蔷薇科花楸属白毛系的系统发生分析

马建慧, 陈昕, 耿礼阳, 汤晨茜, 魏雪妍

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4) : 25-36.

PDF(11845 KB)
PDF(11845 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4) : 25-36. DOI: 10.12302/j.issn.1000-2006.202205003
专题报道Ⅰ:郑万钧先生诞辰120周年纪念专题Ⅱ(执行主编 曹福亮、尹佟明、李维林、方升佐)

蔷薇科花楸属白毛系的系统发生分析

作者信息 +

Phylogenetic analysis of Sorbus ser. Folgnerianae (Rosaceae)

Author information +
文章历史 +

摘要

【目的】明晰花楸属白毛系(Sorbus ser. Folgnerianae)是否为单系,重建该系3种棕脉花楸(S. dunnii)、石灰花楸(S. folgneri)和江南花楸(S. hemsleyi)的系统发生关系。【方法】通过标本查阅和野外观察比较白毛系的叶、花、果特征;基于新增的白毛系种和大果花楸(S. megalocarpa,冠萼组Sect. Aria)4种5个样本的质体基因组序列特征、重复序列和序列变异,结合花楸属已发表物种的数据,以蔷薇科其他属代表种和Barbeya oleoides为外类群,分析白毛系的系统发生关系。【结果】白毛系3种在花柱数目、花药颜色、果实形态及花萼是否宿存等方面差异显著,易于鉴别。5个样本的质体基因组具有相似的结构、基因含量和组成。质体基因组长度为159 898~160 755 bp,GC含量为36.4%~36.6%。均注释到113个Unique基因(79个蛋白编码基因、30个tRNA基因、4个rRNA基因),且IR区具扩展长度不等的rps19Ψycf1Ψ 2个假基因。检测到的48~54条SSRs、36~49条散在重复序列和20个高分化度的非编码区可为花楸属物种的群体遗传学、谱系地理学和系统发生研究提供分子标记。基于ML/BI树的系统发生分析结果显示花楸属为复系,6个组各自形成单系;白毛系的3种虽然聚为一组,但水榆花楸(S. alnifolia,直脉系Ser. Alnifoliae)同棕脉花楸、石灰花楸的亲缘关系较江南花楸更近。【结论】白毛系不为单系,形态特征和质体基因组分析为理解白毛系的系统发生提供了有效途径。

Abstract

【Objective】To test whether Sorbus ser. Folgnerianae is a monophyletic group and to reconstruct the phylogenetic relationship among three species, S. dunnii, S. folgneri and S. hemsleyi.【Method】Morphological characteristics of leaves, flowers and fruits of Ser. Folgnerianae species were compared through specimen examination and field observation. Phylogenetic relationships within Ser. Folgnerianae were analyzed based on the comparison of the plastid genomes, repeat sequences, sequence variations of the five plastid genomes newly sequenced including three Ser. Folgnerianae species and S. megalocarpa from Sect. Aria, together with other plastid genomes available in this genus, using representatives of related genera in Rosaceae and Barbeya oleoides (Barbeyaceae) as the outgroups.【Result】Species of Ser. Folgnerianae can be easily distinguished from each other in the number of styles, color of anthers, fruit morphology and the persistence of calyx. Plastid genomes of five samples have a similar structure, gene content and organization. This sizes of plastid genomes range from 159 898 to 160 755 bp, with the GC contain range between 36.4% and 36.6%. All plastid genomes contain 113 unique genes (79 protein-coding genes, 30 tRNA genes and four ribosomal RNA genes). The IR region has two pseudogenes, rps19Ψand ycf1Ψ, with different extension lengths. 48-54 simple sequence repeats (SSRs), 36-49 long repeats sequences (LRSs) and 20 highly variable regions in the noncoding regions are identified as the most promising potentially variable makers for population genetics, species delimitation and phylogenetic studies. Phylogenetic analyses under ML/BI indicated that Sorbus is polyphyletic and the six sections within it are all monophyletic. Although, three sampled species of Ser. Folgnerianae are clustered in one group, S. Alnifolia of Ser. Alnifolia is more closely related to S. dunnii and S. folgneri than S. hemsleyi.【Conclusion】Sorbus ser. Folgnerianae is not monophyletic. Morphological characteristics and plastid genome analysis are effective in understanding the phylogenetic relationship in Ser. Folgnerianae.

关键词

花楸属 / 形态特征 / 质体基因组 / 系统发生

Key words

Sorbus / morphology / plastid genome / phylogeny

引用本文

导出引用
马建慧, 陈昕, 耿礼阳, . 蔷薇科花楸属白毛系的系统发生分析[J]. 南京林业大学学报(自然科学版). 2024, 48(4): 25-36 https://doi.org/10.12302/j.issn.1000-2006.202205003
MA Jianhui, CHEN Xin, GENG Liyang, et al. Phylogenetic analysis of Sorbus ser. Folgnerianae (Rosaceae)[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(4): 25-36 https://doi.org/10.12302/j.issn.1000-2006.202205003
中图分类号: S718.4   

参考文献

[1]
俞德浚, 陆玲娣. 绣线菊属, 牛筋条属, 栒子属, 花楸属, 木瓜海棠属中国植物志第36卷[M]. 北京: 科学出版社, 1974:283-344.
YU D J, LU L D. Spiraea, Dichotomanthes, Cotoneaster, Sorbus, Chaenomeles. Flora Republicae Popularis, Sinica:Vol. 36[M]. Beijing: Science Press, 1974:283-344.
[2]
KAI K, TU L J, SUN H J, et al. Extraction and purification of anthocyanins from Sorbus pohuashanensis fruits[J]. Curr Top Nutraceutical Res, 2020, 18(4):319-324.DOI: 10.37290/ctnr2641-452x.18:319-324.
[3]
LU L T, SPONGBERG S A. Sorbus Linnaeus[M]// WU Z Y, RAVEN P H, HONG D Y. Flora of China: Vol. 9. Beijing: Science Press, 2003:144-170.
[4]
PHIPPS J B, ROBERTSON K R, SMITH P G, et al. A checklist of the subfamily maloideae (Rosaceae)[J]. Can J Bot, 1990, 68(10):2209-2269.DOI: 10.1139/b90-288.
[5]
DON G. A General history of the dichlamydeous plants:Vol.2[M]. London: J G and F Rivington, 1832: 875. https://biodiversitylibrary.org/page/340686.
[6]
GABRIELIAN E. The genus Sorbus L. in western Asia and the Himalayas[M]. Yerevan: Academy of Sciences of the Armenian SSR, 1978:264+62.
[7]
ALDASORO J J, AEDO C, GARMENDIA F M, et al. Revision of Sorbus subgenera Aria and Torminaria (Rosaceae-maloideae)[J]. Syst Bot Monogr, 2004, 69:1.DOI: 10.2307/25027918.
[8]
DECAISNE M J. Mémoirs sur la famille des Pomacées[J]. Nouv arch Mus hist nat, 1874, 10:113-192.
[9]
SPANCH E. Histoire naturelle des végétaux: phanerogames Ⅱ[M]. Paris: Librairie Encyclopédique de Roret, 1834:1-160.
[10]
俞德浚, 关克俭. 中国蔷薇科植物分类之研究(一)[J]. 植物分类学报, 1963, 8(3):202-234.
YU D J, GUAN K J. Taxa nova Rosacearum sinicarum(Ⅰ)[J]. J Syst Evol, 1963, 8(3):202-234.
[11]
CAMPBELL C S, EVANS R C, MORGAN D R, et al. Phylogeny of subtribe Pyrinae (formerly the Maloideae,Rosaceae):limited resolution of a complex evolutionary history[J]. Plant Syst Evol, 2007, 266:119-145.DOI: 10.1007/s00606-007-0545-y.
[12]
POTTER D, ERIKSSON T, EVANS R C, et al. Phylogeny and classification of Rosaceae[J]. Plant Syst Evol, 2007, 266:5-43.DOI: 10.1007/s00606-007-0539-9.
[13]
LO E Y Y, DONOGHUE M J. Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae,Rosaceae)[J]. Mol Phylogenetics Evol, 2012, 63(2):230-243.DOI: 10.1016/j.ympev.2011.10.005.
[14]
ZHANG S D, JIN J J, CHEN S Y, et al. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics[J]. New Phytol, 2017, 214(3):1355-1367.DOI: 10.1111/nph.14461.
[15]
LI M, OHI-TOMA T, GAO Y D, et al. Molecular phylogenetics and historical biogeography of Sorbus sensu stricto (Rosaceae)[J]. Mol Phylogenetics Evol, 2017, 111:76-86.DOI: 10.1016/j.ympev.2017.03.018.
[16]
LIU B B, HONG D Y, ZHOU S L, et al. Phylogenomic analyses of the Photinia complex support the recognition of a new genus Phippsiomeles and the resurrection of a redefined Stranvaesia in Maleae (Rosaceae)[J]. J Syst Evol, 2019, 57(6):678-694.DOI: 10.1111/jse.12542.
[17]
ULASZEWSKI B, JANKOWSKA-WRÓBLEWSKA S, SWILO K, et al. Phylogeny of maleae (Rosaceae) based on complete chloroplast genomes supports the distinction of Aria,Chamaemespilus and Torminalis as separate Genera,different from Sorbus sp.[J]. Plants (Basel), 2021, 10(11):2534.DOI: 10.3390/plants10112534.
[18]
汤晨茜, 仇志欣, 檀超, 等. 陕甘花楸叶绿体基因组及其与爪瓣花楸的系统关系[J]. 园艺学报, 2022, 49(3):641-654.
TANG C Q, QIU Z X, TAN C, et al. Sorbus koehneana(Rosaceae):its complete chloroplast genome and phylogenetic relationship with S.unguiculata[J]. Acta Hortic Sin, 2022, 49(3):641-654.DOI: 10.16420/j.issn.0513-353x.2021-0040.
[19]
HUANG H, SHI C, LIU Y, et al. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing:genome structure and phylogenetic relationships[J]. BMC Evol Biol, 2014, 14:151.DOI: 10.1186/1471-2148-14-151.
[20]
BARRETT C F, BAKER W J, COMER J R, et al. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots[J]. New Phytol, 2016, 209(2):855-870.DOI: 10.1111/nph.13617.
[21]
BROCK J R, MANDÁKOVÁ T, MCKAIN M, et al. Chloroplast phylogenomics in Camelina (Brassicaceae) reveals multiple origins of polyploid species and the maternal lineage of C.sativa[J]. Hortic Res, 2022, 9:uhab050.DOI: 10.1093/hr/uhab050.
[22]
JIN J J, YU W B, YANG J B, et al. Get Organelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biol, 2020, 21(1):241.DOI: 10.1186/s13059-020-02154-5.
[23]
WICK R R, SCHULTZ M B, ZOBEL J, et al. Bandage:interactive visualization of de novo genome assemblies[J]. Bioinformatics, 2015, 31(20):3350-3352.DOI: 10.1093/bioinformatics/btv383.
[24]
QU X J, MOORE M J, LI D Z, et al. PGA:a software package for rapid,accurate,and flexible batch annotation of plastomes[J]. Plant Methods, 2019, 15:50.DOI: 10.1186/s13007-019-0435-7.
[25]
KEARSE M, MOIR R, WILSON A, et al. Geneious basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12):1647-1649.DOI: 10.1093/bioinformatics/bts199.
[26]
GREINER S, LEHWARK P, BOCK R. Organellar GenomeDRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Res, 2019, 47(W1):59-64.DOI: 10.1093/nar/gkz238.
[27]
BEIER S, THIEL T, MÜNCH T, et al. MISA-web:a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16):2583-2585.DOI: 10.1093/bioinformatics/btx198.
[28]
KURTZ S, CHOUDHURI J V, OHLEBUSCH E, et al. REPuter:the manifold applications of repeat analysis on a genomic scale[J]. Nucleic Acids Res, 2001, 29(22):4633-4642.DOI: 10.1093/nar/29.22.4633.
[29]
MAYOR C, BRUDNO M, SCHWARTZ J R, et al. VISTA:visualizing global DNA sequence alignments of arbitrary length[J]. Bioinformatics, 2000, 16(11):1046-1047.DOI: 10.1093/bioinformatics/16.11.1046.
[30]
AMIRYOUSEFI A, HYVÖNEN J, POCZAI P. IRscope:an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics, 2018, 34(17):3030-3031.DOI: 10.1093/bioinformatics/bty220.
[31]
KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7:improvements in performance and usability[J]. Mol Biol Evol, 2013, 30(4):772-780.DOI: 10.1093/molbev/mst010.
[32]
STAMATAKIS A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9):1312-1313.DOI: 10.1093/bioinformatics/btu033.
[33]
POSADA D, CRANDALL K A. MODELTEST:testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9):817-818.DOI: 10.1093/bioinformatics/14.9.817.
[34]
RONQUIST F, TESLENKO M, van der MARK P, et al. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Syst Biol, 2012, 61(3):539-542.DOI: 10.1093/sysbio/sys029.
[35]
WANG Q, NIU Z Y, LI J B, et al. The complete chloroplast genome sequence of the Chinese endemic species Sorbus setschwanensis (Rosaceae) and its phylogenetic analysis[J]. Nord J Bot, 2020, 38(2):e02532.DOI: 10.1111/njb.02532.
[36]
李倩, 郭其强, 高超, 等. 贵州威宁红花油茶的叶绿体基因组特征分析[J]. 园艺学报, 2020, 47(4):779-787.
LI Q, GUO Q Q, GAO C, et al. Characterization of complete chloroplast genome of Camellia weiningensis in Weining,Guizhou Province[J]. Acta Hortic Sin, 2020, 47(4):779-787.DOI: 10.16420/j.issn.0513-353x.2019-0410.
[37]
赵儒楠, 褚晓洁, 刘维, 等. 鹅耳枥属树种叶绿体基因组结构及变异分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2):25-34.
ZHAO R N, CHU X J, LIU W, et al. Structure and variation analyses of chloroplast genomes in Carpinus[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2):25-34.DOI: 10.12302/j.issn.1000-2006.202009007.
[38]
MENEZES A P A, RESENDE-MOREIRA L C, BUZATTI R S O, et al. Chloroplast genomes of Byrsonima species (Malpighiaceae):comparative analysis and screening of high divergence sequences[J]. Sci Rep, 2018, 8(1):2210.DOI: 10.1038/s41598-018-20189-4.
[39]
KIMURA T, IKETANI H, KOTOBUKI K, et al. Genetic characterization of pear varieties revealed by chloroplast DNA sequences[J]. J Hortic Sci Biotechnol, 2003, 78(2):241-247.DOI: 10.1080/14620316.2003.11511612.
[40]
ROH M S, CHEONG E J, CHOI I Y, et al. Characterization of wild Prunus yedoensis analyzed by inter-simple sequence repeat and chloroplast DNA[J]. Sci Hortic, 2007, 114(2):121-128.DOI: 10.1016/j.scienta.2007.06.005.
[41]
YAZBEK M, OH S-H. Peaches and almonds:phylogeny of Prunus subg. amygdalus (Rosaceae) based on DNA sequences and morphology[J]. Plant Syst Evol, 2013, 299(8):1403-1418.DOI: 10.1007/s00606-013-0802-1.
[42]
THODE V A, LOHMANN L G. Comparative chloroplast genomics at low taxonomic levels:a case study using Amphilophium (Bignonieae,Bignoniaceae)[J]. Front Plant Sci, 2019, 10:796.DOI: 10.3389/fpls.2019.00796.
[43]
WANG Y H, WANG S, LIU Y L, et al. Chloroplast genome variation and phylogenetic relationships of Atractylodes species[J]. BMC Genomics, 2021, 22(1):103.DOI: 10.1186/s12864-021-07394-8.
[44]
SUN J H, SHI S, LI J L, et al. Phylogeny of maleae (Rosaceae) based on multiple chloroplast regions:implications to genera circumscription[J]. Biomed Res Int, 2018, 2018:7627191.DOI: 10.1155/2018/7627191.
[45]
LI Q Y, GUO W, LIAO W B, et al. Generic limits of Pyrinae:insights from nuclear ribosomal DNA sequences[J]. Bot Stud, 2012, 53(1):151-164.
[46]
QIU J, CHEN L, YI X G, et al. The complete chloroplast genome of Sorbus folgneri (C.K.Schneid.) Rehder (Rosaceae)[J]. Mitochondrial DNA B, 2019, 4(1):728-729.DOI: 10.1080/23802359.2018.1558127.

基金

江苏省自然科学基金项目(BK20141472)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 吴祝华
PDF(11845 KB)

Accesses

Citation

Detail

段落导航
相关文章

/