南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (3): 108-116.doi: 10.12302/j.issn.1000-2006.202205039
• 专题报道Ⅱ:土壤生态修复理论与技术研究(执行主编 张金池) • 上一篇 下一篇
谢燕燕1,2(), 郭子武1,*(), 林树燕2, 左珂怡1, 杨丽婷1, 徐森1, 谷瑞1, 陈双林1
收稿日期:
2022-05-20
修回日期:
2023-04-30
出版日期:
2024-05-30
发布日期:
2024-06-14
通讯作者:
*郭子武(hunt-panther@163.com),研究员。
作者简介:
谢燕燕(1459468748@qq.com)。
基金资助:
XIE Yanyan1,2(), GUO Ziwu1,*(), LIN Shuyan2, ZUO Keyi1, YANG Liting1, XU Sen1, GU Rui1, CHEN Shuanglin1
Received:
2022-05-20
Revised:
2023-04-30
Online:
2024-05-30
Published:
2024-06-14
摘要:
【目的】 测定毛竹(Phyllostachys edulis)林地不同土层土壤粒径组成、分布和水分入渗性能,揭示土壤粒径分布及水分入渗性能对林下植被演替的响应规律,为毛竹林地土壤生态管理与植被更新提供依据。【方法】 以林下植被演替年限分别为0、9及21 a的毛竹林为研究对象,测定了林地不同土层,即[0, 10) cm、[10, 20) cm和[20, 30) cm层土壤颗粒组成、土壤颗粒体积分形维数,采用Kostiakov、Philip和Horton模型模拟分析土壤水分入渗性能,解析土壤分形特征与颗粒组成、水分入渗性能的关系。【结果】 同一演替年限毛竹林土壤黏粒、粉粒含量、分形维数和水分入渗性能均随土层深度增加而降低,而砂粒含量逐渐增加。随林下植被演替年限延长,[0, 10) cm土层黏粒、粉粒含量及分形维数逐渐下降,砂粒含量逐渐增加,[10, 20) cm和[20, 30) cm土层黏粒、粉粒含量及分形维数呈先升高后下降的趋势,砂粒含量则与之相反;不同土层土壤初渗率和稳渗率总体呈升高的变化趋势;土壤分形维数与黏粉粒含量、初渗率和稳渗率均呈显著正相关关系(P<0.05),与砂粒含量呈显著负相关关系(P<0.05);Kostiakov与Horton模型更适用于试验毛竹林土壤水分入渗过程模拟。【结论】 毛竹林下植被演替能够显著改善土壤粒径结构,提高土壤水分入渗性能,且呈现明显的演替时间效应,植被演替21 a毛竹林的土壤水分入渗性能明显优于植被演替9 a毛竹林和毛竹纯林的。
中图分类号:
谢燕燕,郭子武,林树燕,等. 毛竹林下植被演替过程中土壤颗粒组成与水分入渗特征[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 108-116.
XIE Yanyan, GUO Ziwu, LIN Shuyan, ZUO Keyi, YANG Liting, XU Sen, GU Rui, CHEN Shuanglin. Soil particle distribution and water infiltration characteristics during vegetation succession in Phyllostachys edulis stands[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(3): 108-116.DOI: 10.12302/j.issn.1000-2006.202205039.
表1
不同植被演替年限毛竹林基本情况"
演替 年限/a succession year | 海拔/m altitude | 坡度/ (°) slope | 坡向 aspect | 土壤 类型 soil type | 毛竹P. edulis | 乔灌木arbor shrubs | ||||
---|---|---|---|---|---|---|---|---|---|---|
立竹密度/ (株·hm-2) bamboo density | 平均 胸径/cm average DBH | 林下植被 密度/ (株·hm-2) understory vegetation density | 平均 株高/m average height | 平均 地径/cm average ground diameter | 郁闭度 conopy density | |||||
0 | 500±10 | 36±2.50 | 西 | 红壤 | 2 625±25 | 9.4±0.60 | — | — | — | 0.60 |
9 | 520±10 | 36±2.50 | 西 | 红壤 | 3 150±30 | 9.2±0.40 | 8 000±55 | 0.76±0.08 | 0.76±0.07 | 0.70 |
21 | 490±10 | 36±2.50 | 西 | 红壤 | 2 275±20 | 8.9±0.40 | 27 511±147 | 2.42±0.20 | 1.69±0.11 | 0.85 |
表2
不同植被演替年限毛竹林物种组成"
演替年限/a succession year | 乔木树种 arbor species | 灌木树种 shrub species | ||
---|---|---|---|---|
科Family 属Genus | 主要种main species | 科Family 属Genus | 主要种main species | |
9 | 壳斗科、山茶科、蔷薇科、樟科等9科12属 | 东南石栎(Lithocarpus harlandii)、木荷(Schima superba)、短柄枹栎(Quercus serrata)、老鼠矢(Symplocos stellaris)、苦槠(Castanopsis sclerophylla) | 山茶科、金缕梅科、豆科、杜鹃花科等8科10属 | 柃木(Eurya japonica)、檵木(Loropetalum chinense)、美丽胡枝子(Lespedeza formosa)、马银花(Rhododendron ovatum)、油茶(Camellia oleifera) |
21 | 山茶科、壳斗科、冬青科等7科11属 | 木荷、东南石栎、石栎(Lithocarpus glaber)、苦槠、青冈(Cyclobalanopsis glauca) | 山茶科、杜鹃花科等9科12属 | 柃木、马银花、江南越橘(Vaccinium mandarinorum) |
表3
不同植被演替年限毛竹林土壤颗粒组成和分形维数双因素方差分析"
变异来源 variation source | df | 黏粒 clay | 粉粒 silt | 砂粒 sand | 分形维数 fractal dimension | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
演替年限(A) succession years | 2 | 29.965 | <0.01 | 6.897 | <0.05 | 11.254 | <0.01 | 15.254 | <0.01 |
土层深度(D) soil depth | 2 | 46.949 | <0.01 | 12.788 | <0.01 | 19.899 | <0.01 | 28.357 | <0.01 |
演替年限×土层深度(A× D) succession years × soil depth | 4 | 9.457 | <0.01 | 3.937 | <0.05 | 5.289 | <0.05 | 3.969 | <0.05 |
表4
不同植被演替年限毛竹林土壤颗粒组成和分形维数特征"
演替年限/a succession year | 土层深度/cm soil depth | 各土壤粒体积百分比/% volume percentage of soil particle | 分形维数 fractal dimension | ||
---|---|---|---|---|---|
黏粒clay | 粉粒silt | 砂粒sand | |||
[0, 10) | 7.02±0.39 Ac | 37.63±3.77 Ac | 55.36±4.15 Aa | 2.66±0.01 Ab | |
21 | [10, 20) | 6.50±0.29 Aa | 33.61±1.42 Aa | 59.90±1.71 Aa | 2.64±0.00 Aa |
[20, 30) | 3.03±0.12 Bb | 30.86±6.01 Aa | 66.11±5.87 Aa | 2.55±0.02 Bb | |
[0, 10) | 9.22±0.08 Ab | 44.21±4.30 Ab | 46.58±4.22 Aa | 2.68±0.01 Ab | |
9 | [10, 20) | 8.51±0.34 Aa | 44.03±6.53 Aa | 47.46±6.82 Aa | 2.68±0.01 Aa |
[20, 30) | 7.50±1.33 Aa | 38.01±3.61 Aa | 54.49±4.28 Ab | 2.65±0.03 Aa | |
[0, 10) | 12.66±0.30 Aa | 57.39±4.71 Aa | 29.95±4.41 Bb | 2.73±0.01 Aa | |
0 | [10, 20) | 7.25±1.57 Ba | 36.97±3.63 Ba | 55.78±5.19 Aa | 2.66±0.03 Aba |
[20, 30) | 5.68±0.33 Ba | 32.56±1.99 Ba | 61.76±1.65 Aab | 2.62±0.02 Ba |
表6
不同植被演替年限毛竹林土壤入渗速率和入渗模型参数"
演替 年限/a succession year | 土层 深度/cm soil depth | 初渗率 实测值/ (mm·min-1) initial infiltration rate observed value | 稳渗率 实测值/ (mm·min-1) stable infiltration rate observed value | 入渗模型参数infiltration model parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Koistakov模型 Koistakov model | Philip模型 Philip model | Horton模型 Horton model | |||||||||||
a | b | R2 | s | fc | R2 | f0 | fc | k | R2 | ||||
[0, 10) | 22.01±0.16 Ab | 15.07±0.85 Aa | 22.92 | 0.09 | 0.964 | 17.16 | 15.05 | 0.813 | 21.97 | 15.03 | 0.05 | 0.982 | |
21 | [10, 20) | 18.83±0.78 Ba | 10.41±0.96 Ba | 18.46 | 0.14 | 0.983 | 20.68 | 9.27 | 0.934 | 18.09 | 10.09 | 0.08 | 0.912 |
[20, 30) | 11.52±1.77 Ca | 4.17±0.50 Ca | 10.99 | 0.23 | 0.980 | 16.49 | 3.37 | 0.994 | 12.37 | 4.54 | 0.19 | 0.950 | |
[0, 10) | 28.20±4.66 Aa | 11.25±1.60 Ab | 28.21 | 0.21 | 0.975 | 40.20 | 9.77 | 0.916 | 25.71 | 11.04 | 0.06 | 0.910 | |
9 | [10, 20) | 15.49±0.34 Bb | 6.52±0.50 Bb | 14.85 | 0.19 | 0.977 | 20.39 | 5.61 | 0.956 | 14.60 | 6.67 | 0.10 | 0.888 |
[20, 30) | 10.58±0.21 Ca | 4.57±0.28 Ca | 10.51 | 0.20 | 0.995 | 14.60 | 3.85 | 0.954 | 10.17 | 4.50 | 0.08 | 0.947 | |
[0, 10) | 7.73±1.63 Ac | 5.29±0.93 Ac | 8.15 | 0.11 | 0.943 | 6.60 | 5.05 | 0.809 | 8.01 | 5.12 | 0.07 | 0.990 | |
0 | [10, 20) | 6.08±0.53 Ac | 4.51±0.37 Ac | 6.46 | 0.09 | 0.870 | 4.11 | 4.50 | 0.672 | 6.21 | 4.10 | 0.04 | 0.991 |
[20, 30) | 3.51±0.64 Bb | 2.05±0.91 Bb | 3.68 | 0.15 | 0.966 | 3.82 | 1.88 | 0.861 | 3.59 | 1.97 | 0.08 | 0.985 |
[1] | CHASTAIN R A J, CURRIE W S, TOWNSEND P A. Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests[J]. Forest Eco Manag, 2006, 231(1):63-77.DOI:10.1016/j.foreco.2006.04.040. |
[2] | 朱梦雪, 赵洋毅, 王克勤, 等. 中亚热带不同演替森林群落土壤结构分形特征对大孔隙的影响[J]. 林业科学研究, 202(2):67-77. |
ZHU M X, ZHAO Y Y, WANG K Q, et al. Effect of fractal characteristics of soil structure on macropores in different succession forest communities in mid-subtropical region[J]. Fore Res, 2022(2):67-77.DOI:10.13275/j.cnki.lykxyj.2022.02.008. | |
[3] | 程杰, 王欢元, 解建仓, 等. 不同配比下复配土的土壤颗粒组成、分形维数与质地变化特征[J]. 水土保持研究, 2020, 27(2):30-34. |
CHENG J, WANG H Y, XIE J C, et al. Particle composition, fractal dimension and texture change characteristics of compound soil under different ratios[J]. Res Soil Water Conserv, 2020, 27(2):30-34.DOI:10.13869/j.cnki.rswc.2020.02.005. | |
[4] | 常美蓉, 庞奖励, 张彩云, 等. 关中东部不同土地利用方式对土壤质地影响探讨[J]. 农业系统科学与综合研究, 2009, 25(1):50-53. |
CHANG M R, PANG J L, ZHANG C Y, et al. Effect of land use on the soil texture in east Guanzhong of Shaanxi Province,north China[J]. Syst Sci Compr Stud Agric, 2009, 25(1):50-53.DOI:10.3969/j.issn.1001-0068.2009.01.010. | |
[5] | 张立欣, 段玉玺, 王伟峰, 等. 毛乌素沙地不同植被类型的土壤颗粒分形与土壤碳氮变化特征[J]. 东北林业大学学报, 2016, 44(8):55-60. |
ZHANG L X, DUAN Y X, WANG W F, et al. Characteristic of soil particle size distribution and soil organic carbon and nitrogen dynamics of different vegetation types in the Mu us sandy land[J]. J Northeast For Univ, 2016, 44(8):55-60.DOI: 10.13759/j.cnki.dlxb.2016.08.011. | |
[6] | 彭舜磊, 由文辉, 沈会涛. 植被群落演替对土壤饱和导水率的影响[J]. 农业工程学报, 2010, 26(11):78-84. |
PENG S L, YOU W H, SHEN H T. Effect of syndynamic on soil saturated hydraulic conductivity[J]. Trans Chin Soc Agric Eng, 2010, 26(11):78-84.DOI: 10.3969/j.issn.1002-6819.2010.11.014. | |
[7] | 马任甜. 子午岭植被恢复过程中土壤团聚体稳定性提升的内力作用机制[D]. 杨凌: 西北农林科技大学, 2021. |
MA R T. Internal forces mechanism of soil aggregate stability improvement during vegetation restoration on the Ziwuling Mountain,China[D]. Yangling: Northwest A & F University, 2021. | |
[8] | 高传友, 赵清贺, 刘倩. 北江干流河岸带不同植被类型土壤粒径分形特征[J]. 水土保持研究, 2016, 23(3):37-42. |
GAO C Y, ZHAO Q H, LIU Q. Fractal characteristic of soil particle size under different vegetation types in riparian zone of the main stream of Beijiang River[J]. Res Soil Water Conserv, 2016, 23(3):37-42.DOI:10.13869/j.cnki.rswc.2016.03.007. | |
[9] | 王俊, 郭金龙, 张永旺, 等. 黄土高原自然植被恢复过程中土壤温度和水分的相关性[J]. 水土保持学报, 2022, 36(2):130-137. |
WANG J, GUO J L, ZHANG Y W, et al. The correlation between soil temperature and water content during the natural vegetation restoration on the loess plateau[J]. J Soil Water Conserv, 2022, 36(2):130-137.DOI:10.13870/j.cnki.stbcxb.2022.02.017. | |
[10] | 战海霞, 张光灿, 刘霞, 等. 沂蒙山林区不同植物群落的土壤颗粒分形与水分入渗特征[J]. 中国水土保持科学, 2009, 7(1):49-56. |
ZHAN H X, ZHANG G C, LIU X, et al. Fractal features of soil particle size distribution and infiltration characteristics under different vegetation communities in the forestland of Yimeng Mountains area[J]. Sci Soil Water Conserv, 2009, 7(1):49-56.DOI:10.16843/j.sswc.2009.01.009. | |
[11] | DENG Y S, CAI C F, XIA D, et al. Fractal features of soil particle size distribution under different land-use patterns in the alluvial fans of collapsing gullies in the hilly granitic region of southern China[J]. PLoS One, 2017, 12(3):e0173555.DOI:10.1371/journal.pone.0173555. |
[12] | NIU X, GAO P, WANG B, et al. Fractal characteristics of soil retention curve and particle size distribution with different vegetation types in mountain areas of northern China[J]. Int J Environ Res Public Health, 2015, 12(12):15379-15389.DOI:10.3390/ijerph121214978. |
[13] | 梁士楚, 董鸣, 王伯荪, 等. 英罗港红树林土壤粒径分布的分形特征[J]. 应用生态学报, 2003, 14(1):11-14. |
LIANG S C, DONG M, WANG B S, et al. Fractal characteristics of particle size distributions of mangroves soils in Yingluo Bay[J]. Chin J Appl Ecol, 2003, 14(1):11-14.DOI:10.13287/j.1001-9332.2003.0003. | |
[14] | 王飞, 郭树江, 张卫星, 等. 干旱荒漠区不同演替阶段白刺灌丛沙堆土壤粒度特征[J]. 西北林学院学报, 2020, 35(1):15-20,44. |
WANG F, GUO S J, ZHANG W X, et al. Soil grain-size characteristics of Nitraria tangutorum at different succession stages in desert area[J]. J Northwest For Univ, 2020, 35(1):15-20,44.DOI:10.3969/j.issn.1001-7461.2020.01.03. | |
[15] | 张冠华, 易亮, 丁文峰, 等. 三峡库区苔藓生物结皮对土壤水分入渗的影响[J]. 应用生态学报, 2022, 33(7):1835-1842. |
ZHANG G H, YI L, DING W F, et al. Effects of moss biocrust on soil water infiltration in the Three Gorges Reservoir Area,China[J]. Chin J Appl Ecol, 2022, 33(7):1835-1842.DOI:10.13287/j.1001-9332.202207.001. | |
[16] | 李卓, 刘永红, 杨勤. 土壤水分入渗影响机制研究综述[J]. 灌溉排水学报, 2011, 30(5):124-130. |
LI Z, LIU Y H, YANG Q. Review on effects mechanism of soil water infiltration[J]. J Irrigation Drainage, 2011, 30(5):124-130.DOI:10.13522/j.cnki.ggps.2011.05.013. | |
[17] | 张金武, 王立. 白龙江上游不同演替阶段森林土壤入渗和持水特征[J]. 西北林学院学报, 2021, 36(4):41-47. |
ZHANG J W, WANG L. Characteristics of forest soil infiltration and water holding capacity in different succession stages in the upper reaches of the Bailong River[J]. J Northwest For Univ, 2021, 36(4):41-47.DOI:10.3969/j.issn.1001-7461.2021.04.06. | |
[18] | 姚淑霞, 赵传成, 张铜会. 科尔沁不同沙地土壤饱和导水率比较研究[J]. 土壤学报, 2013, 50(3):469-477. |
YAO S X, ZHAO C C, ZHANG T H. A comparison of soil saturated hydraulic conductivity (Kfs) in different Horqin sand land[J]. Acta Pedol Sin, 2013, 50(3):469-477.DOI:ir.casnw.net/handle/362004/23488. | |
[19] | 阿茹·苏里坦, 常顺利, 张毓涛. 天山林区不同群落土壤水分入渗特性的对比分析与模拟[J]. 生态学报, 2019, 39(24):9111-9118. |
Aru Sultan, CHANG S L, ZHANG Y T. Comparative analysis and simulation of soil moisture infiltration characteristics in different communities in the forests of Tianshan Mountains,China[J]. Acta Ecol Sin, 2019, 39(24):9111-9118.DOI:10.5846/stxb201810072160. | |
[20] | 陈双林. 毛竹林地覆盖竹笋早出技术应用的问题思考[J]. 浙江农林大学学报, 2011, 28(5):799-804. |
CHEN S L. Thoughts on related problems of mulched technique with organic materials in moso bamboo forest for early shooting[J]. J Zhejiang A & F Univ, 2011, 28(5):799-804.DOI:10.3969/j.issn.2095-0756.2011.05.020. | |
[21] | 李玉敏, 冯鹏飞. 基于第九次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6):45-48. |
LI Y M, FENG P F. Bamboo resources in China based on the ninth national forest inventory data[J]. World Bamboo Rattan, 2019, 17(6):45-48.DOI:10.12168/sjzttx.2019.06.010. | |
[22] | 陈双林, 杨伟真. 我国毛竹人工林地力衰退成因分析[J]. 林业科技开发, 2002, 16(5):3-6. |
CHEN S L, YANG W Z. Cause analysis of soil fertility decline of Phyllostachys pubescens plantation in China[J]. China For Sci Technol, 2002, 16(5):3-6.DOI:10.3969/j.issn.1000-8101.2002.05.001. | |
[23] | 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000. |
HUANG C Y. Soil science[M]. Beijing: China Agriculture Press, 2000. | |
[24] | 常海涛, 赵娟, 刘佳楠, 等. 退耕还林与还草对土壤理化性质及分形特征的影响:以宁夏荒漠草原为例[J]. 草业学报, 2019, 28(7):14-25. |
CHANG H T, ZHAO J, LIU J N, et al. Changes in soil physico-chemical properties and related fractal features during conversion of cropland into agroforestry and grassland:a case study of desertified steppe in Ningxia[J]. Acta Prataculturae Sin, 2019, 28(7):14-25.DOI:10.11686/cyxb2018573. | |
[25] | 王国梁, 周生路, 赵其国. 土壤颗粒的体积分形维数及其在土地利用中的应用[J]. 土壤学报, 2005, 42(4):545-550. |
WANG G L, ZHOU S L, ZHAO Q G. Volume fractal dimension of soil particles and its applications to land use[J]. Acta Pedol Sin, 2005, 42(4):545-550.DOI:10.11766/trxb200408030403. | |
[26] | 刘顺, 盛可银, 刘喜帅, 等. 赣南毛竹林土壤的渗透性特征[J]. 安徽农业大学学报, 2018, 45(2):252-257. |
LIU S, SHENG K Y, LIU X S, et al. Soil infiltration characteristics of the Phyllostachy edulis forest in southern Jiangxi Province[J]. J Anhui Agric Univ, 2018, 45(2):252-257.DOI:10.13610/j.cnki.1672-352x.20180427.019. | |
[27] | 王德, 傅伯杰, 陈利顶, 等. 不同土地利用类型下土壤粒径分形分析:以黄土丘陵沟壑区为例[J]. 生态学报, 2007, 27(7):3081-3089. |
WANG D, FU B J, CHEN L D, et al. Fractal analysis on soil particle size distributions under different land-use types:a case study in the loess hilly areas of the Loess Plateau,China[J]. Acta Ecol Sin, 2007, 27(7):3081-3089.DOI:10.3321/j.issn:1000-0933.2007.07.050. | |
[28] | 袁希. 江西东南部山地森林土壤入渗及其影响因素研究[D]. 南昌: 江西农业大学, 2020. |
YUAN X. Study on soil infiltration and its influencing factors of mountain forest in southeastern Jiangxi Province[D]. Nanchang: Jiangxi Agricultural University, 2020. | |
[29] | 赵盼盼, 李国旗, 邵文山, 等. 封育对荒漠草原苦豆子群落土壤粒径分形特征的影响[J]. 西北植物学报, 2017, 37(6):1234-1241. |
ZHAO P P, LI G Q, SHAO W S, et al. Effect of fencing on the fractal characteristics of soil particle size in desert steppe[J]. Acta Bot Boreali Occidentalia Sin, 2017, 37(6):1234-1241.DOI:10.7606/j.issn.1000-4025.2017.06.1234. | |
[30] | 张希彪, 上官周平. 人为干扰对黄土高原子午岭油松人工林土壤物理性质的影响[J]. 生态学报, 2006, 26(11):3685-3695. |
ZHANG X B, SHANGGUAN Z P. Effect of Human-induced disturbance on physical properties of soil in artificial Pinus tabulaeformis Carr.forests of the Loess Plateau[J]. Acta Ecol Sin, 2006, 26(11):3685-3695.DOI:10.3321/j.issn:1000-0933.2006.11.022. | |
[31] | 王韵, 王克林, 邹冬生, 等. 广西喀斯特地区植被演替对土壤质量的影响[J]. 水土保持学报, 2007, 21(6):130-134. |
WANG Y, WANG K L, ZOU D S, et al. Effects of vegetation succession on soil quality in Karst region of Guangxi,China[J]. J Soil Water Conserv, 2007, 21(6):130-134.DOI:10.13870/j.cnki.stbcxb.2007.06.016. | |
[32] | 张海廷, 时延庆. 山东省不同土地利用方式土壤颗粒组成及其分形维数特征[J]. 水土保持研究, 2018, 25(1):126-131,138. |
ZHANG H T, SHI Y Q. Soil particle-size distribution and fractal dimension of different land use types in Shandong Province[J]. Res Soil Water Conserv, 2018, 25(1):126-131,138.DOI:10.13869/j.cnki.rswc.2018.01.021. | |
[33] | 李敏, 李毅. 土壤颗粒数量分布的局部分形及多重分形特性[J]. 西北农林科技大学学报(自然科学版), 2011, 39(11):216-222. |
LI M, LI Y. Local fractal and multifractal characteristics of soil number-based particle size distributions[J]. J Northwest A & F Univ (Nat Sci Ed), 2011, 39(11):216-222.DOI:10.13207/j.cnki.jnwafu.2011.11.016. | |
[34] | 吕圣桥. 黄河三角洲滩地土壤颗粒分形特征及其与土壤性质的相关性研究[D]. 泰安: 山东农业大学, 2012. |
LÜ S Q. Study on fractal characteristics of soil particles and their correlation with soil properties in Lowlands of the Yellow River Delta[D]. Tai’an: Shandong Agricultural University, 2012. | |
[35] | 蒋嘉瑜, 刘任涛, 张安宁. 干旱与半干旱荒漠草原区柠条灌丛土壤分形维数与理化性质对比分析[J]. 水土保持研究, 2021, 28(4):54-61,69. |
JIANG J Y, LIU R T, ZHANG A N. Comparative analysis of soil fractal dimension and soil physical and chemical properties between Caragana korshinskii shrub plantations in arid and semi-arid desert steppe[J]. Res Soil Water Conserv, 2021, 28(4):54-61,69.DOI:10.13869/j.cnki.rswc.2021.04.008. | |
[36] | 李平, 王冬梅, 丁聪, 等. 黄土高寒区典型植被类型土壤入渗特征及其影响因素[J]. 生态学报, 2020, 40(5):1610-1620. |
LI P, WANG D M, DING C, et al. Soil infiltration characteristics and its influencing factors of typical vegetation type in Loess Alpine region[J]. Acta Ecol Sin, 2020, 40(5):1610-1620.DOI:10.5846/stxb201902200304. | |
[37] | 胡阳, 邓艳, 蒋忠诚, 等. 岩溶坡地不同植被类型土壤水分入渗特征及其影响因素[J]. 生态学杂志, 2016, 35(3):597-604. |
HU Y, DENG Y, JIANG Z C, et al. Soil water infiltration characteristics and their influence factors on Karst hill slopes under different vegetation types[J]. Chin J Ecol, 2016, 35(3):597-604.DOI:10.13292/j.1000-4890.201603.031. | |
[38] | 陈家林, 郭二辉, 杨果果, 等. 太行山低山丘陵区不同水土保持林地土壤渗透性能及其影响因素研究[J]. 中南林业科技大学学报, 2016, 36(10):34-40. |
CHEN J L, GUO E H, YANG G G, et al. Characteristics and influencing factors of soil infiltration of different soil and water conservation forest lands in hilly region of Taihang Mountains[J]. J Central South Univ For & Technol, 2016, 36(10):34-40.DOI:10.14067/j.cnki.1673-923x.2016.10.007. | |
[39] | 吕渡, 杨亚辉, 赵文慧, 等. 不同恢复类型植被细根分布及与土壤理化性质的耦合关系[J]. 生态学报, 2018, 38(11):3979-3987. |
LÜ D, YANG Y H, ZHAO W H, et al. Fine root biomass distribution and coupling to soil physicochemical properties under different restored vegetation types[J]. Acta Ecol Sin, 2018, 38(11):3979-3987.DOI:10.5846/stxb201709021585. | |
[40] | 李广文. 黑河上游八宝河流域土壤特性及入渗模拟研究[D]. 西安: 陕西师范大学, 2016. |
LI G W. Study on soil characteristics and infiltration simulation of Babaohe basin in the upper reaches of Heihe River[D]. Xi'an: Shaanxi Normal University, 2016. | |
[41] | 王意锟, 金爱武, 方升佐, 等. 浙西南不同经营强度下毛竹林土壤渗透性研究[J]. 水土保持研究, 2015, 22(2):41-46. |
WANG Y K, JIN A W, FANG S Z, et al. Soil infiltration characteristics of Phyllostachys edulis forests with different management intensities in southwest Zhejiang[J]. Res Soil Water Conserv, 2015, 22(2):41-46.DOI:10.13869/j.cnki.rswc.2015.02.010. | |
[42] | 张昌顺, 范少辉, 官凤英, 等. 闽北毛竹林的土壤渗透性及其影响因子[J]. 林业科学, 2009, 45(1):36-42. |
ZHANG C S, FAN S H, GUAN F Y, et al. Soil infiltration characteristics and its influencing factors under Phyllostachys edulis forests in northern Fujian Province[J]. Sci Silvae Sin, 2009, 45(1):36-42.DOI:10.3321/j.issn:1001-7488.2009.01.008. | |
[43] | 赵西宁, 吴发启. 土壤水分入渗的研究进展和评述[J]. 西北林学院学报, 2004, 19(1):42-45. |
ZHAO X N, WU F Q. Developments and reviews of soil infiltration research[J]. J Northwest For Univ, 2004, 19(1):42-45.DOI:10.3969/j.issn.1001-7461.2004.01.011. |
[1] | 李承基, 官凤英, 周潇, 张璇, 郑亚雄. 配比施肥对带状采伐毛竹林立竹数量和质量恢复的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 79-85. |
[2] | 陆启帆, 林上平, 刘胜辉, 郑翔, 毕毓芳, 肖子璋, 姜姜, 王安可, 杜旭华. 施肥对毛竹林产量影响的Meta分析[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 88-96. |
[3] | 王晓静, 王涛, 杨凯, 李潞滨. PEG和NaCl胁迫下毛竹萌发种子中环状RNA特征及其表达研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 17-24. |
[4] | 黄碧芸, 卓仁英, 乔桂荣. 毛竹不同类型愈伤组织比较分析[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 141-149. |
[5] | 肖箫, 周阳, 王树梅, 郑亚雄, 官凤英. 带状采伐对新生毛竹空间结构及稳定性的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 139-147. |
[6] | 夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. |
[7] | 孙开, 江建平, 丁雨龙, RAMAKRISHNAU Muthusamy, 魏强. 毛竹竹秆秆柄形态与解剖学研究[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 40-46. |
[8] | 王树梅, 范少辉, 肖箫, 郑亚雄, 周阳, 官凤英. 带状采伐对毛竹地上生物量分配及异速生长的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 19-24. |
[9] | 张磊, 童龙, 谢锦忠, 李俞佳, 张玮. 不同灌水时间下毛竹伐桩根系化学计量及生理特性变化[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 25-30. |
[10] | 万雅雯, 傅华君, 时培建, 林树燕. 变温对毛竹种子萌发及幼苗生长的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 97-106. |
[11] | 杨清平, 陈双林, 郭子武, 郑进. 摘花和打顶措施对毛竹林下多花黄精块茎生物量积累特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 165-170. |
[12] | 王树梅, 王波, 范少辉, 肖箫, 夏雯, 官凤英. 带状采伐对毛竹林土壤细菌群落结构及多样性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 60-68. |
[13] | 郭雯, 漆良华, 雷刚, 胡璇, 张建, 舒琪, 商泽安. 毛竹及其变种叶片化学计量与养分重吸收效率[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 79-85. |
[14] | 郭子武, 杨丽婷, 林华, 陈双林, 杨清平. 坡位对毛竹林下黄花远志生物量积累与分配及其异速生长关系的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 79-84. |
[15] | 单雪萌, 杨克彬, 史晶晶, 朱成磊, 高志民. 毛竹GeBP转录因子家族的全基因组鉴定和表达分析[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 41-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||