[1] |
LEE J Y, MAROTZKE J, BALA G, et al. IPCC (The Intergovernmental Panel on Climate Change). Climate change 2021:the physical science basis. Future global climate: scenario-42 based projections and near-term information[M]. Cambridge: Cambridge University Press, 2021.
|
[2] |
常兆丰, 韩福贵, 仲生年. 甘肃民勤荒漠区18种乔木物候与气温变化的关系[J]. 植物生态学报, 2009, 33(2):311-319.
|
|
CHANG Z F, HAN F G, ZHONG S N. Relationships between phenology of 18 tree species and air temperature change in the Minqin Desert area of China[J]. J Plant Ecol (Chin Version), 2009, 33(2):311-319.DOI: 10.3773/j.issn.1005-264x.2009.02.008.
|
[3] |
SOLOMON S. Climate change 2007:the physical science basis:contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007.
|
[4] |
徐建文, 居辉, 刘勤, 等. 黄淮海地区干旱变化特征及其对气候变化的响应[J]. 生态学报, 2014, 34(2): 460-470.
|
|
XU J W, JU H, LIU Q, et al. Variation of drought and regional response to climate change in Huang-Huai-Hai Plain[J]. Acta Ecol Sin, 2014, 34(2): 460-470.DOI: 10.5846/stxb201301240148.
|
[5] |
蔡运龙, SMIT B. 全球气候变化下中国农业的脆弱性与适应对策[J]. 地理学报, 1996, 51(3):202-212.
|
|
CAI Y L, SMIT B. Sensitivity and adaptation of Chinese agriculture under global climate change[J]. Acta Geogr Sin, 1996, 51(3):202-212.DOI: 10.1053/jhep.2003.50458.
|
[6] |
CHAVES M M, MAROCO J P, PEREIRA J S. Understanding plant responses to drought: from genes to the whole plant[J]. Funct Plant Biol, 2003, 30(3):239.DOI: 10.1071/fp02076.
|
[7] |
方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10):2308-2316.
|
|
FANG S Z. Silviculture of poplar plantation in China:a review[J]. Chin J Appl Ecol, 2008, 19(10):2308-2316.DOI: 10.3321/j.issn:1001-7488.2007.08.009.
|
[8] |
苏晓华, 黄秦军, 张冰玉, 等. 中国杨树良种选育成就及发展对策[J]. 世界林业研究, 2004, 17(1):46-49.
|
|
SU X H, HUANG Q J, ZHANG B Y, et al. The achievement and developing strategy on variety selection and breeding of poplar in China[J]. World For Res, 2004, 17(1):46-49.DOI: 10.3969/j.issn.1001-4241.2004.01.010.
|
[9] |
胥晓, 杨帆, 尹春英, 等. 雌雄异株植物对环境胁迫响应的性别差异研究进展[J]. 应用生态学报, 2007, 18(11):2626-2631.
|
|
XU X, YANG F, YIN C Y, et al. Research advances in sex-specific responses of dioecious plants to environmental stresses[J]. Chin J Appl Ecol, 2007, 18(11):2626-2631.DOI: 10.3969/j.issn.1003-5710.2013.01.012.
|
[10] |
陈小梅, 危晖, 林媚珍. 气候变化对雌雄异株植物影响的研究进展[J]. 生态学杂志, 2014, 33(11):3144-3149.
|
|
CHEN X M, WEI H, LIN M Z. Responses of dioecious plants to climate change:a review on the potential mechanisms[J]. Chin J Ecol, 2014, 33(11):3144-3149.DOI: 10.3321/j.issn:1006-687X.2007.03.028.
|
[11] |
何梅, 施大伟, 胡玉安, 等. 干旱胁迫下银杏雌雄植株的生长及内源激素含量的差异[J]. 江西农业大学学报, 2017, 39(6):1154-1162.
|
|
HE M, SHI D W, HU Y A, et al. Gender differences in the growth and endogenous hormone contents of male and female Ginkgo biloba under drought stress[J]. Acta Agric Univ Jiangxiensis (Nat Sci Ed), 2017, 39(6):1154-1162.DOI: 10.13836/j.jjau.2017150.
|
[12] |
刘金平, 段婧. 营养生长期雌雄葎草表观性状对水分胁迫响应的性别差异[J]. 草业学报, 2013, 22(2):243-249.
|
|
LIU J P, DUAN J. Humulus scandens gender differences in response to water stress in the vegetative growth stage[J]. Acta Prataculturae Sin, 2013, 22(2):243-249.DOI: 10.3969/j.issn.1001-4829.2010.03.056.
|
[13] |
XU X, PENG G Q, WU C C, et al. Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana[J]. Tree Physiol, 2008, 28(11):1751-1759.DOI: 10.1093/treephys/28.11.1751.
|
[14] |
ZHANG S, JIANG H, PENG S M, et al. Sex-related differences in morphological,physiological,and ultrastructural responses of Populus cathayana to chilling[J]. J Exp Bot, 2011, 62(2):675-686.DOI: 10.1093/jxb/erq306.
|
[15] |
段启英, 田野, 鄂晓伟, 等. 南方型黑杨生长和生理特性对持续干旱和复水响应的性别差异[J]. 生态学杂志, 2020, 39(7):2140-2150.
|
|
DUAN Q Y, TIAN Y, E X W, et al. Sexual differences in growth and physiological properties of southern-type poplar clones in response to continuous drought and re-watering[J]. Chin J Ecol, 2020, 39(7):2140-2150.DOI: 10.13292/j.1000-4890.202007.024.
|
[16] |
李斌. 不同性别美洲黑杨幼苗生理生态特征对干旱胁迫的响应[D]. 杭州: 浙江农林大学, 2021.
|
|
LI B. Responses of physiological and ecological characteristics of Populus deltoides seedlings of different sexes to drought stress[D]. Hangzhou: Zhejiang A & F University, 2021.
|
[17] |
杨淑红, 宋德才, 刘艳萍, 等. 土壤干旱胁迫和复水后3个杨树品种叶片部分生理指标变化及抗旱性评价[J]. 植物资源与环境学报, 2014, 23(3):65-73.
|
|
YANG S H, SONG D C, LIU Y P, et al. Changes of some physiological indexes in leaf of three cultivars of Populus after drought stress in soil and rewatering and evaluation on their drought resistance[J]. J Plant Resour Environ, 2014, 23(3):65-73.DOI: 10.3969/j.issn.1674-7895.2014.03.09.
|
[18] |
张江涛, 杨亚峰, 刘艳, 等. 杨树品种2025及其2个芽变彩叶品种对土壤持续干旱胁迫的生理响应[J]. 东北林业大学学报, 2014, 42(11):1-6.
|
|
ZHANG J T, YANG Y F, LIU Y, et al. Physiological response of poplar 2025 and two bud mutation colored-leaf varieties to soil continuous drought stress[J]. J Northeast For Univ, 2014, 42(11):1-6.DOI: 10.3969/j.issn.1000-5382.2014.11.001.
|
[19] |
ZHANG S, CHEN L H, DUAN B L, et al. Populus cathayana males exhibit more efficient protective mechanisms than females under drought stress[J]. For Ecol Manag, 2012, 275:68-78.DOI: 10.1016/j.foreco.2012.03.014.
|
[20] |
杨舒贻, 陈晓阳, 惠文凯, 等. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报(自然科学版), 2016, 45(5):481-489.
|
|
YANG S Y, CHEN X Y, HUI W K, et al. Progress in responses of antioxidant enzyme systems in plant to environmental stresses[J]. J Fujian Agric For Univ (Nat Sci Ed), 2016, 45(5):481-489.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2016.05.001.
|
[21] |
沈燕. 欧美杂交杨(Populus deltoides × Populus nigra)雌雄植株对盐和干旱胁迫的生理生态响应[D]. 杭州: 浙江农林大学, 2018.
|
|
SHEN Y. Physiological and ecological responses of male and female Populus deltoides × Populus nigra to salt and drought stress[D]. Hangzhou: Zhejiang A & F University, 2018.
|
[22] |
裴斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J]. 生态学报, 2013, 33(5):1386-1396.
|
|
PEI B, ZHANG G C, ZHANG S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn.seedlings[J]. Acta Ecol Sin, 2013, 33(5):1386-1396.DOI: 10.5846/stxb201209281358.
|
[23] |
张琳敏, 陈坚, 沈文涛, 等. 雌雄组合模式下青杨形态和生理特征对干旱的响应差异[J]. 西华师范大学学报(自然科学版), 2019, 40(4):325-331.
|
|
ZHANG L M, CHEN J, SHEN W T, et al. Different morphological and physiological responses of Populus cathayana to drought under male and female combination mode[J]. J China West Norm Univ (Nat Sci), 2019, 40(4):325-331.DOI: 10.16246/j.issn.1673-5072.2019.04.001.
|
[24] |
PER T S, KHAN N A, REDDY P S, et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance:phytohormones,mineral nutrients and transgenics[J]. Plant Physiol Biochem, 2017, 115:126-140.DOI: 10.1016/j.plaphy.2017.03.018.
|
[25] |
CHEN L H, ZHANG S, ZHAO H X, et al. Sex-related adaptive responses to interaction of drought and salinity in Populus yunnanensis[J]. Plant Cell Environ, 2010, 33(10):1767-1778.DOI: 10.1111/j.1365-3040.2010.02182.x.
|
[26] |
刘瑞香, 杨劼, 高丽. 中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J]. 水土保持学报, 2005, 19(3):148-151,169.
|
|
LIU R X, YANG J, GAO L. Changes in contents of proline,soluble saccharin and endogenous hormone in leaves of Chinese seabuckthorn and Russian seabuckthorn under different soil water content[J]. J Soil Water Conserv, 2005, 19(3):148-151,169.DOI: 10.3321/j.issn:1009-2242.2005.03.036.
|
[27] |
张净, 王锦霞, 郭萌萌, 等. 甜菜幼苗对干旱胁迫的适应机制[J]. 中国农学通报, 2020, 36(32):1-7.
|
|
ZHANG J, WANG J X, GUO M M, et al. Beta vulgaris seedlings:adaptive mechanism to drought stress[J]. Chin Agric Sci Bull, 2020, 36(32):1-7.DOI: 10.1007/s11738-019-2815-z.
|
[28] |
唐学玺. 环境胁迫下雌雄异株植物的差异响应特征及研究进展[J]. 中国海洋大学学报(自然科学版), 2020, 50(7):74-81.
|
|
TANG X X. Characteristics and research progress of sex-specific responses to environmental stresses of dioecious plants[J]. Period Ocean Univ China, 2020, 50(7):74-81.DOI: 10.16441/j.cnki.hdxb.20190162.
|
[29] |
韩瑞宏, 卢欣石, 高桂娟, 等. 紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应[J]. 生态学报, 2007, 27(12):5229-5237.
|
|
HAN R H, LU X S, GAO G J, et al. Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress[J]. Acta Ecol Sin, 2007, 27(12):5229-5237.DOI: 10.3321/j.issn:1000-0933.2007.12.033.
|
[30] |
LAL A, EDWARDS G E. Analysis of inhibition of photosynthesis under water stress in the C4 species Amaranthus cruentus and Zea mays:electron transport,CO2 fixation and carboxylation capacity[J]. Funct Plant Biol, 1996, 23(4):403.DOI: 10.1071/pp9960403.
|
[31] |
MOHSENZADEH S, MALBOOBI M A, RAZAVI K, et al. Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit[J]. Environ Exp Bot, 2006, 56(3):314-322.DOI: 10.1016/j.envexpbot.2005.03.008.
|
[32] |
LIAO J, SONG H F, TANG D T, et al. Sexually differential tolerance to water deficiency of Salix paraplesia: a female-biased alpine willow[J]. Ecol Evol, 2019, 9(15):8450-8464.DOI: 10.1002/ece3.5175.
|
[33] |
HUGHES F M R, BARSOUM N, RICHARDS K S, et al. The response of male and female black poplar [Populus nigra L.subspecies betulifolia (Pursh.) W.Wettst.] cuttings to different water table depths and sediment types:implications for flow ma-nagement and river corridor biodiversity[J]. Hydrol Process, 2000, 14(16/17):3075-3098.DOI: 10.1002/1099-1085(200011/12)14:16/17<3075::aid-hyp135>3.0.co;2-l.
|
[34] |
常青山, 张利霞, 王建章, 等. 干旱和复水对4个芍药品种生理指标的影响及品种抗旱性评价[J]. 南京林业大学学报(自然科学版), 2018, 42(6):44-50.
|
|
CHANG Q S, ZHANG L X, WANG J Z, et al. Effects of drought stress and rewatering on physiological indexes of four Paeonia lactiflora cultivars and evaluation of their drought resistance[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):44-50.DOI: 10.3969/j.issn.1000-2006.201803030.
|
[35] |
COSTA M A, PINHEIRO H A, SANTOS C S E, et al. Lipid peroxidation,chloroplastic pigments and antioxidant strategies in Carapa guianensis (Aubl.) subjected to water-deficit and short-term rewetting[J]. Trees, 2010, 24(2):275-283.DOI: 10.1007/s00468-009-0397-x.
|