南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4): 132-140.doi: 10.12302/j.issn.1000-2006.202205014
所属专题: 专题报道Ⅲ:智慧林业之森林可视化研究
• 专题报道Ⅲ:智慧林业之森林可视化研究(执行主编 李凤日、张怀清、曹林) • 上一篇 下一篇
收稿日期:
2022-05-11
修回日期:
2022-08-07
出版日期:
2024-07-30
发布日期:
2024-08-05
通讯作者:
*李明阳(lmy196727@126.com),教授。作者简介:
田春红(1786767729@qq.com)。
基金资助:
TIAN Chunhong(), LI Mingyang*(), LI Tao, LI Dengpan, TIAN Lei
Received:
2022-05-11
Revised:
2022-08-07
Online:
2024-07-30
Published:
2024-08-05
摘要:
【目的】利用Sentinel-1 & 2主被动遥感数据结合森林冠层高度,对区域森林净初级生产力(NPP)进行高效、准确的估测,为森林精准经营措施以及“双碳”目标的制定提供科学依据。【方法】以南方重点林区资兴市为研究区,基于Sentinel-1和Sentinel-2主被动遥感数据,采用了多元逐步回归、人工神经网络、K最邻近、随机森林4种模型估算NPP。在此基础上加入了Sentinel-1通过InSAR与SRTM DEM差分得到的冠层高度,分析其对NPP估测精度的影响。【结果】①研究区2019年的森林NPP均值为7.79 t/hm2,呈中南部高、西北低的空间分布特征。②4种模型中,主被动遥感结合估测NPP的精度均高于单源遥感方式;随机森林估测区域森林NPP的精度最高,模型表现最好。③加入冠层高度可一定程度提高森林NPP估测精度,R2从0.70提高到了0.75。【结论】基于Sentinel 1 & 2主被动遥感数据并结合DEM差分法获取的冠层高度因子,可有效提高NPP估测精度。
中图分类号:
田春红,李明阳,李陶,等. 基于Sentinel 1 & 2主被动遥感数据和冠层高度的森林净初级生产力估测[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 132-140.
TIAN Chunhong, LI Mingyang, LI Tao, LI Dengpan, TIAN Lei. Estimation of forest net primary productivity based on sentinel active and passive remote sensing data and canopy height[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(4): 132-140.DOI: 10.12302/j.issn.1000-2006.202205014.
表1
论文中使用的遥感数据集信息"
数据集 dataset | 说明 description | 来源 source | 空间分辨率/m×m spatial scale | 日期 date |
---|---|---|---|---|
Sentinel-1 | 干涉宽幅下的地距多视产品 IW Level-1 GRD | 欧洲航民局(欧空局)ESA ( | 10×10 | 2019.08.05 |
干涉宽幅下的地距单视产品 IW Level-1 SLC | 2.3×14.1 | 2019.07.24、 2019.08.05 | ||
Sentinel-2 | MAI Level-1C产品 | 欧空局ESA ( | 10×10 | 2019.09.20 |
航天飞机雷达地形 测绘任务SRTM | V4.1 DEM产品 | 美国地质调查局USGS ( | 30×30 | 2000.02.11—2000.02.22 |
冰、云和陆地海拔 卫星数据ICESat-2 | 第5版全球定位 光子数据ATL03 | 美国国家冰雪数据中心NSIDC ( | 17(足印尺寸) | 2018.10.13—2019.12.31 |
第5版土地和植被 高度数据ATL08 | 2018.10.13—2019.12.31 | |||
冠层高度产品 global forest canopy height | NASIA数据范围 | 全球陆地分析与发现实验室GLAD ( | 30×30 | 2019 |
表2
样地NPP总体情况"
森林类型 forest type | 样地数 number of plots | 森林净初级生产力/ (t·hm-2·a-1) NPP | |||
---|---|---|---|---|---|
最小值 min | 均值 mean | 最大值 max | 标准差 SD | ||
针叶林 coniferous forest | 18 | 1.05 | 9.60 | 18.42 | 4.94 |
阔叶林 broad-leaved forest | 25 | 4.84 | 15.50 | 36.87 | 8.89 |
针阔混交林 mixed coniferous and broad-leaved forest | 6 | 7.14 | 11.93 | 15.47 | 2.70 |
竹林bamboo forest | 6 | 7.51 | 15.62 | 28.69 | 8.29 |
灌木林shrubs forest | 16 | 0.59 | 7.42 | 10.89 | 4.12 |
总计total | 71 | 0.59 | 11.98 | 36.87 | 7.16 |
表3
不同遥感数据源的NPP估测模型特征变量"
数据源 data source | 模型 model | 特征变量 characteristic variable |
---|---|---|
主动遥感 Sentinel-1 | SWR | β、VH_DIS、VV_COR |
ANN、KNN、RF | α、VV_COR、β、VV_CON、VH_VAR、VH_CON、DEM、VV_HOM、VV_DIS、VH_MEA、VH_COR、VH_DIS | |
被动遥感 Sentinel-2 | SWR | B8_VAR、B7_VAR、B5_MEA、B6_ASM、B1_COR、Cv、B5_COR、TSAVI、B9_ENT、B5_CON |
ANN、KNN、RF | B3、B12_MEA、B11_MEA、α、B2、MTCI、B8a_MEA、B3_MEA、B11_ENT、B4_MEA、ARVI、B1_ENT | |
主被动遥感结合 Sentinel-1 & 2 | SWR | B8_VAR、B7_VAR、VH_DIS、B5_MEA、B6_ASM、TSAVI、VH |
ANN、KNN、RF | B12_MEA、VV_DIS、(VH-VV)/(VH+VV)、WDVI、B11_MEA、B5_MEA、B3、B3_MEA、VV_COR、VV_HOM、DVI、B2 |
表4
不同模型主被动遥感估测NPP的精度比较"
数据源 data source | 多元逐步回归(SWR) multiple stepwise regression | 人工神经网络(ANN) artificial neural network | K最近邻算法(KNN) K nearest neighbors | 随机森林(RF) random forest | ||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE/ (t·hm-2·a-1) | R2 | RMSE/ (t·hm-2·a-1) | R2 | RMSE/ (t·hm-2·a-1) | R2 | RMSE/ (t·hm-2·a-1) | |
Sentinel-1 | 0.26 | 8.44 | 0.50 | 9.36 | 0.57 | 5.28 | 0.66 | 5.26 |
Sentinel-2 | 0.40 | 10.06 | 0.52 | 8.16 | 0.60 | 4.64 | 0.67 | 5.08 |
Sentinel-1 & 2 | 0.58 | 8.26 | 0.55 | 11.29 | 0.64 | 4.82 | 0.70 | 5.11 |
[1] | 陈利军, 刘高焕, 励惠国. 中国植被净第一性生产力遥感动态监测[J]. 遥感学报, 2002, 6(2):129-135. |
CHEN L J, LIU G H, LI H G. Estimating net primary productivity of’ terrestrial vegetation in China using remote sensing[J]. J Remote Sens, 2002, 6(2):129-135, 164. | |
[2] | 刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20(5):733-740. |
LIU G H, FU B J, FANG J Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecol Sin, 2000, 20(5):733-740. DOI: 10.3321/j.issn:1000-0933.2000.05.004. | |
[3] | 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3):413-424. |
ZHU W Q, PAN Y Z, ZHANG J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing[J]. J Plant Ecol, 2007, 31(3):413-424. DOI: 10.17521/cjpe.2007.0050. | |
[4] | 郭睿妍, 田佳, 杨志玲, 等. 基于GEE平台的黄河流域森林植被净初级生产力时空变化特征[J]. 生态学报, 2022, 42(13):5437-5445. |
GUO R Y, TIAN J, YANG Z L, et al. Spatio-temporal variation characteristics of forest net primary productivity in the Yellow River basin based on Google Earth Engine cloud platform[J]. Acta Ecol Sin, 2022, 42(13):5437-5445. DOI: 10.5846/stxb202104271113. | |
[5] | RAFIQUE R, ZHAO F, DE JONG R, et al. Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: a model-data comparison[J]. Remote Sens, 2016, 8(3):177. DOI: 10.3390/rs8030177. |
[6] | SANNIGRAHI S. Modeling terrestrial ecosystem productivity of an estuarine ecosystem in the Sundarban Biosphere region,India using seven ecosystem models[J]. Ecol Model, 2017, 356:73-90. DOI: 10.1016/j.ecolmodel.2017.03.003. |
[7] | 林文鹏, 王臣立, 赵敏, 等. 基于森林清查和遥感的城市森林净初级生产力估算[J]. 生态环境, 2008, 17(2):766-770. |
LIN W P, WANG C L, ZHAO M, et al. Estimation urban forests NPP based on forest inventory data and remote sensing[J]. Ecol Environ, 2008, 17(2):766-770. DOI: 10.16258/j.cnki.1674-5906.2008.02.076. | |
[8] | TAN K, ZHOU S Y, LI E Z, et al. Assessing the impact of urbanization on net primary productivity using multi-scale remote sensing data: a case study of Xuzhou, China[J]. Front Earth Sci. 2015, 9(2):319-329. DOI: 10.1007/s11707-014-0454-7. |
[9] | REICH P B, TURNER D P, BOLSTAD P. An approach to spatially distributed modeling of net primary production (NPP) at the landscape scale and its application in validation of EOS NPP products[J]. Remote Sens Environ, 1999, 70(1):69-81. DOI: 10.1016/S0034-4257(99)00058-9. |
[10] | SHANG E P, XU E Q, ZHANG H Q, et al. Analysis of spatiotemporal dynamics of the Chinese vegetation net primary productivity from the 1960s to the 2000s[J]. Remote Sens, 2018, 10(6):860. DOI: 10.3390/rs10060860. |
[11] | 李陶, 李明阳, 钱春花. 结合冠层密度的森林净初级生产力遥感估测[J]. 南京林业大学学报(自然科学版), 2021, 45(5):153-160. |
LI T, LI M Y, QIAN C H. Combining crown density to estimate forest net primary productivity by using remote sensing data[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(5):153-160. DOI: 10.12302/j.issn.1000-2006.202008007. | |
[12] | MA H, SONG J L, WANG J D, et al. Comparison of the inversion ability in extrapolating forest canopy height by integration of LiDAR data and different optical remote sensing products[C]// 2012 IEEE International Geoscience and Remote Sensing Symposium.Munich, Germany: IEEE, 2012:3363-3366. DOI: 10.1109/IGARSS.2012.6350700. |
[13] | 李登秋. 亚热带森林碳收支变化特征及其成因模拟分析[D]. 南京: 南京大学, 2014. |
LI D Q. Variations of forest carbon budget and underlying driving forces in the subtropical area of China: a case study for Jiangxi Province[D]. Nanjing: Nanjing University, 2014. | |
[14] | 史瑶. 基于MSPA和MCR模型的资兴市生态网络构建研究[D]. 长沙: 中南林业科技大学, 2019. |
SHI Y. Ecological network construction and research using MSPA and MCR models in Zixing City, Hunan Province, China[D]. Changsha: Central South University of Forestry & Technology, 2019. | |
[15] | 李轲敏, 傅丽华, 郭湘. 资兴市自然保护地空间冲突与重构研究[J]. 湖南工业大学学报, 2022, 36(2):86-94. |
LI K M, FU L H, GUO X. Research on spatial conflict and reconstruction of protected natural areas in Zixing City[J]. J Hunan Univ Technol, 2022, 36(2):86-94. DOI: 10.3969/j.issn.1673-9833.2022.02.012. | |
[16] | 余超, 王斌, 刘华, 等. 中国森林植被净生产量及平均生产力动态变化分析[J]. 林业科学研究, 2014, 27(4):542-550. |
YU C, WANG B, LIU H, et al. Dynamic change of net production and mean net primary productivity of China’s forests[J]. For Res, 2014, 27(4):542-550. DOI: 10.13275/j.cnki.lykxyj.2014.04.016. | |
[17] | 温小荣, 蒋丽秀, 刘磊, 等. 江苏省森林生物量与生产力估算及空间分布格局分析[J]. 西北林学院学报, 2014, 29(1):36-40. |
WEN X R, JIANG L X, LIU L, et al. Estimation of forest biomass, net primary production and analysis on spatial distribution pattern for Jiangsu Province[J]. J Northwest For Univ, 2014, 29(1):36-40. DOI: 10.3969/j.issn.1001-7461.2014.01.07. | |
[18] | 董佳臣, 倪文俭, 张志玉, 等. ICESat-2植被冠层高度和地表高程数据产品用于森林高度提取的效果评价[J]. 遥感学报, 2021, 25(6):1294-1307. |
DONG J C, NI W J, ZHANG Z Y, et al. Performance of ICESat-2 ATL08 product on the estimation of forest height by referencing to small footprint LiDAR data[J]. Natl Remote Sens Bull, 2021, 25(6):1294-1307. DOI: 10.11834/jrs.202194491. | |
[19] | 孙美美. 黄土丘陵区三种典型森林类型生产力形成及影响因素[D]. 杨凌: 西北农林科技大学, 2021. |
SUN M M. Net primary productivity and its influencing factors in three typical forest types in the loess hilly region[D]. Yangling: Northwest A&F University, 2021. | |
[20] | 黄昕. 高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D]. 武汉: 武汉大学, 2009. |
HUANG X. Multiscale texture and shape feature extraction and object-oriented classification for very high resolution remotely sensed imagery[D]. Wuhan: Wuhan University, 2009. | |
[21] | 刘俊, 毕华兴, 朱沛林, 等. 基于ALOS遥感数据纹理及纹理指数的柞树蓄积量估测[J]. 农业机械学报, 2014, 45(7):245-254. |
LIU J, BI H X, ZHU P L, et al. Estimating stand volume of Xylosma racemosum forest based on texture parameters and derivative texture indices of ALOS imagery[J]. Trans Chin Soc Agric Mach, 2014, 45(7):245-254. DOI: 10.6041/j.issn.1000-1298.2014.07.038 | |
[22] | 陈琳. 基于光学和干涉雷达的森林地上生物量遥感估算模型研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2020. |
CHEN L. Modeling of forest aboveground biomass based on optical and interferometric synthetic aperture radar[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2020. | |
[23] | KENYI L W, DUBAYAH R, HOFTON M, et al. Comparative analysis of SRTM-NED vegetation canopy height to LIDAR-derived vegetation canopy metrics[J]. Int J Remote Sens, 2009, 30(11):2797-2811. DOI: 10.1080/01431160802555853. |
[24] | NI W J, GUO Z F, SUN G Q, et al. Investigation of forest height Retrieval using SRTM-DEM and ASTER-GDEM[C]// 30th IEEE International Geoscience and Remote Sensing Symposium (IGARSS) on Remote Sensing-Global Vision for Local Action: 20102111- 2114. DOI: 10.1109/IGARSS.2010.5651443. |
[25] | BALLHORN U, JUBANSKI J, SIEGERT F. ICESat/GLAS data as a measurement tool for peatland topography and peat swamp forest biomass in Kalimantan, Indonesia[J]. Remote Sens, 2011, 3(9):1957-1982. DOI: 10.3390/rs3091957. |
[26] | 范文义, 张海玉, 于颖, 等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报, 2011, 35(4):402-410. |
FAN W Y, ZHANG H Y, YU Y, et al. Comparison of three models of forest biomass estimation[J]. Chin J Plant Ecol, 2011, 35(4):402-410. DOI: 10.3724/SP.J.1258.2011.00402. | |
[27] | 陈尔学, 李增元, 武红敢, 等. 基于k-NN和Landsat数据的小面积统计单元森林蓄积估测方法[J]. 林业科学研究, 2008, 21(6):745-750. |
CHEN E X, LI Z Y, WU H G, et al. Forest volume estimation method for small areas based on k-NN and Landsat data[J]. For Res, 2008, 21(6):745-750. DOI: 10.3321/j.issn:1001-1498.2008.06.002. | |
[28] | LI T, LI M Y, REN F, et al. Estimation and spatio-temporal change analysis of NPP in subtropical forests: a case study of Shaoguan, Guangdong, China[J]. Remote Sens, 2022, 14(11):2541.DOI: 10.3390/rs14112541. |
[29] | 李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报, 2013, 50(4):1190-1197. |
LI X H. Using “random forest” for classification and regression[J]. Chin J Appl Entomol, 2013, 50(4):1190-1197.DOI: 10.7679/j.issn.2095-1353.2013.163. | |
[30] | BOLÓN-CANEDO V, SÁNCHEZ-MAROÑO N, ALONSO-BETANZOS A. Feature selection for high-dimensional data[J]. Prog Artif Intell, 2016, 5(2):65-75.DOI: 10.1007/s13748-015-0080-y. |
[31] | 潘磊, 孙玉军, 王轶夫, 等. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2020, 44(3):149-156. |
PAN L, SUN Y J, WANG Y F, et al. Estimation of aboveground biomass in a Chinese fir(Cunninghamia lanceolata)forest combining data of Sentinel-1 and Sentinel-2[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):149-156.DOI: 10.3969/j.issn.1000-2006.201811012. | |
[32] | SERVIA H, PAREETH S, MICHAILOVSKY C I, et al. Operational framework to predict field level crop biomass using remote sensing and data driven models[J]. Int J Appl Earth Obs Geoinf, 2022, 108:102725.DOI: 10.1016/j.jag.2022.102725. |
[33] | 高志强, 刘纪远. 中国植被净生产力的比较研究[J]. 科学通报, 2008, 53(3):317-326. |
GAO Z Q, LIU J Y. Comparative study on net productivity of vegetation in China[J]. Chin Sci Bull, 2008, 53(3):317-326. DOI: 10.1360/csb2008-53-3-317. | |
[34] | 陈晓玲, 曾永年. 亚热带山地丘陵区植被NPP时空变化及其与气候因子的关系:以湖南省为例[J]. 地理学报, 2016, 71(1):35-48. |
CHEN X L, ZENG Y N. Spatial and temporal variability of the net primary production (NPP) and its relationship with climate factors in subtropical mountainous and hilly regions of China: a case study in Hunan Province[J]. Acta Geogr Sin, 2016, 71(1):35-48.DOI: 10.11821/dlxb201601003. | |
[35] | 闫妍, 覃金华, 房磊, 等. 湖南省植被净初级生产力时空动态及其与气候因素的关系[J]. 生态学杂志, 2022, 41(8):1535-1544. |
YAN Y, QIN J H, FANG L, et al. Spatiotemporal dynamics of vegetation net primary productivity and its relationships with climatic factors in Hunan Province[J]. Chin J Ecol, 2022, 41(8):1535-1544. DOI: 10.13292/j.1000-4890.202208.015. | |
[36] | 江源通. 湘江流域植被NPP时空动态及影响因素分析[D]. 湘潭: 湖南科技大学, 2015. |
JIANG Y T. Analysis of spatio-temporal dynamics and factors influencing vegetation NPP in Xiangjiang River basin[D]. Xiangtan: Hunan University of Science and Technology, 2015. | |
[37] | 张骏. 中国中亚热带东部森林生态系统生产力和碳储量研究[D]. 杭州: 浙江大学, 2008. |
ZHANG J. NPP and carbon storage in subtropical forest,eastern China[D]. Hangzhou: Zhejiang University, 2008. |
[1] | 韩森, 阮仁宗, 傅巧妮, 许捍卫, 衡雪彪. 基于Sentinel-1和Sentinel-2影像的洪泽湖国家湿地公园水生植被信息提取[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 19-26. |
[2] | 王艳芳, 谭露, 郭红丽, 吴芳, 齐斐, 蒙雯婷, 徐雁南. 基于多源遥感数据的溧阳市林地植被覆盖度时空差异研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 183-191. |
[3] | 曹林, 周凯, 申鑫, 杨晓明, 曹福亮, 汪贵斌. 智慧林业发展现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 83-95. |
[4] | 李陶, 李明阳, 钱春花. 结合冠层密度的森林净初级生产力遥感估测[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 153-160. |
[5] | 赵颖慧, 郭新龙, 甄贞. 基于光学-ALS变量组合和非参数模型的天然次生林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 49-57. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||