[1] |
国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020: 259.
|
|
National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2020: 259.
|
[2] |
李宾. 面向森林火灾的烟雾检测系统的设计与开发[D]. 青岛: 山东科技大学, 2018.
|
|
LI B. Design and development of smoke detection system for forest fire[D]. Qingdao: Shandong University of Science and Technology, 2018. DOI:10.27275/d.cnki.gsdku.2018.000552.
|
[3] |
GIGLIO L, DESCLOITRES J, JUSTICE C O, et al. An enhanced contextual fire detection algorithm for MODIS[J]. Remote Sensing of Environment, 2003, 87(2/3): 273-282.
|
[4] |
付迎春, 徐颂军, 陈蜜. 基于MODIS影像梯度的林火边界提取方法[J]. 林业科学, 2008, 44(7):56-61.
|
|
FU Y C, XU S J, CHEN M. Extraction of forest fire edge line based on MODIS imagery gradient[J]. Scientia Silvae Sinicae, 2008, 44(7):56-61.
|
[5] |
杨光, 宁吉彬, 舒立福, 等. 黑龙江大兴安岭卫星热点预报森林火灾准确性研究[J]. 北京林业大学学报, 2017, 39(12):1-9.
|
|
YANG G, NING J B, SHU L F, et al. Study on the accuracy of forest fire prediction by satellite hot spots in Daxing’an Mountains of Heilongjiang,northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(12):1-9. DOI:10.13332/j.1000-1522.20170147.
|
[6] |
单会见. 基于无人机的林火识别和定位算法研究[D]. 杭州: 浙江农林大学, 2019.
|
|
SHAN H J. Research on forest fire identification and location algorithm based on UAV[D]. Hangzhou: Zhejiang Agriculture and Forestry University, 2019.
|
[7] |
马越豪, 卢晓, 董佩, 等. 基于图像特征的无人机火灾检测[J]. 消防科学与技术, 2019, 38(5): 658-660.
|
|
MA Y H, LU X, DONG P, et al. UAV fire detection based on image features[J]. Fire Science and Technology, 2019, 38(5):658-660.
|
[8] |
孙鹏. 基于改进SSD模型的小目标检测研究[D]. 南京: 南京邮电大学, 2021.
|
|
SUN P. Small object detection research via optimized SSD model[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021.
|
[9] |
王飞. 基于深度学习的森林火灾识别检测系统的研究与实现[D]. 成都: 电子科技大学, 2020.
|
|
WANG F. Research and implementation of forest fire detection system based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
[10] |
刘青, 刘志国, 刘守全, 等. 基于改进YOLOv3的无人机林火监测系统设计与实现[J]. 消防科学与技术, 2021, 40(4): 557-561.
|
|
LIU Q, LIU Z G, LIU S Q, et al. Design and implementation of UAV forest fire monitoring system based on improved YOLOv3[J]. Fire Science and Technology, 2021, 40(4):557-561.
|
[11] |
傅天驹. 基于深度学习的林火图像识别算法及实现[D]. 北京: 北京林业大学, 2016.
|
|
FU T J. Forest fire image recognition algorithm and realization based on deep learning[D]. Beijing: Beijing Forestry University, 2016.
|
[12] |
陈燕红. 基于卷积神经网络的无人机森林火灾检测研究[D]. 西安: 西安理工大学, 2019.
|
|
CHEN Y H. Research on forest fire detection using unmanned aerial vehicles based on convolutional neural network[D]. Xi'an: Xi'an University of Technology, 2019.
|
[13] |
周浪, 樊坤, 瞿华, 等. 基于Sparse-DenseNet模型的森林火灾识别研究[J]. 北京林业大学学报, 2020, 42(10): 36-44.
|
|
ZHOU L, FAN K, QU H, et al. Forest fire identification based on Sparse-DenseNet model[J]. Journal of Beijing Forestry University, 2020, 42(10):36-44.DOI: 10.12171/j.1000-1522.20190371.
|
[14] |
马茂平. 基于特征显著性增强的改进SSD算法研究[D]. 成都: 西南交通大学, 2021.
|
|
MA M P. Research on improved SSD algorithm based on feature enhanced significantly[D]. Chengdu: Southwest Jiaotong University, 2021.
|
[15] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
|
[16] |
李青援, 邓赵红, 罗晓清, 等. 注意力与跨尺度融合的SSD目标检测算法[J]. 计算机科学与探索, 2022, 16(11):2575-2586.
|
|
LI Q Y, DENG Z H, LUO X Q, et al. SSD object detection algorithm with attention and cross-scale fusion[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11):2575-2586.DOI:10.3778/j.issn.1673-9418.2102001.
|
[17] |
SHAMSOSHOARA A, AFGHAH F, RAZI A, et al. Aerial imagery pile burn detection using deep learning: the FLAME dataset[J]. Computer Networks, 2021, 193: 108001.
|
[18] |
刘嘉政, 王雪峰, 王甜. 基于深度学习的树种图像自动识别[J]. 南京林业大学学报(自然科学版), 2020, 44(1):138-144.
|
|
LIU J Z, WANG X F, WANG T. Automatic identification of tree species based on deep learning[J]. Nanjing For Univ(Nat Sci Ed), 2020, 44(1):138-144. DOI:103969/j.issn.1000-2006.201809004.
|
[19] |
齐浩. 基于SSD的目标检测算法及其应用研究[D]. 邯郸: 河北工程大学, 2021.
|
|
QI H. Research and application object detection algorithm based on SSD[D]. Handan: Hebei University of Engineering, 2021.
|
[20] |
张倩如, 王云飞, 吕帅朝, 等. 基于改进GhostNet的小麦秸秆表皮结构完整性分类方法[J]. 南京农业大学学报, 2022, 45(4):788-798.
|
|
ZHANG Q R, WANG Y F, LYU S C, et al. Integrity classification of wheat straw epidermis based on improved GhostNet[J]. J Nanjing Agric Univ, 2022, 45(4):788-798.DOI: 10.7685/jnau.202108015.
|
[21] |
缪伟志, 陆兆纳, 王俊龙, 等. 基于视觉的火灾检测研究[J]. 森林工程, 2022, 38(1):86-92,100.
|
|
MIAO W Z, LU Z N, WANG J L, et al. Fire detection research based on vision[J]. Forest Engineering, 2022, 38(1):86-92,100. DOI:10.16270/j.cnki.slgc.2022.01.007.
|
[22] |
LIU W, ANGUELOV D, ERHAN D, et al. Ssd: Single shot multibox detector[C]// Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands. Springer International Publishing, 2016: 21-37.
|
[23] |
BAI G, HOU J, ZHANG Y, et al. An intelligent water level monitoring method based on SSD algorithm[J]. Measurement, 2021, 185: 110047.
|
[24] |
SUTANTO A R, KANG D K. A novel diminish smooth L1 loss model with generative adversarial network[C]// Intelligent Human Computer Interaction: 12th International Conference, IHCI 2020, Daegu, South Korea: Springer International Publishing, 2021: 361-368.
|
[25] |
张坚鑫, 郭四稳, 张国兰, 等. 基于多尺度特征融合的火灾检测模型[J]. 郑州大学学报(工学版), 2021, 42(5):13-18.
|
|
ZHANG J X, GUO S W, ZHANG G L, et al. Fire detection model based on multi-scale feature fusion[J]. J Zhengzhou Univ(Eng Sci), 2021, 42(5):13-18.DOI:10.13705/j.issn.1671-6833.2021.05.016.
|
[26] |
张勇. 基于改进型SSD的火焰及烟雾检测系统的设计与实现[D]. 长沙: 湖南师范大学, 2021.
|
|
ZHANG Y. Design and implementation of fire and smoke detection system based on improved SSD[D]. Changsha: Hunan Normal University, 2021.
|
[27] |
张倩, 周平平, 王公堂, 等. 基于合成图像的Faster R-CNN森林火灾烟雾检测[J]. 山东师范大学学报(自然科学版), 2019, 34(2):180-185.
|
|
ZHANG Q, ZHOU P P, WANG G T, et al. Faster R-CNN forest fire smoke detection based on synthetic images[J]. J Shandong Nor Univ(Nat Sci), 2019, 34(2):180-185.
|
[28] |
陈琼, 谢家亮. 基于自适应采样的不平衡分类方法[J]. 华南理工大学学报(自然科学版), 2022, 50(4):26-34,45.
|
|
CHEN Q, XIE J L. An Imbalanced classification method based on adaptive sampling[J]. Journal of South China University of Technology(Natural Science Edition), 2022, 50(4):26-34,45.
|
[29] |
南玉龙, 张慧春, 郑加强, 等. 深度学习在林业中的应用[J]. 世界林业研究, 2021, 34(5): 87-90.
|
|
NAN Y L, ZHANG H C, ZHENG J Q, et al. Application of deep learning to forestry[J]. World Forestry Research, 2021, 34(5):87-90.DOI:10.13348/j.cnki.sjlyyj.2021.0020.y.
|
[30] |
高桂雨, 李丁祎, 赵娟娟, 等. 基于目标检测SSD算法的森林火灾监测模型研究[J]. 电脑知识与技术, 2022, 18(2):13-14,23.
|
|
GAO G Y, LI D Y, ZHAO J J, et al. Research on forest fire monitoring model based on object detection SSD algorithm[J]. Computer Knowledge and Technology, 2022, 18(2): 13-14,23. DOI:10.14004/j.cnki.ckt.20220061.
|