[1] |
World health organization. Ambient air pollution:a global assessment of exposure and burden of disease[M]. Geneva: World Health Organization, 2016.
|
[2] |
TAO R J, CAO W J, LI M H, et al. PM2.5 compromises antiviral immunity in influenza infection by inhibiting activation of NLRP3 inflammasome and expression of interferon-Β[J]. Mol Immunol, 2020, 125:178-186.DOI: 10.1016/j.molimm.2020.07.001.
|
[3] |
DE MARCO A, AMOATEY P, KHANIABADI Y O, et al. Mortality and morbidity for cardiopulmonary diseases attributed to PM2.5 exposure in the metropolis of Rome,Italy[J]. Eur J Intern Med, 2018, 57:49-57.DOI: 10.1016/j.ejim.2018.07.027.
|
[4] |
GUO L C, LV Z L, MA W J, et al. Contribution of heavy metals in PM2.5 to cardiovascular disease mortality risk,a case study in Guangzhou,China[J]. Chemosphere, 2022, 297:134102.DOI: 10.1016/j.chemosphere.2022.134102.
|
[5] |
施婷婷, 王帅, 杨立娟, 等. 中国华东地区PM2.5浓度时空变化及与景观格局关联研究[J]. 遥感技术与应用, 2024, 39(2): 435-446.
|
|
SHI T T, WANG S, YANG L J, et al. The spatial-temporal change of PM2.5 concentration and its relationship with landscape pattern in East China[J]. Remote Sensing Technology and Application, 2024, 39(2): 435-446.DOI:10.11873/j.issn.1004-0323.2024.2.0435.
|
[6] |
汪伟舵, 吴涛涛, 张子振. 基于ARIMA模型的杭州市PM2.5预测[J]. 哈尔滨师范大学自然科学学报, 2018, 34(3):49-55.
|
|
WANG W D, WU T T, ZHANG Z Z. Forecast of PM2.5 in Hangzhou based on ARIMA model[J]. Nat Sci J Harbin Norm Univ, 2018, 34(3):49-55.DOI: 10.3969/j.issn.1000-5617.2018.03.009.
|
[7] |
CHYON F A, SUMAN M N H, FAHIM M R I, et al. Time series analysis and predicting COVID-19 affected patients by ARIMA model using machine learning[J]. J Virol Methods, 2022, 301:114433.DOI: 10.1016/j.jviromet.2021.114433.
|
[8] |
杨茜雯, 朱萌. 基于ARIMA模型对扬州市PM2.5的分析和预测[J]. 黑龙江环境通报, 2022, 35(1):35-37,40.
|
|
YANG Q W, ZHU M. Analysis and prediction of PM2.5 in Yangzhou based on ARIMA model[J]. Heilongjiang Environ J, 2022, 35(1):35-37,40.DOI: 10.3969/j.issn.1674-263X.2022.01.012.
|
[9] |
彭斯俊, 沈加超, 朱雪. 基于ARIMA模型的PM2.5预测[J]. 安全与环境工程, 2014, 21(6): 125-128.
|
|
PENG S J, SHEN J C, ZHU X, et al. Forecast of PM2.5 based on the ARIMA model[J]. Safety and Environ Engine, 2014, 21(6): 125-128. DOI: 10.13578/j.cnki.issn.1671-1556.2014.06.023.
|
[10] |
严宙宁, 牟敬锋, 赵星, 等. 基于ARIMA模型的深圳市大气PM2.5浓度时间序列预测分析[J]. 现代预防医学, 2018, 45(2):220-223,242.
|
|
YAN Z N, MOU J F, ZHAO X, et al. The time series prediction of PM2.5 in Shenzhen based on ARIMA model[J]. Mod Prev Med, 2018, 45(2):220-223,242.
|
[11] |
谢心庆, 郑薇, 开璇, 等. 基于时间序列和多元方法的乌鲁木齐PM2.5浓度分析[J]. 云南大学学报(自然科学版), 2016, 38(4):595-601.
|
|
XIE X Q, ZHENG W, KAI X, et al. An analysis of PM2.5 concentration based on time sequence and multivariate methods in Urumqi City[J]. J Yunnan Univ (Nat Sci Ed), 2016, 38(4):595-601.DOI: 10.7540/j.ynu.20150789.
|
[12] |
余辉, 袁晶, 于旭耀, 等. 基于ARMAX的PM2.5小时浓度跟踪预测模型[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(1):105-111.
|
|
YU H, YUAN J, YU X Y, et al. Tracking prediction model for PM2.5 hourly concentration based on ARMAX[J]. J Tianjin Univ (Sci Technol), 2017, 50(1):105-111.DOI: 10.11784/tdxbz201504033.
|
[13] |
吴明晖, 张广洁, 金苍宏. 基于多模态信息融合的时间序列预测模型[J]. 计算机应用, 2022, 42(8):2326-2332.
|
|
WU M H, ZHANG G J, JIN C H. Time series prediction model based on multimodal information fusion[J]. J Comput Appl, 2022, 42(8):2326-2332.DOI: 10.11772/j.issn.1001-9081.2021061053.
|
[14] |
何泽森. 移动APP日活跃用户量预测研究[D]. 杭州: 浙江工商大学, 2018.
|
|
HE Z S. Research on forecasting the mobile APP daily active user[D]. Hangzhou: Zhejiang Gongshang University, 2018.
|
[15] |
WONGSATHAN R, CHANKHAM S. Improvement on PM-10 forecast by using hybrid ARIMAX and neural networks model for the summer season in Chiang Mai[J]. Procedia Comput Sci, 2016, 86:277-280.DOI: 10.1016/j.procs.2016.05.062.
|
[16] |
ALADAG E. Forecasting of particulate matter with a hybrid ARIMA model based on wavelet transformation and seasonal adjustment[J]. Urban Clim, 2021, 39:100930.DOI: 10.1016/j.uclim.2021.100930.
|
[17] |
张棋. 基于机器学习的中国气象干旱时空预测研究[D]. 郑州: 华北水利水电大学, 2021.
|
|
ZHANG Q. Study of meteorological drought spatiotemporal forecast methods in China based on machine learning[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021.
|
[18] |
LU C G, ZHANG S A, XUE D, et al. Improved estimation of coalbed methane content using the revised estimate of depth and CatBoost algorithm:a case study from southern Sichuan basin,China[J]. Comput Geosci, 2022, 158:104973.DOI: 10.1016/j.cageo.2021.104973.
|
[19] |
DING Y, CHEN Z Q, LU W F, et al. A CatBoost approach with wavelet decomposition to improve satellite-derived high-resolution PM2.5 estimates in Beijing-Tianjin-Hebei[J]. Atmos Environ, 2021, 249:118212.DOI: 10.1016/j.atmosenv.2021.118212.
|
[20] |
OMIDVARNIA A, MESBAH M, PEDERSEN M, et al. Range entropy:a bridge between signal complexity and self-similarity[J]. Entropy (Basel), 2018, 20(12):962.DOI: 10.3390/e20120962.
|
[21] |
王涯鑫, 李捷辉, 王健. 甲醇-柴油双燃料发动机甲醇泄漏故障预诊断研究[J]. 车用发动机, 2022(1):86-92.
|
|
WANG Y X, LI J H, WANG J. Pre-diagnosis of methanol leakage fault for methanol-diesel dual fuel engine[J]. Veh Engine, 2022(1):86-92.DOI: 10.3969/j.issn.1001-2222.2022.01.014.
|
[22] |
ZHENG J M, HU M X, WANG C H, et al. Spatial patterns of residents’ daily activity space and its influencing factors based on the CatBoost model:a case study of Nanjing,China[J]. Front Archit Res, 2022, 11(6):1193-1204.DOI: 10.1016/j.foar.2022.04.003.
|
[23] |
TAYLOR K E. Summarizing multiple aspects of model performance in a single diagram[J]. J Geophys Res, 2001, 106(D7):7183-7192.DOI: 10.1029/2000jd900719.
|