
基于全卷积神经网络和低分辨率标签的森林变化检测研究
向俊, 严恩萍, 姜镓伟, 宋亚斌, 韦维, 莫登奎
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1) : 187-195.
基于全卷积神经网络和低分辨率标签的森林变化检测研究
Research on forest change detection based on fully convolutional network and low resolution label
【目的】针对目前森林变化检测中高精度标签样本缺失或不足的问题,提出一种基于全卷积神经网络和低分辨率标签的森林变化检测方法,旨在实现林地区域内森林变化的简易快速提取。【方法】首先对获取的数据进行去云、筛选、标签融合等预处理,利用全卷积神经网络模型分别提取2020年和2021年研究区森林高分遥感影像,并评价模型精度;利用分类后比较法获取森林变化区域,得到变化结果并与目视解译结果进行对比,基于像素面积计算森林变化检测的精确率等评价指标。【结果】所用全卷积神经网络(FCN)模型在2020年森林提取结果的精确率和召回率的调和均值(F1分数)为97.09%,2021年森林提取结果的F1分数为95.96%,与分割网络模型(U-Net、FPN、LinkNet)相比更优。比较两期森林提取结果得到变化区域,森林增加与森林减少的合计变化精确率为73.30%,召回率为77.37%,F1分数为75.28%。【结论】该方法实现了基于低分辨率标签对高分遥感影像森林变化区域进行快速、准确的获取。采用少量的低分辨率标签完成森林变化检测任务,同时可为大面积林地变更调查提供参考。
【Objective】A forest change detection method based on fully convolutional networks and low resolution labels is proposed to address the problem of missing or insufficient high-precision label samples in current forest change detection, with the goal of achieving simple and rapid extraction of forest changes in forest areas. 【Method】First, the gathered data was de-clouded, screened and labeled, and then the fully convolutional network model was used to extract the forests in high-scoring remote sensing photos in the study area in 2020 and 2021, respectively, and the model accuracy was evaluated. The forest change area was calculated using the post-classification comparison method, and the findings were compared with visual interpretation results. The pixel area was used to calculate evaluation indicators, such as forest change detection accuracy. 【Result】Experiments reveal that the F1 score of the model employed in this research is 97.09% in 2020 forest extraction results and 95.96% in 2021 forest extraction results, which was the best among segmentation network models (U-Net, FPN, LinkNet). The total change precision rate of forest increase and forest decline was 73.30%, the recall rate was 77.37%, and the F1 score was 75.28% when comparing the forest extraction data from the two periods to obtain the changed area. 【Conclusion】Based on low resolution labeling, this method allows for the speedy and precise capture of forest change regions from high-resolution remote sensing pictures. To accomplish forest change detection, a small number of low-resolution labels are used, which can also serve as a reference for large-scale forestland change inquiries.
低分辨率标签 / 全卷积神经网络 / 深度学习 / 森林变化检测
low resolution label / fully convolutional network / deep learning / forest changes detection
[1] |
魏安世, 杨志刚. 森林资源年度监测小班数据自动更新技术[J]. 南京林业大学学报(自然科学版), 2010, 34(4):123-128.
|
[2] |
刘羿, 佘光辉, 刘安兴, 等. 森林资源系统自组织特征研究[J]. 南京林业大学学报(自然科学版), 2008, 32(5):51-55.
|
[3] |
李春干, 梁文海. 基于面向对象变化向量分析法的遥感影像森林变化检测[J]. 国土资源遥感, 2017, 29(3):77-84.
|
[4] |
张丽云, 赵天忠, 夏朝宗, 等. 遥感变化检测技术在林业中的应用[J]. 世界林业研究, 2016, 29(2):44-48.
|
[5] |
张祖宇, 滕永核, 秦元丽, 等. 基于U-Net模型的无人机影像数据地表覆被信息自动提取研究[J]. 广西林业科学, 2022, 51(4):516-519.
|
[6] |
王利民, 刘佳, 杨玲波, 等. 基于无人机影像的农情遥感监测应用[J]. 农业工程学报, 2013, 29(18):136-145.
|
[7] |
|
[8] |
|
[9] |
郭颖, 李增元, 陈尔学, 等. 一种改进的高空间分辨率遥感影像森林类型深度学习精细分类方法:双支FCN-8s[J]. 林业科学, 2020, 56(3):48-60.
|
[10] |
覃先林, 李晓彤, 刘树超, 等. 中国林火卫星遥感预警监测技术研究进展[J]. 遥感学报, 2020, 24(5):511-520.
|
[11] |
杨雷, 禹定峰, 高皜, 等. Sentinel-2的胶州湾水体透明度遥感反演[J]. 红外与激光工程, 2021, 50(12):515-521.
|
[12] |
陈锐志, 王磊, 李德仁, 等. 导航与遥感技术融合综述[J]. 测绘学报, 2019, 48(12):1507-1522.
|
[13] |
|
[14] |
|
[15] |
业巧林, 许平, 张冬. 基于深度学习特征和支持向量机的遥感图像分类[J]. 林业工程学报, 2019, 4(2):119-125.
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
王昶, 张永生, 王旭, 等. 基于深度学习的遥感影像变化检测方法[J]. 浙江大学学报(工学版), 2020, 54(11):2138-2148.
|
[23] |
|
[24] |
|
[25] |
马润, 胡斯勒图, 尚华哲, 等. 基于葵花-8卫星大气产品的地表下行短波辐射计算[J]. 遥感学报, 2019, 23(5):924-934.
|
[26] |
伟乐斯, 尚华哲, 胡斯勒图, 等. GF-5 DPC数据的云检测方法研究[J]. 遥感学报, 2021, 25(10):2053-2066.
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
吴胜义, 张方圆, 王飞. 林地变更调查技术方法分析与研究[J]. 林业科技, 2021, 46(2):38-41,45.
|
[35] |
徐新良, 刘纪远, 庄大方, 等. 中国林地资源时空动态特征及驱动力分析[J]. 北京林业大学学报, 2004, 26(1):41-46.
|
[36] |
夏传福, 李静, 柳钦火. 植被物候遥感监测研究进展[J]. 遥感学报, 2013, 17(1):1-16.
|
[37] |
范德芹, 赵学胜, 朱文泉, 等. 植物物候遥感监测精度影响因素研究综述[J]. 地理科学进展, 2016, 35(3):304-319.
|
/
〈 |
|
〉 |