染色质转座酶可及性测序及其在木本植物中的应用前景

王子玥, 甄艳, 刘光欣, 席梦利

南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 1-10.

PDF(1828 KB)
PDF(1828 KB)
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (5) : 1-10. DOI: 10.12302/j.issn.1000-2006.202205024
林学前沿

染色质转座酶可及性测序及其在木本植物中的应用前景

作者信息 +

Assay for transposase-accessible chromatin with high-throughput sequencing and its application prospect in woody plants

Author information +
文章历史 +

摘要

染色质转座酶可及性测序 (assay for transposase-accessible chromatin with high-throughput sequencing, ATAC-seq)是2013年在人类免疫细胞中建立的用于研究表观遗传调控的重要技术。该技术已在人类及小鼠等模式动物的基因组调控元件鉴定、转录因子结合位点识别及转录调控机制的解析等研究领域发挥了重要作用。然而,ATAC-seq技术在植物领域中的研究应用还处于起步阶段,相关研究主要集中在拟南芥和水稻等模式植物中。笔者主要概述了ATAC-seq技术在植物中的应用,包括染色质可及性图谱绘制、抗逆机制解析、表观修饰鉴定及调控元件识别等领域的研究进展,并进一步阐述了ATAC-seq在木本植物中的应用潜力,以推动ATAC-seq技术在木本植物表观基因组学研究中的应用。

Abstract

Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) is an important technique established in 2013 in human immune cells to study epigenetic regulation. This technique has been used in the identification of genomic regulatory elements, binding sites of transcription factors and analysis of transcriptional regulation mechanism in human and mouse model animals. However, the application of ATAC-seq technique in plants is still in its infancy, and related studies mainly focus on model plants such as Arabidopsis and rice. In this review, we discuss the application of ATAC-seq in plants, including chromatin accessibility sites mapping, stress resistance mechanisms revealing, epigenetic modification and regulatory elements identification. Furthermore, we look at the prospects of applying ATAC-seq in woody plant epigenomics so as to promote its application in woody plant epigenomics research.

关键词

染色质转座酶可及性测序 / 木本植物 / 染色质可及性 / 表观基因组学

Key words

assay for transposase-accessible chromatin with high-throughput sequencing(ATAC-seq) / woody plants / chromatin accessibility / epigenomic

引用本文

导出引用
王子玥, 甄艳, 刘光欣, . 染色质转座酶可及性测序及其在木本植物中的应用前景[J]. 南京林业大学学报(自然科学版). 2022, 46(5): 1-10 https://doi.org/10.12302/j.issn.1000-2006.202205024
WANG Ziyue, ZHEN Yan, LIU Guangxin, et al. Assay for transposase-accessible chromatin with high-throughput sequencing and its application prospect in woody plants[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(5): 1-10 https://doi.org/10.12302/j.issn.1000-2006.202205024
中图分类号: S722;Q756   

参考文献

[1]
KORNBERG R D. Chromatin structure:a repeating unit of histones and DNA[J]. Science, 1974, 184(4139):868-871.DOI:10.1126/science.184.4139.868.
[2]
康争春, 闫飞虎, 王振, 等. 染色质开放状态对结肠癌相关功能通路影响的生物信息学分析[J]. 第二军医大学学报, 2021, 42(7):762-769.
KANG Z C, YAN F H, WANG Z, et al. Effect of chromatin opening state on colon cancer-related functional pathways: a bioinformatics analysis[J]. Acad J Second Mil Med Univ, 2021, 42(7):762-769.DOI:10.16781/j.0258-879x.2021.07.0762.
[3]
JENUWEIN T, FORRESTER W C, FERNÁNDEZ-HERRERO L A, et al. Extension of chromatin accessibility by nuclear matrix attachment regions[J]. Nature, 1997, 385(6613):269-272.DOI:10.1038/385269a0.
[4]
STALDER J, LARSEN A, ENGEL J D, et al. Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I[J]. Cell, 1980, 20(2):451-460.DOI:10.1016/0092-8674(80)90631-5.
[5]
SAKAI A, WEISER C J. Freezing resistance of trees in north America with reference to tree regions[J]. Ecology, 1973, 54(1):118-126.DOI:10.2307/1934380.
[6]
JIANG J M. The ‘dark matter’ in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin[J]. Curr Opin Plant Biol, 2015, 24:17-23.DOI:10.1016/j.pbi.2015.01.005.
[7]
ZHANG W, ZHANG T, WU Y, et al. Open chromatin in plant genomes[J]. Cytogenet Genome Res, 2014, 143(1/2/3):18-27.DOI:10.1159/000362827.
[8]
GROSS D S, GARRARD W T. Nuclease hypersensitive sites in chromatin[J]. Annu Rev Biochem, 1988, 57:159-197.DOI:10.1146/annurev.bi.57.070188.001111.
[9]
BOYLE A P, DAVIS S, SHULHA H P, et al. High-resolution mapping and characterization of open chromatin across the genome[J]. Cell, 2008, 132(2):311-322.DOI:10.1016/j.cell.2007.12.014.
[10]
GIRESI P G, KIM J, MCDANIELL R M, et al. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin[J]. Genome Res, 2007, 17(6):877-885.DOI:10.1101/gr.5533506.
[11]
SCHONES D E, CUI K R, CUDDAPAH S, et al. Dynamic regulation of nucleosome positioning in the human genome[J]. Cell, 2008, 132(5):887-898.DOI:10.1016/j.cell.2008.02.022.
[12]
KELLY T K, LIU Y P, LAY F D, et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules[J]. Genome Res, 2012, 22(12):2497-2506.DOI:10.1101/gr.143008.112.
[13]
BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin,DNA-binding proteins and nucleosome position[J]. Nat Methods, 2013, 10(12):1213-1218.DOI:10.1038/nmeth.2688.
[14]
OH K S, HA J S, BAEK S, et al. XL-DNase-seq: improved footprinting of dynamic transcription factors[J]. Epigenetics Chromatin, 2019, 12(1):30.DOI:10.1186/s13072-019-0277-6.
[15]
HUANG C R, BURNS K H, BOEKE J D. Active transposition in genomes[J]. Annu Rev Genet, 2012, 46:651-675.DOI:10.1146/annurev-genet-110711-155616.
[16]
SUN Y Y, MIAO N, SUN T. Detect accessible chromatin using ATAC-sequencing,from principle to applications[J]. Hereditas, 2019, 156(1):29.DOI:10.1186/s41065-019-0105-9.
[17]
WANG F X, SHANG G D, WU L Y, et al. Protocol for assaying chromatin accessibility using ATAC-seq in plants[J]. STAR Protoc, 2021, 2(1):100289.DOI:10.1016/j.xpro.2020.100289.
[18]
THIBIVILLIERS S, ANDERSON D, LIBAULT M. Isolation of plant root nuclei for single cell RNA sequencing[J]. Curr Protoc Plant Biol, 2020, 5(4):e20120.DOI:10.1002/cppb.20120.
[19]
BAJIC M, MAHER K A, DEAL R B. Identification of open chromatin regions in plant genomes using ATAC-seq[M]// Methods in Molecular Biology. New York: Springer, 2017:183-201.DOI:10.1007/978-1-4939-7318-7_12.
[20]
欧阳也, 秦玉婷, 姚超, 等. 利用ATAC-seq技术研究Ⅰ型干扰素通路活化后人单核细胞的染色质开放性改变[J]. 上海交通大学学报(医学版), 2019, 39(5):451-457.
OUYANG Y, QIN Y T, YAO C, et al. Using ATAC-seq to identify the chromatin accessibility activated by type Ⅰ interferon in human monocytes[J]. J Shanghai Jiao Tong Univ (Med Sci), 2019, 39(5):451-457.DOI:10.3969/j.issn.1674-8115.2019.05.003.
[21]
LU Z F, HOFMEISTER B T, VOLLMERS C, et al. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes[J]. Nucleic Acids Res, 2016, 45(6):e41.DOI:10.1093/nar/gkw1179.
[22]
ZHOU C, YUAN Z, MA X P, et al. Accessible chromatin regions and their functional interrelations with gene transcription and epigenetic modifications in sorghum genome[J]. Plant Commun, 2020, 2(1):100140.DOI:10.1016/j.xplc.2020.100140.
[23]
MAHER K A, BAJIC M, KAJALA K, et al. Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules[J]. Plant Cell, 2017, 30(1):15-36.DOI:10.1105/tpc.17.00581.
[24]
SIJACIC P, BAJIC M, MCKINNEY E C, et al. Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell type-specific transcription factor networks[J]. Plant J, 2018, 94(2):215-231.DOI:10.1111/tpj.13882.
[25]
CONCIA L, VELUCHAMY A, RAMIREZ-PRADO J S, et al. Wheat chromatin architecture is organized in genome territories and transcription factories[J]. Genome Biol, 2020, 21(1):104.DOI:10.1186/s13059-020-01998-1.
[26]
韩金磊, 李占杰, 王凯. 基于开放染色质的全基因组水平转录调控元件的研究方法与进展[J]. 福建农林大学学报(自然科学版), 2017, 46(1):1-8.
HAN J L, LI Z J, WANG K. Progress on genome-wide identification and analysis of transcriptional regulatory elements based on open-chromatin signatures[J]. J Fujian Agric For Univ (Nat Sci Ed), 2017, 46(1):1-8.DOI:10.13323/j.cnki.j.fafu(nat.sci.).2017.01.001.
[27]
GRANDI F C, MODI H, KAMPMAN L, et al. Chromatin accessibility profiling by ATAC-seq[J]. Nat Protoc, 2022, 17(6):1518-1552.DOI:10.1038/s41596-022-00692-9.
[28]
吴杰, 全建平, 叶勇, 等. 染色质转座酶可及性测序研究进展[J]. 遗传, 2020, 42(4):333-346.
WU J, QUAN J P, YE Y, et al. Advances in assay for transposase-accessible chromatin with high-throughput sequencing[J]. Hereditas, 2020, 42(4):333-346.DOI:10.16288/j.yczz.19-279.
[29]
ZHU T, LIAO K Y, ZHOU R F, et al. ATAC-seq with unique molecular identifiers improves quantification and footprinting[J]. Commun Biol, 2020, 3:675.DOI:10.1038/s42003-020-01403-4.
[30]
SHAW P J. Nuclear organization in plants[J]. Essays Biochem, 1996, 31:77-89.
[31]
SIKORSKAITE S, RAJAMÄKI M L, BANIULIS D, et al. Protocol:optimised methodology for isolation of nuclei from leaves of species in the Solanaceae and Rosaceae families[J]. Plant Methods, 2013, 9:31.DOI:10.1186/1746-4811-9-31.
[32]
曲瑞红. 利用ATAC-seq分析拟南芥四种细胞全基因组范围内染色质的开放程度[D]. 杨凌: 西北农林科技大学, 2020.
QU R H. Analyzing the openness of genome-wide chromatin of four types cells from Arabidopsis using ATAC-seq[D]. Yangling: Northwest A & F University, 2020.
[33]
DEAL R B, HENIKOFF S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue[J]. Dev Cell, 2010, 18(6):1030-1040.DOI:10.1016/j.devcel.2010.05.013.
[34]
ZHANG C Q, BARTHELSON R A, LAMBERT G M, et al. Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei[J]. Plant Physiol, 2008, 147(1):30-40.DOI:10.1104/pp.107.115246.
[35]
GALBRAITH D W, HARKINS K R, MADDOX J M, et al. Rapid flow cytometric analysis of the cell cycle in intact plant tissues[J]. Science, 1983, 220(4601):1049-1051.DOI:10.1126/science.220.4601.1049.
[36]
SULLIVAN A M, ARSOVSKI A A, LEMPE J, et al. Mapping and dynamics of regulatory DNA and transcription factor networks in A.thaliana[J]. Cell Rep, 2014, 8(6):2015-2030.DOI:10.1016/j.celrep.2014.08.019.
[37]
PAJORO A, MADRIGAL P, MUIÑO J M, et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development[J]. Genome Biol, 2014, 15(3):R41.DOI:10.1186/gb-2014-15-3-r41.
[38]
FRERICHS A, ENGELHORN J, ALTMÜLLER J, et al. Specific chromatin changes mark lateral organ founder cells in the Arabidopsis inflorescence meristem[J]. J Exp Bot, 2019, 70(15):3867-3879.DOI:10.1093/jxb/erz181.
[39]
祝涛. UMI-ATAC-seq数据分析及植物单细胞ATAC-seq技术的探索[D]. 武汉: 华中农业大学, 2021.
ZHU T. Analysis of UMI-ATAC-seq data and exploration of plant single cell ATAC-seq technique[D]. Wuhan: Huazhong Agricultural University, 2021.
[40]
熊和丽, 沙茜, 刘韶娜, 等. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3):226-233.
XIONG H L, SHA Q, LIU S N, et al. Application of single-cell transcriptome sequencing in animals[J]. Biotechnol Bull, 2022, 38(3):226-233.DOI:10.13560/j.cnki.biotech.bull.1985.2021-0523.
[41]
文路, 汤富酬. 单细胞转录组高通量测序分析新进展[J]. 遗传, 2014, 36(11):1069-1076.
WEN L, TANG F C. Recent progress in single-cell RNA-seq analysis[J]. Hereditas, 2014, 36(11):1069-1076.DOI:10.3724/SP.J.1005.2014.1069.
[42]
DORRITY M W, ALEXANDRE C M, HAMM M O, et al. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution[J]. Nat Commun, 2021, 12:3334.DOI:10.1038/s41467-021-23675-y.
[43]
倪兵, 高维武. 单细胞表观遗传测序技术最新进展[J]. 陆军军医大学学报, 2022, 44(1):74-78.
NI B, GAO W W. Recent advances in single-cell epigenetic sequencing technology[J]. J Army Med Univ, 2022, 44(1):74-78.DOI:10.16016/j.1000-5404.202109020.
[44]
FARMER A, THIBIVILLIERS S, RYU K H, et al. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level[J]. Mol Plant, 2021, 14(3):372-383.DOI:10.1016/j.molp.2021.01.001.
[45]
CHEN S, LAKE B B, ZHANG K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell[J]. Nat Biotechnol, 2019, 37(12):1452-1457.DOI:10.1038/s41587-019-0290-0.
[46]
ZHOU L M, HUANG Y Z, WANG Q, et al. Chromatin accessibility is associated with artemisinin biosynthesis regulation in Artemisia annua[J]. Molecules, 2021, 26(4):1194.DOI:10.3390/molecules26041194.
[47]
金晶. 光温敏水稻武香S染色质可接近性变化及转录调控网络的研究[D]. 武汉: 武汉大学, 2019.
JIN J. Study on chromatin accessibility changes and transcriptional regulatory networks of the rice PTGMS line Wuxiang S[D]. Wuhan: Wuhan University, 2019.
[48]
YAN F, POWELL D R, CURTIS D J, et al. From reads to insight: a hitchhiker's Guide to ATAC-seq data analysis[J]. Genome Biol, 2020, 21(1):22.DOI:10.1186/s13059-020-1929-3.
[49]
IJAZ U. Plant Cis-regulatory elements:Methods of identification and applications[J]. Asian J Agric Biol, 2020, 8(2):207-222.DOI:10.35495/ajab.2019.08.352.
[50]
REN C, LI H Y, WANG Z M, et al. Characterization of chromatin accessibility and gene expression upon cold stress reveals that the RAV1 transcription factor functions in cold response in Vitis amurensis[J]. Plant Cell Physiol, 2021, 62(10):1615-1629.DOI:10.1093/pcp/pcab115.
[51]
WANG P J, JIN S, CHEN X J, et al. Chromatin accessibility and translational landscapes of tea plants under chilling stress[J]. Hortic Res, 2021, 8:96.DOI:10.1038/s41438-021-00529-8.
[52]
WILKINS O, HAFEMEISTER C, PLESSIS A, et al. EGRINs (environmental gene regulatory influence networks) in rice that function in the response to water deficit,high temperature,and agricultural environments[J]. Plant Cell, 2016, 28(10):2365-2384.DOI:10.1105/tpc.16.00158.
[53]
LOCKHART J. Field of genes: uncovering EGRINs (environmental gene regulatory influence networks) in rice that function during high-temperature and drought stress[J]. Plant Cell, 2016, 28(10):2346-2347.DOI:10.1105/tpc.16.00730.
[54]
DING P T, SAKAI T, KRISHNA SHRESTHA R, et al. Chromatin accessibility landscapes activated by cell-surface and intracellular immune receptors[J]. J Exp Bot, 2021, 72(22):7927-7941.DOI:10.1093/jxb/erab373.
[55]
翟中和, 王喜忠, 丁明孝. 细胞生物学[M]. 4版. 北京: 高等教育出版社, 2011.
ZHAI Z H, WANG X Z, DING M X. Cell biology[M]. 4th ed. Beijing: Higher Education Press, 2011.
[56]
ZHOU C, WANG C S, LIU H B, et al. Identification and analysis of adenine N6-methylation sites in the rice genome[J]. Nat Plants, 2018, 4(8):554-563.DOI:10.1038/s41477-018-0214-x.
[57]
ZHANG Q, LIANG Z, CUI X A, et al. N6-methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression,plant development,and stress responses[J]. Mol Plant, 2018, 11(12):1492-1508.DOI:10.1016/j.molp.2018.11.005.
[58]
LIANG Z, ZHANG Q, JI C M, et al. Reorganization of the 3D chromatin architecture of rice genomes during heat stress[J]. BMC Biol, 2021, 19(1):53.DOI:10.1186/s12915-021-00996-4.
[59]
李占杰, 秦源. 染色质可及性与植物基因表达调控[J]. 植物学报, 2021, 56(6):664-675.
LI Z J, QIN Y. Chromatin accessibility and the gene expression regulation in plants[J]. Chin Bull Bot, 2021, 56(6):664-675.DOI:10.11983/CBB21115.
[60]
JÉGU T, VELUCHAMY A, RAMIREZ-PRADO J S, et al. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility[J]. Genome Biol, 2017, 18(1):114.DOI:10.1186/s13059-017-1246-7.
[61]
王关林, 方宏筠. 植物基因工程[M]. 2版. 北京: 科学出版社, 2002.
WANG G L, FANG H Y. Plant Genetic Engineering[M]. 2nd ed. Beijing: Science Press, 2002.
[62]
LONG H K, PRESCOTT S L, WYSOCKA J. Ever-changing landscapes: transcriptional enhancers in development and evolution[J]. Cell, 2016, 167(5):1170-1187.DOI:10.1016/j.cell.2016.09.018.
[63]
CLARK R M, WAGLER T N, QUIJADA P, et al. A distant upstream enhancer at the maize domestication gene Tb1 has pleiotropic effects on plant and inflorescent architecture[J]. Nat Genet, 2006, 38(5):594-597.DOI:10.1038/ng1784.
[64]
ZHU B, ZHANG W L, ZHANG T, et al. Genome-wide prediction and validation of intergenic enhancers in Arabidopsis using open chromatin signatures[J]. Plant Cell, 2015, 27(9):2415-2426.DOI:10.1105/tpc.15.00537.
[65]
HUANG M K, ZHANG L, ZHOU L M, et al. Genomic features of open chromatin regions (OCRs) in wild soybean and their effects on gene expressions[J]. Genes, 2021, 12(5):640.DOI:10.3390/genes12050640.
[66]
LIN X, LIN W G, KU Y S, et al. Analysis of soybean long non-coding RNAs reveals a subset of small peptide-coding transcripts[J]. Plant Physiol, 2019, 182(3):1359-1374.DOI:10.1104/pp.19.01324.
[67]
MARAND A P, ZHANG T, ZHU B, et al. Towards genome-wide prediction and characterization of enhancers in plants[J]. Biochim Biophys Acta (BBA) Gene Regul Mech, 2017, 1860(1):131-139.DOI:10.1016/j.bbagrm.2016.06.006.
[68]
SCHWOPE R, MAGRIS G, MICULAN M, et al. Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression[J]. Plant J, 2021, 107(6):1631-1647.DOI:10.1111/tpj.15404.
[69]
CALO E, WYSOCKA J. Modification of enhancer chromatin: what,how,and why?[J]. Mol Cell, 2013, 49(5):825-837.DOI:10.1016/j.molcel.2013.01.038.
[70]
LU Z F, MARAND A P, RICCI W A, et al. The prevalence,evolution and chromatin signatures of plant regulatory elements[J]. Nat Plants, 2019, 5(12):1250-1259.DOI:10.1038/s41477-019-0548-z.
[71]
RICCI W A, LU Z F, JI L X, et al. Widespread long-range cis-regulatory elements in the maize genome[J]. Nat Plants, 2019, 5(12):1237-1249.DOI:10.1038/s41477-019-0547-0.
[72]
YAN W H, CHEN D J, SCHUMACHER J, et al. Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis[J]. Nat Commun, 2019, 10:1705.DOI:10.1038/s41467-019-09513-2.
[73]
MARAND A P, CHEN Z L, GALLAVOTTI A, et al. A cis-regulatory atlas in maize at single-cell resolution[J]. Cell, 2021, 184(11):3041-3055.e21.DOI:10.1016/j.cell.2021.04.014.
[74]
CORCES M R, GRANJA J M, SHAMS S, et al. The chromatin accessibility landscape of primary human cancers[J]. Science, 2018, 362(6413):eaav1898.DOI:10.1126/science.aav1898.
[75]
LIU C Y, WANG M Y, WEI X Y, et al. An ATAC-seq atlas of chromatin accessibility in mouse tissues[J]. Sci Data, 2019, 6:65.DOI:10.1038/s41597-019-0071-0.

基金

国家自然科学基金项目(31670603)

编辑: 吴祝华
PDF(1828 KB)

Accesses

Citation

Detail

段落导航
相关文章

/