unmanned aerial vehicles(UAV) / flight altitude / multi-spectral remote sensing monitoring
[1] |
陈科屹, 王建军, 何友均, 等. 黑龙江大兴安岭重点国有林区森林碳储量及固碳潜力评估[J]. 生态环境学报, 2022, 31(9):1725-1734.
|
[2] |
潘忠, 张立杰, 孙景波, 等. 大兴安岭林区调研后的思考[J]. 东北林业大学学报, 2004, 32(6):101-102.
|
[3] |
黄晓君. 落叶松针叶虫害地面高光谱识别及遥感监测方法研究[D]. 兰州: 兰州大学, 2019.
|
[4] |
郝玉山, 周本志. 内蒙古大兴安岭林区主要森林害虫危害的分析[J]. 中国森林病虫, 2003, 22(2):40-41.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
白力嘎, 黄晓君,
|
[10] |
西桂林, 黄晓君, 包玉海, 等. 雅氏落叶松尺蠖不同危害程度下林木冠层颜色高光谱判别[J]. 光谱学与光谱分析, 2020, 40(9):2925-2931.
|
[11] |
薛大暄, 张瑞瑞, 陈立平, 等. 基于Faster R-CNN的美国白蛾图像识别模型研究[J]. 环境昆虫学报, 2020, 42(6):1502-1509.
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
黄晓君, 颉耀文, 包玉海, 等. 微分光谱连续小波系数估测雅氏落叶松尺蠖危害下的落叶松失叶率[J]. 光谱学与光谱分析, 2019, 39(9):2732-2738.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
刘俊, 周靖靖, 菅永峰, 等. Worldview-2不同波段纹理特征对森林蓄积量估算精度影响[J]. 西北林学院学报, 2021, 36(3):175-181.
|
[30] |
牛芳鹏, 李新国, 李新国, 麦麦提吐尔逊·艾则孜, 等. 基于光谱指数的博斯腾湖西岸湖滨绿洲土壤有机碳含量估算模型[J]. 江苏农业学报, 2022, 38(2):414-421.
|
[31] |
王蕾, 骆有庆, 张晓丽, 等. 遥感技术在森林病虫害监测中的应用研究进展[J]. 世界林业研究, 2008, 21(5):37-43.
|
[32] |
王正兴, 刘闯,
|
[33] |
关丽, 刘湘南. 两种用于作物冠层叶绿素含量提取的改进光谱指数[J]. 地球科学进展, 2009, 24(5):548-554.
|
[34] |
陈玲, 郝文乾, 高德亮. 光学影像纹理信息在林业领域的最新应用进展[J]. 北京林业大学学报, 2015, 37(3):1-12.
|
[35] |
|
[36] |
|
/
〈 |
|
〉 |