南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4): 67-75.doi: 10.12302/j.issn.1000-2006.202206001
所属专题: 专题报道Ⅱ:乡村振兴视域下药用树种青钱柳培育研究
• 专题报道Ⅱ:乡村振兴视域下药用树种青钱柳培育研究(执行主编 李维林、方升佐) • 上一篇 下一篇
刘莉1,2(), 瞿印权1, 余延浩1, 王倩1, 洑香香1,*()
收稿日期:
2022-06-01
修回日期:
2022-09-05
出版日期:
2024-07-30
发布日期:
2024-08-05
通讯作者:
*(xxfu@njfu.edu.cn),洑香香,教授。作者简介:
刘莉(943444013@qq.com)。
基金资助:
LIU Li1,2(), QU Yinquan1, YU Yanhao1, WANG Qian1, FU Xiangxiang1,*()
Received:
2022-06-01
Revised:
2022-09-05
Online:
2024-07-30
Published:
2024-08-05
摘要:
【目的】通过对青钱柳全基因组序列分析,开发基因组SSR分子标记;尝试构建19个青钱柳优良药用无性系的DNA分子身份证,为后续种质资源评价、遗传多样性和种质鉴定提供技术支撑。【方法】利用MISA(microsatellite identification tool)软件对青钱柳全基因组进行SSR位点搜寻、筛选、识别及富集分析,采用Primer 3.0进行SSR引物设计;用重复性和稳定性高的SSR标记构建青钱柳无性系的识别系统。【结果】①从全基因组中共检测出89 741个SSR位点,SSR位点的发生频率为62.07%。②基因组SSR位点中单核苷酸重复单元比例最高,占总SSR位点的62.67%;六核苷酸重复单元比例最低,占0.15%;SSR位点的重复基序大多以(A/T)n为主。③单核苷酸和二核苷酸重复类型的SSR位点基序重复次数集中在6~16次;随重复次数增加,各SSR位点重复类型出现频率均呈下降趋势。④基因组SSR序列长度介于10~476 bp,不同类型重复单元的SSR序列长度存在变异性;随着重复次数的增加,SSR序列出现的频率整体呈下降趋势。⑤利用Primer 3.0成功设计出78 285对SSR引物;合成的377对中有75对引物可扩增出多态性条带;用5对单碱基重复的多态性SSR引物分析19个药用无性系,构建出无性系的二维码DNA分子身份证。【结论】青钱柳基因组SSR位点出现频率高,位点种类丰富,可为种质资源评价及指纹图谱的构建提供丰富的候选分子标记。
中图分类号:
刘莉,瞿印权,余延浩,等. 青钱柳全基因组SSR位点分析及多态性引物开发[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 67-75.
LIU Li, QU Yinquan, YU Yanhao, WANG Qian, FU Xiangxiang. Analysis of SSR locus based on the whole genome sequences of Cyclocarya paliurus and the development of polymorphic primers[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(4): 67-75.DOI: 10.12302/j.issn.1000-2006.202206001.
表1
青钱柳基因组SSR位点重复类型和重复次数的统计分析"
SSR类型 SSR type | 数量 number | 重复次数 repeat time | 平均 长度/bp average length | 百分比/% percentage | 重复单元类型 motif type | ||
---|---|---|---|---|---|---|---|
数量 number | 主要基序 main motif | ||||||
单核苷酸 mono-nucleotide | 56 242 | 10~73 | 12.61 | 62.67 | 4 | A/T、C/G | |
二核苷酸 di-nucleotide | 27 291 | 6~86 | 19.78 | 30.41 | 12 | AC/GT、AG/CT、AT/AT、CG/CG | |
三核苷酸 tri-nucleotide | 5 014 | 5~32 | 18.68 | 5.59 | 59 | AAT/ATT、AAG/CTT、ACG/CGT | |
四核苷酸 tetra-nucleotide | 712 | 5~10 | 21.67 | 0.79 | 101 | AAAG/CTTT、AAAT/ATTT、ACAT/ATGT | |
五核苷酸 penta-nucleotide | 351 | 5~9 | 26.62 | 0.39 | 90 | AGATG/ATCTC、AACTC/AGTTG AAAAG/CTTTT、 AAAAT/ATTTT | |
六核苷酸 hexa-nucleotide | 131 | 5~17 | 33.02 | 0.15 | 88 | AAAAAG/CTTTTT、AAAAAT/ATTTTT、 AGAGGG/CCCTCT | |
总计 total | 89 741 | 100.00 | 354 |
表2
不同核苷酸重复类型SSR引物的有效性验证"
引物来源 primer source | 引物数量 number of primers | 多态性 引物数 number of polymorphic primers | 有效 引物数 number of valid primers | 有效 扩增率/% effective amplification rate | 多态性 比例/% polymor- phism ratio |
---|---|---|---|---|---|
单核苷酸 mono-nucleotide | 142 | 10 | 75 | 52.82 | 7.04 |
二核苷酸 di-nucleotide | 104 | 8 | 86 | 90.38 | 7.69 |
三核苷酸 tri-nucleotide | 131 | 57 | 119 | 90.84 | 43.51 |
总计 total | 377 | 75 | 280 | 74.27 | 19.89 |
表3
5对SSR引物信息及其扩增结果分析"
引物名称 primer | 引物序列(5'-3') primer sequence (5'-3') | 重复基元 repeat unit | 预计产物 长度/bp expected length of production | 实际产物 长度/bp actual length of production | 扩增总 条带数 bands amplified | 多态性 条带数 polymorphic bands | 多态性 比率/% polymorphic ratio |
---|---|---|---|---|---|---|---|
CpSSR-6 | F: AAGCTTGGCTTTTGCATGAT | (A)12 | 124 | 126~129 | 3 | 1 | 33.3 |
R: AACTCCAGTAGCAGGGCTCA | |||||||
CpSSR-10 | F: AAGTCCCTGGTGATGGTGAG | (A)10 | 141 | 136~234 | 4 | 3 | 75.0 |
R: GTCCGCTGAGTTCTTGAAGG | |||||||
CpSSR-43 | F: AAGGAGCGCAGGTATTCAGA | (A)15 | 191 | 143~296 | 5 | 4 | 80.0 |
R: GCACAGGCAACTCAATCTCA | |||||||
CpSSR-46 | F: GCTTGGATTGCTCACAGTCA | (A)11 | 222 | 223~269 | 3 | 2 | 66.7 |
R: AAAGCCGCTTGACTACGAAA | |||||||
CpSSR-139 | F: AAGGAGCGCAGGTATTCAGA | (T)10 | 191 | 118~192 | 5 | 4 | 80.0 |
R: GCACAGGCAACTCAATCTCA | |||||||
合计total | 20 | 14 | 67.0 | ||||
均值mean | 4 | 2.8 |
表4
5对SSR引物在19个青钱柳药用无性系扩增产物的毛细管电泳结果及带型编码"
引物名称 primer | 荧光基团 fluorescent group | 多态性片段编码/bp code of polymorphism fragments |
---|---|---|
A 192 | ||
B 192/190 | ||
CpSSR-139 | FAM | C 192/118 |
D 192/190/143 | ||
E 192/190/187 | ||
A 147/144 | ||
B 144 | ||
CpSSR-10 | ROX | C 144/136 |
D234/147/144 | ||
E234/144 | ||
A 239/192/190 | ||
B 296/192 | ||
CpSSR-43 | FAM | C 192/190 |
D 192 | ||
E 296/192/190 | ||
F192/190/143 | ||
CpSSR-46 | TAMRA | A 223 |
B 226/223 | ||
C 226 | ||
D 229/226/223 | ||
CpSSR-6 | TAMRA | A 129/127/126 |
B 127/126 |
[1] | 方升佐, 洑香香. 青钱柳资源培育与开发利用的研究进展[J]. 南京林业大学学报(自然科学版), 2007, 31(1):95-100. |
FANG S Z, FU X X. Progress and prospects on silviculture and utilization of Cyclocarya paliurus resources[J]. J Nanjing For Univ (Nat Sci Ed), 2007, 31(1):95-100.DOI: 10.3969/j.issn.1000-2006.2007.01.023. | |
[2] | 孙戴妍, 尚旭岚, 洑香香, 等. 青钱柳胸径生长和木材密度的地理变异规律[J]. 南京林业大学学报(自然科学版), 2017, 41(4):1-5. |
SUN D Y, SHANG X L, FU X X, et al. Regularity on geographic variation in DBH growth and wood density of Cyclocarya paliurus[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(4):1-5.DOI: 10.3969/j.issn.1000-2006.201610005. | |
[3] | 侯小利, 刘晓霞, 王硕, 等. 青钱柳叶总黄酮对自发性高血压大鼠的影响[J]. 中药药理与临床, 2014, 30(2):62-69. |
HOU X L, LIU X X, WANG S, et al. Effect of the flavonoids from Cyclocarya paliurus on spontaneous hypertension rats[J]. Pharmacol Clin Chin Mater Med, 2014, 30(2):62-69.DOI: 10.13412/j.cnki.zyyl.2014.02.021. | |
[4] | WU Z F, MENG F C, CAO L J, et al. Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells[J]. Phytochemistry, 2017, 142:76-84.DOI: 10.1016/j.phytochem.2017.06.015. |
[5] | YANG Z W, WANG J, LI J G, et al. Antihyperlipidemic and hepatoprotective activities of polysaccharide fraction from Cyclocarya paliurus in high-fat emulsion-induced hyperlipidaemic mice[J]. Carbohydr Polym, 2018, 183:11-20.DOI: 10.1016/j.carbpol.2017.11.033. |
[6] | 郑观涛, 殷志琦. 药用植物青钱柳的开发研究进展[J]. 世界最新医学信息文摘, 2019, 19(43):123-124. |
ZHENG G T, YIN Z Q. Research progress on development in Cyclocarya paliurus[J]. World Latest Med Inf, 2019, 19(43):123-124.DOI: 10.19613/j.cnki.1671-3141.2019.43.058. | |
[7] | 林源, 陈培, 周明明, 等. 天然居群青钱柳叶主要生物活性物质及抗氧化活性研究[J]. 南京林业大学学报(自然科学版), 2020, 44(2):10-16. |
LIN Y, CHEN P, ZHOU M M, et al. Key bioactive substances and their antioxidant activities in Cyclocarya paliurus (Batal.) Iljinskaja leaves collected from natural populations[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2):10-16.DOI: 10.3969/j.issn.1000-2006.201901045. | |
[8] | 周永晟, 徐子恒, 袁发银, 等. 亚热带3个地点青钱柳群落特征比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1):29-35. |
ZHOU Y S, XU Z H, YUAN F Y, et al. Comparisons of community characteristics among three natural forests of Cyclocarya paliurus in the subtropical region of China[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):29-35.DOI: 10.12302/j.issn.1000-2006.202005017. | |
[9] | SUN C W, ZHOU Y S, FANG S Z, et al. Ecological gradient analysis and environmental interpretation of Cyclocarya paliurus communities[J]. Forests, 2021, 12(2):146.DOI: 10.3390/f12020146. |
[10] | SUN C W, SHANG X L, DING H F, et al. Natural variations in flavonoids and triterpenoids of Cyclocarya paliurus leaves[J]. J For Res, 2021, 32(2):805-814.DOI: 10.1007/s11676-020-01139-1. |
[11] | ZHOU M M, QUEK S Y, SHANG X L, et al. Geographical variations of triterpenoid contents in Cyclocarya paliurus leaves and their inhibitory effects on HeLa cells[J]. Ind Crops Prod, 2021, 162:113314.DOI: 10.1016/j.indcrop.2021.113314. |
[12] | 田力, 徐骋炜, 尚旭岚, 等. 青钱柳药用优良单株评价与选择[J]. 南京林业大学学报(自然科学版), 2021, 45(1):21-28. |
TIAN L, XU C W, SHANG X L, et al. Evaluation and selection on superior individuals for medicinal use of Cyclocarya paliurus[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):21-28.DOI: 10.12302/j.issn.1000-2006.202002018. | |
[13] | 王久利, 朱明星, 徐明行, 等. 基于RAD-seq技术的异型花SSR信息分析[J]. 植物研究, 2017, 37(3):447-452,460. |
WANG J L, ZHU M X, XU M H, et al. Analysis on SSR in Sinoswertia tetraptera base on RAD-seq[J]. Bull Bot Res, 2017, 37(3):447-452,460.DOI: 10.7525/j.issn.1673-5102.2017.03.016. | |
[14] | GONZAGA Z J, ASLAM K, SEPTININGSIH E M, et al. Evaluation of SSR and SNP markers for molecular breeding in rice[J]. Plant Breed Biotech, 2015, 3(2):139-152.DOI: 10.9787/pbb.2015.3.2.139. |
[15] | LI X C, FU X X, SHANG X L, et al. Natural population structure and genetic differentiation for heterodicogamous plant:Cyclocarya paliurus (Batal.) Iljinskaja (Juglandaceae)[J]. Tree Genet Genomes, 2017, 13(4):80.DOI: 10.1007/s11295-017-1157-5. |
[16] | SAVIĆ A, PIPAN B, VASIĆ M, et al. Genetic diversity of common bean (Phaseolus vulgaris L.) germplasm from Serbia,as revealed by single sequence repeats (SSR)[J]. Sci Hortic, 2021, 288:110405.DOI: 10.1016/j.scienta.2021.110405. |
[17] | LI B, LIN F R, HUANG P, et al. Development of nuclear SSR and chloroplast genome markers in diverse Liriodendron chinense germplasm based on low-coverage whole genome sequencing[J]. Biol Res, 2020, 53(1):21.DOI: 10.1186/s40659-020-00289-0. |
[18] | LI C H, ZHENG Y Q, LIU Y, et al. Development of genomic SSR for the subtropical hardwood tree Dalbergia hupeana and assessment of their transferability to other related species[J]. Forests, 2021, 12(6):804.DOI: 10.3390/f12060804. |
[19] | LEE K J, LEE J R, SEBASTIN R, et al. Assessment of genetic diversity of tea germplasm for its management and sustainable use in Korea genebank[J]. Forests, 2019, 10(9):780.DOI: 10.3390/f10090780. |
[20] | 王希, 陈丽, 赵春雷. 利用MISA工具对不同类型序列进行SSR标记位点挖掘的探讨[J]. 中国农学通报, 2016, 32(10):150-156. |
WANG X, CHEN L, ZHAO C L. Mining SSR molecular marker sites with MISA tool for different types of sequences[J]. Chin Agric Sci Bull, 2016, 32(10):150-156. | |
[21] | UNTERGASSER A, CUTCUTACHE I, KORESSAAR T, et al. Primer3:new capabilities and interfaces[J]. Nucleic Acids Res, 2012, 40(15):e115.DOI: 10.1093/nar/gks596. |
[22] | 乔舒婷, 董文其, 胡齐赞, 等. 基于丝瓜全基因组序列SSR分子标记开发[J]. 分子植物育种, 2023, 21(6):1937-1947. |
QIAO S T, DONG W Q, HU Q Z, et al. Development of SSR molecular markers based on whole genome sequences of sponge gourd[J]. Mol Plant Breed, 2023, 21(6):1937-1947.DOI: 10.13271/j.mpb.021.001937. | |
[23] | 郭艳春, 张力岚, 陈思远, 等. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1):80-93. |
GUO Y C, ZHANG L L, CHEN S Y, et al. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.)[J]. Acta Agron Sin, 2021, 47(1):80-93.DOI: 10.3724/SP.J.1006.2021.04022. | |
[24] | XIA E H, ZHANG H B, SHENG J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Mol Plant, 2017, 10(6):866-877.DOI: 10.1016/j.molp.2017.04.002. |
[25] | 宋立肖, 李国旗, 靳长青, 等. 大麻状罗布麻的全基因组分析和SSR标记开发[J]. 植物遗传资源学报, 2019, 20(5):1309-1316. |
SONG L X, LI G Q, JIN C Q, et al. Whole genome sequencing and development of SSR markers in Apocynum cannabinum[J]. J Plant Genet Resour, 2019, 20(5):1309-1316.DOI: 10.13430/j.cnki.jpgr.20181218002. | |
[26] | 崔哲, 左力辉, 韩坤瑾, 等. 毛果杨(Populus trichocarpa)全基因组SSR位点分布规律[J]. 分子植物育种, 2020, 18(11):3683-3692. |
CUI Z, ZUO L H, HAN K J, et al. Distribution rule of SSR loci in whole genome of Populus trichocarpa[J]. Mol Plant Breed, 2020, 18(11):3683-3692.DOI: 10.13271/j.mpb.018.003683. | |
[27] | 蒋向辉, 苑静, 王翔. 青钱柳叶片转录组数据组装及基因功能注释[J]. 华中师范大学学报(自然科学版), 2018, 52(6):822-831. |
JIANG X H, YUAN J, WANG X. De novo transcriptome assembly and annotation of the leaves of Cyclocarya paliurus[J]. J Cent China Norm Univ (Nat Sci),2018, 52(6):822-831.DOI: 10.19603/j.cnki.1000-1190.2018.06.012. | |
[28] | 陈秀娟, 柏明娥, 王丽玲, 等. 青钱柳种质资源亲缘关系的ISSR分析评价[J]. 中国林副特产, 2016(4):6-10. |
CHEN X J, BAI M E, WANG L L, et al. ISSR analysis and evaluation of genetic relationship of Cyclocarya paliurus germplasm resources[J]. For Prod Speciality China, 2016(4):6-10.DOI: 10.13268/j.cnki.fbsic.2016.04.002. | |
[29] | 周一旸, 洑香香, 尚旭岚, 等. 青钱柳种质资源多样性SRAP初步分析[J]. 基因组学与应用生物学, 2011, 30(1):40-46. |
ZHOU Y Y, FU X X, SHANG X L, et al. Preliminary study on the genetic diversity of germplasm for Cyclocarya paliurus revealed by SRAP markers[J]. Genom Appl Biol, 2011, 30(1):40-46.DOI: 10.3969/gab.030.000040. | |
[30] | FAN D M, YE L J, LUO Y, et al. Development of microsatellite loci for Cyclocarya paliurus (Juglandaceae),a monotypic species in subtropical China[J]. Appl Plant Sci, 2013, 1(6):apps.1200524.DOI: 10.3732/apps.1200524. |
[31] | XU J, LIU L, XU Y B, et al. Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize[J]. DNA Res, 2013, 20(5):497-509.DOI: 10.1093/dnares/dst026. |
[32] | HE S M, DONG X, ZHANG G H, et al. High quality genome of Erigeron breviscapus provides a reference for herbal plants in Asteraceae[J]. Mol Ecol Resour, 2021, 21(1):153-169.DOI: 10.1111/1755-0998.13257. |
[33] | 林恩文, 林榕榕, 陈钦常, 等. 龙眼全基因组和转录本序列SSR位点的鉴定[J]. 福建农林大学学报(自然科学版), 2022, 51(4):493-501. |
LIN E W, LIN R R, CHEN Q C, et al. SSR loci analysis in genome and transcriptome of Longan[J]. J Fujian Agric For Univ (Nat Sci Ed), 2022, 51(4):493-501.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2022.04.007. | |
[34] | KARAOGLU H, LEE C M Y, MEYER W. Survey of simple sequence repeats in completed fungal genomes[J]. Mol Biol Evol, 2005, 22(3):639-649.DOI: 10.1093/molbev/msi057. |
[35] | 刘松卫, 卢迎春, 宋婉玲, 等. 基于灯盏花全基因组SSR位点分析及多态性引物开发[J]. 分子植物育种, 2018, 16(12):4003-4009. |
LIU S W, LU Y C, SONG W L, et al. SSR loci analysis based on Erigeron breviscapus genome and polymorphism primers development[J]. Mol Plant Breed, 2018, 16(12):4003-4009.DOI: 10.13271/j.mpb.016.004003. | |
[36] | CARDLE L, RAMSAY L, MILBOURNE D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants[J]. Genetics, 2000, 156(2):847-854.DOI: 10.1093/genetics/156.2.847. |
[37] | 王玉龙, 黄冰艳, 王思雨, 等. 四倍体野生种花生(A.monticola)全基因组SSR的开发与特征分析[J]. 中国农业科学, 2019, 52(15):2567-2585. |
WANG Y L, HUANG B Y, WANG S Y, et al. Development and characterization of whole genome SSR in tetraploid wild peanut(Arachis monticola)[J]. Sci Agric Sin, 2019, 52(15):2567-2585.DOI: 10.3864/j.issn.0578-1752.2019.15.002. | |
[38] | LIU S R, LI W Y, LONG D, et al. Development and characterization of genomic and expressed SSRs in citrus by genome-wide analysis[J]. PLoS One, 2013, 8(10):e75149.DOI: 10.1371/journal.pone.0075149. |
[39] | SCHORDERET D F, GARTLER S M. Analysis of CpG suppression in methylated and nonmethylated species[J]. Proc Natl Acad Sci USA, 1992, 89(3):957-961.DOI: 10.1073/pnas.89.3.957. |
[40] | 宋莎, 冯建文, 吴亚维, 等. 基于RAD-seq技术的花红SSR信息分析[J]. 贵州农业科学, 2019, 47(11):103-106. |
SONG S, FENG J W, WU Y W, et al. Analysis on SSR in Malus asiatica Nakai.base on RAD sequencing[J]. Guizhou Agric Sci, 2019, 47(11):103-106.DOI: 10.3969/j.issn.1001-3601.2019.11.021. | |
[41] | 周晓君, 王海亮, 李方玲, 等. 基于RAD-seq技术开发灵宝杜鹃多态性SSR标记[J]. 农业生物技术学报, 2019, 27(1):55-62. |
ZHOU X J, WANG H L, LI F L, et al. Development of polymorphic SSR markers in Rhododendron henanense subsp.lingbaoense based on RAD-seq[J]. J Agric Biotechnol, 2019, 27(1):55-62.DOI: 10.3969/j.issn.1674-7968.2019.01.006. | |
[42] | BEGHÈ D, MOLANO J F G, FABBRI A, et al. Olive biodiversity in Colombia.A molecular study of local germplasm[J]. Sci Hortic, 2015, 189:122-131.DOI: 10.1016/j.scienta.2015.04.003. |
[43] | CREGAN P B, JARVIK T, BUSH A L, et al. An integrated genetic linkage map of the soybean genome[J]. Crop Sci, 1999, 39(5):1464-1490.DOI: 10.2135/cropsci1999.3951464x. |
[1] | 刘小芳, 岳喜良, 方升佐, 李晴, 孙昕. 氮磷配施对青钱柳生长及叶生物活性物质含量的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 57-66. |
[2] | 刘夏岚, 宋子琪, 胡凤荣, 尚旭岚. 青钱柳二倍体和四倍体叶特征比较研究[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 76-84. |
[3] | 张赞培, 谷月营, 尚旭岚, 王纪, 方升佐. 自然低温下23个青钱柳家系耐寒性评价[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 85-92. |
[4] | 宋子琪, 卞国良, 林峰, 胡凤荣, 尚旭岚. 流式细胞仪鉴定青钱柳倍性方法的建立及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 61-68. |
[5] | 王纪, 方升佐. 不同抗褐化剂对青钱柳愈伤组织酶活性和生长的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 167-174. |
[6] | 黄梓良, 徐子恒, 孙操稳. 青钱柳种子雨的季节动态及土壤种子库特征[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 18-26. |
[7] | 陈赢男, 韦素云, 曲冠正, 胡建军, 王军辉, 尹佟明, 潘惠新, 卢孟柱, 康向阳, 李来庚, 黄敏仁, 王明庥. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 1-9. |
[8] | 方升佐. 青钱柳产业发展历程及资源培育研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 115-126. |
[9] | 何旭东, 隋德宗, 王红玲, 黄瑞芳, 郑纪伟, 王保松. 中国柳树遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 51-63. |
[10] | 徐展宏, 朱莹, 金慧颖, 孙操稳, 方升佐. 不同叶色青钱柳叶片色素、多酚含量及光合特性的差异[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 103-110. |
[11] | 孙操稳, 仲文雯, 洑香香, 尚旭岚, 方升佐. 青钱柳幼林地上部分生物量生长模型研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 138-144. |
[12] | 李娜, 朱培林, 丰采, 温敏学, 方升佐, 尚旭岚. 青钱柳嫁接愈合过程中砧穗生理特性及其与亲和性的关系[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 13-20. |
[13] | 周永晟, 徐子恒, 袁发银, 尚旭岚, 孙操稳, 方升佐. 亚热带3个地点青钱柳群落特征比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 29-35. |
[14] | 陈文文, 吴怀通, 陈赢男. SPL家族基因复制及功能分化分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 55-66. |
[15] | 林源, 陈培, 周明明, 尚旭岚, 方升佐. 天然居群青钱柳叶主要生物活性物质及抗氧化活性研究[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 10-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||