岩土高效溶蚀菌株Bt NL-11发酵条件优化及应用效果分析

王凌剑, 贾赵辉, 张金池, 唐兴港, 孙昕, 孟苗婧, 刘鑫

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (3) : 71-80.

PDF(2584 KB)
PDF(2584 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (3) : 71-80. DOI: 10.12302/j.issn.1000-2006.202206022
专题报道Ⅱ:土壤生态修复理论与技术研究(执行主编 张金池)

岩土高效溶蚀菌株Bt NL-11发酵条件优化及应用效果分析

作者信息 +

Optimization for fermentation conditions and analysis of application effect for high efficiency dissolution strain Bt NL-11 from Bacillus thuringiensis

Author information +
文章历史 +

摘要

【目的】 为科学治理废弃矿山边坡,探究土壤细菌永久绿化法在生态修复中的应用与推广,对分离筛选出的高效溶蚀菌株进行发酵条件优化及应用效果分析。【方法】 从南京幕府山风化岩壁土壤中分离出多种溶蚀微生物,并从中挑选出1种表现突出的溶蚀细菌菌株NL-11[经16S rRNA鉴定为苏云金芽孢杆菌(Bacillus thuringiensis,Bt)]进行发酵条件优化,利用盆栽试验观测其应用效果。首先利用单因素和Plackett Burman(PB)试验筛选出影响菌株生长的3个主要因素,即装液量、培养温度和时间;在此基础上使用最陡爬坡路径逼近最大响应区域;再利用Box-Behnken试验设计及响应面分析法进行回归分析;最后通过比较预测值与实测值验证模型可靠性。利用优化结果制备菌液,将制备好的菌液调节为低(10 cfu/mL)、中(1×105 cfu/mL)和高(1×109 cfu/mL)3种菌液浓度拌入基质(分别为T1、T2、T3处理)进行盆栽试验,设置不加菌液的处理为空白对照(CK),研究不同浓度菌液对矿物风化、植物和根系生长的促进作用。【结果】 模型准确可靠,菌株NL-11的最佳发酵培养条件为:装液量19.51 mL,接种量2%(体积分数),初始pH 7.0,培养温度30.30 ℃,培养时间22.07 h,在此优化条件下发酵液中活菌数达到1.47×1010 cfu/mL,是未优化前的2.03倍。盆栽试验结果表明,菌株NL-11能够促进矿物风化,以高浓度菌液效果最显著;NL-11能够促进矿质养分溶解,以高浓度菌液效果最显著;NL-11能够促进植物及根系生长,以中浓度效果最显著。【结论】 通过优化试验显著提高了菌株NL-11的发酵活菌产量,为菌株在边坡治理中的应用提供技术支持,综合评价菌株的应用效果并考虑生产成本等因素,喷播实践中的合适菌液浓度为1×105 cfu/mL。

Abstract

【Objective】 This study aimed to scientifically manage abandoned mine slopes, explore the application and promotion of the soil bacteria permanent greening method in restoration, optimize the fermentation conditions, and analyze the application effect of the isolated and screened high-efficiency solubilizing bacteria.【Method】 A variety of solubilizing microorganisms were isolated from the weathered rock wall soil in Nanjing Mufu Mountain, and a prominent solubilizing strain, NL-11, identified as Bacillus thuringiensis by 16S rRNA, was selected to optimize fermentation conditions, and its application effect was observed with the potting test. The three main factors affecting the growth of the strain (liquid volume, temperature, and time), were screened using the univariate and Plackett Burman tests; on this basis, the steepest climbing path was used to approximate the maximum response area; then, the Box-Behnken experimental design was used and the response surface analysis method was used for regression analysis. Finally, model reliability was verified by comparing the predicted values with the measured values. The optimized results were used to prepare the bacterial solution, and then adjusted to low (10 cfu/mL), medium (1 × 105 cfu/mL), and high (1 × 109 cfu/mL) concentrations and mixed into the substrate (T1, T2, and T3 treatments, respectively) for the pot experiments, and the treatment without the bacterial solution was set as a blank control (CK) to study the effects of the different bacterial solution concentrations on mineral weathering and plant and root growth.【Result】 The model was accurate and reliable, and the optimal fermentation culture conditions for NL-11 were as follows: a liquid volume of 19.51 mL, an inoculum level of 2%, an initial pH of 7.0, a temperature of 30.30 ℃, and a time of 22.07 h. The number of viable bacteria in the fermentation broth under these optimized conditions reached 1.47 × 1010 cfu/mL, which was 2.03 times higher than that before optimization. The results of the pot tests showed that strain NL-11 could promote mineral weathering, and the effect of the high concentration of the bacterial solution was the most significant. Furthermore, strain NL-11 could promote the dissolution of mineral nutrients, and the effect of the high concentration of the bacterial solution was the most significant. Strain NL-11 could also promote plant and root growth, and the effect of the medium concentration was the most significant. 【Conclusion】 The optimization test significantly improved the production of fermentation of the live bacteria of strain NL-11 and provided technical support for the application of the strain in the management of slopes. The suitable concentration of the bacterial solution in spraying practice is 1 × 105 cfu/mL by the comprehensive evaluation of the application effect and consideration of the production cost and other factors.

关键词

生态修复 / 苏云金芽孢杆菌 / 发酵条件优化 / Box-Behnken设计

Key words

ecological restoration / Bacillus thuringiensis / fermentation process optimization / Box-Behnken design

引用本文

导出引用
王凌剑, 贾赵辉, 张金池, . 岩土高效溶蚀菌株Bt NL-11发酵条件优化及应用效果分析[J]. 南京林业大学学报(自然科学版). 2024, 48(3): 71-80 https://doi.org/10.12302/j.issn.1000-2006.202206022
WANG Lingjian, JIA Zhaohui, ZHANG Jinchi, et al. Optimization for fermentation conditions and analysis of application effect for high efficiency dissolution strain Bt NL-11 from Bacillus thuringiensis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(3): 71-80 https://doi.org/10.12302/j.issn.1000-2006.202206022
中图分类号: X751;S732;Q89   

参考文献

[1]
关军洪, 郝培尧, 董丽, 等. 矿山废弃地生态修复研究进展[J]. 生态科学, 2017, 36(2):193-200.
GUAN J H, HAO P Y, DONG L, et al. Review on ecological restoration of mine wasteland[J]. Ecol Sci, 2017, 36(2):193-200.DOI:10.14108/j.cnki.1008-8873.2017.02.028.
[2]
许晓明, 胡国峰, 邵雁, 等. 我国矿山生态修复发展状况及趋势分析[J]. 矿产勘查, 2022, 13(S1):309-314.
XU X M, HU G F, SHAO Y, et al. Analysis on the development status and trend of mine ecological restoration in China[J]. Miner Explor, 2022, 13(S1):309-314.DOI:10.20008/j.kckc.202203018.
[3]
李海东, 沈渭寿, 贾明, 等. 大型露天矿山生态破坏与环境污染损失的评估[J]. 南京林业大学学报(自然科学版), 2015, 39(6):112-118.
LI H D, SHEN W S, JIA M, et al. Economic losses assessment for ecological destruction and environmental pollution in large-scale opencast mine[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(6):112-118.
[4]
周跃, WATTS D. 坡面生态工程及其发展现状[J]. 生态学杂志, 1999, 18(5):68-73,79.
ZHOU Y, WATTS D. Lope eco-engineering andits current developing state[J]. Chin J Ecol, 1999, 18(5):68-73,79.
[5]
谢建华. 废弃采石场石质边坡植被重建与关键技术试验研究[J]. 亚热带水土保持, 2018, 30(3):11-13,70.
XIE J H. Experimental study on vegetation reconstruction and key technologies of stone slopes in abandoned Quarries[J]. Subtrop Soil Water Conserv, 2018, 30(3):11-13,70.
[6]
孙其河. 高陡石质边坡植被修复技术应用与效益评价[D]. 兰州: 兰州大学, 2020.
SUN Q H. Application and benefit evaluation of vegetation restoration technology for high and steep rock slope[D]. Lanzhou: Lanzhou University, 2020.
[7]
CHEN Z, CHEN W L, LI C J, et al. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects[J]. Sci Total Environ, 2016, 554/555:26-33.DOI:10.1016/j.scitotenv.2016.02.173.
[8]
ZHANG W J, LI R R, AI X Y, et al. Enzyme activity and microbial biomass availability in artificial soils on rock-cut slopes restored with outside soil spray seeding (OSSS):influence of topography and season[J]. J Environ Manag, 2018, 211:287-295.DOI:10.1016/j.jenvman.2018.01.005.
[9]
王世杰, 季宏兵, 欧阳自远, 等. 碳酸盐岩风化成土作用的初步研究[J]. 中国科学(D辑:地球科学), 1999, 29(5):441-449.
WANG S J, JI H B, OUYANG Z Y, et al. Preliminary study on weathering and soil formation of carbonate rocks[J]. Sci Sin (Terrae), 1999, 29(5):441-449.DOI:10.3321/j.issn:1006-9267.1999.05.008.
[10]
李国保, 王秀英. 客土喷播技术在水库坝肩石质边坡处理中的应用[J]. 低碳世界, 2019, 9(7):69-70.
LI G B, WANG X Y. Application of guest soil spray seeding technology in the treatment of rock slope of reservoir abutment[J]. Low Carbon World, 2019, 9(7):69-70.DOI:10.16844/j.cnki.cn10-1007/tk.2019.07.041.
[11]
王广林, 黄玲玲, 张明, 等. 基于菌土技术的温湿地区困难立地快速绿化法[J]. 安徽林业科技, 2016, 42(3):7-9.
WANG G L, HUANG L L, ZHANG M, et al. A rapid greening method based on microorganism soil techniques for difficult sites in warm and humid Areas[J]. Anhui For Sci Technol, 2016, 42(3):7-9.
[12]
郎煜华. 土壤菌绿化法与普通喷播绿化的对比试验研究[C]// 第二届全国水土保持生态修复学术研讨会论文集.贵阳, 2010:211-237.
LANG Y H. Comparative experimental study of soil fungus greening method and ordinary spraying greening[C]// Proceedings of the Second National Symposium on Soil and Water Conservation and Ecological Restoration. Guiyang, 2010:211-237.
[13]
姚正学, 杨军. 岩石坡面土壤菌永久绿化法原理[J]. 甘肃科学学报, 2005, 17(4):37-39.
YAO Z X, YANG J. The principle of perpetual greening by the action of soil fungi on rock slopes[J]. J Gansu Sci, 2005, 17(4):37-39.DOI:10.16468/j.cnki.issn1004-0366.2005.04.011.
[14]
郎煜华, 邱茂国. 喷播绿化工程的失败经验与对策[J]. 建筑, 2011(17):73-74.
LANG Y H, QIU M G. Failure experience and countermeasures of spray seeding greening project[J]. Constr Archit, 2011(17):73-74.
[15]
张金池, 王广林, 张波, 等. 一种石灰岩高效侵蚀细菌苏云金芽孢杆菌NL-11及其应用:CN103087954A[P]. 2013-05-08.
ZHANG J C, WANG G L, ZHANG B, et al. Bacillus thuringiensis NL-11 bacterium capable of efficiently eroding limestone and application thereof:CN103087954A[P]. 2013-05-08.
[16]
关雄. 苏云金芽孢杆菌研究回顾与展望[J]. 中国农业科技导报, 2006, 8(6):5-11.
GUAN X. Progress in the studies and application of Bacillus thuringiensis[J]. Rev China Agric Sci Technol, 2006, 8(6):5-11.
[17]
AKHTAR M, MIZUTA K, SHIMOKAWA T, et al. Enhanced insecticidal activity of Bacillus thuringiensis using a late embryogenesis abundant peptide co-expression system[J]. J Microbiol Methods, 2021, 188:106207.DOI:10.1016/j.mimet.2021.106207.
[18]
ISAYAMA S, SUZUKI T, NAKAI M, et al. Influence of tannic acid on the insecticidal activity of a Bacillus thuringiensis serovar aizawai formulation against Spodoptera litura Fabricius (Lepidoptera:Noctuidae)[J]. Biol Control, 2021, 157:104558.DOI:10.1016/j.biocontrol.2021.104558.
[19]
杨静, 高泽鑫, 朱莉, 等. 产胞外多糖的苏云金芽孢杆菌的筛选及发酵工艺优化[J]. 食品与发酵工业, 2021, 47(24):124-131.
YANG J, GAO Z X, ZHU L, et al. Screening of an extracellular polysaccharides producing Bacillus thuringiensis strain and its fermentation optimization[J]. Food Ferment Ind, 2021, 47(24):124-131.DOI:10.13995/j.cnki.11-1802/ts.027440.
[20]
宋健, 张海剑, 丰硕, 等. 对韭菜迟眼蕈蚊高活性的苏云金芽胞杆菌JQD117发酵培养基及摇瓶发酵条件优化[J]. 中国生物防治学报, 2022, 38(2):333-341.
SONG J, ZHANG H J, FENG S, et al. Optimization of fermentation culture medium and flask fermentation conditions for Bacillus thuringiensis strain JQD117 with high toxicity against Bradysia odoriphaga[J]. Chin J Biol Control, 2022, 38(2):333-341.DOI:10.16409/j.cnki.2095-039x.2021.07.013.
[21]
闫洪雪, 刘露, 李丽, 等. 一株苏云金杆菌Bt02发酵条件的优化研究[J]. 现代农业科技, 2015(23):127-128,130.
YAN H X, LIU L, LI L, et al. Study on optimization of fermentation conditions of a strain of Bacillus thuringiensis Bt02[J]. Mod Agric Sci Technol, 2015(23):127-128,130.
[22]
张路路, 朱朝华, 郭刚. 苏云金芽孢杆菌A322菌株发酵培养基和发酵条件的优化[J]. 热带生物学报, 2014, 5(3):253-259.
ZHANG L L, ZHU C H, GUO G. Optimization of Bacillus thuringiensis A322 strain fermentation medium and cultural conditions[J]. J Trop Biol, 2014, 5(3):253-259.DOI:10.15886/j.cnki.rdswxb.2014.03.009.
[23]
申烨华, 孙君, 周茂林, 等. 苏云金芽孢杆菌HD-1发酵工艺研究[J]. 西北大学学报(自然科学版), 2001, 31(5):396-398.
SHEN Y H, SUN J, ZHOU M L, et al. A study on fermentation process of Bt-HD-1 in annulus-ailift reactor[J]. J Northwest Univ (Nat Sci Ed), 2001, 31(5):396-398.
[24]
梁艳琼, 黄兴, 吴伟怀, 等. 解淀粉芽孢杆菌TWC2发酵条件的优化[J]. 中国糖料, 2017, 39(6):17-22.
LIANG Y Q, HUANG X, WU W H, et al. Optimizing fermentation condition for Bacillus amyloliquefaciens TWC2[J]. Sugar Crops China, 2017, 39(6):17-22.DOI:10.13570/j.cnki.scc.2017.06.005.
[25]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
[26]
马欣娟, 吕慧威, 孙玉梅. 接种量对草莓酒发酵特性的影响[J]. 中国酿造, 2019, 38(5):123-126.
MA X J, LV H W, SUN Y M. Effect of inoculum on fermentation characteristics of strawberry wine[J]. China Brew, 2019, 38(5):123-126.DOI:10.11882/j.issn.0254-5071.2019.05.024.
[27]
闫建芳, 赵柏霞, 刘秋, 等. 链霉菌组合ST-2发酵条件优化及对黄瓜枯萎病的防治效果[J]. 中国生物防治学报, 2016, 32(4):531-538.
YAN J F, ZHAO B X, LIU Q, et al. Optimization of Streptomyces combination ST-2 fermentation conditions and control effect on cucumber Fusarium wilt[J]. Chin J Biol Control, 2016, 32(4):531-538.DOI:10.16409/j.cnki.2095-039x.2016.04.016.
[28]
MALLAPATY S. How China could be carbon neutral by mid-century[J]. Nature, 2020, 586(7830):482-483.DOI:10.1038/d41586-020-02927-9.
[29]
WU P, GUO F, CAI B, et al. Co-benefits of peaking carbon dioxide emissions on air quality and health,a case of Guangzhou,China[J]. J Environ Manage, 2021, 282:111796.DOI:10.1016/j.jenvman.2020.111796.
[30]
ZHANG S F, XIANG X W, MA Z L, et al. Carbon neutral roadmap of commercial building operations by mid-century:lessons from China[J]. Buildings, 2021, 11(11):510.DOI:10.3390/buildings11110510.
[31]
WU Y W, ZHANG J C, GUO X P. An indigenous soil bacterium facilitates the mitigation of rocky desertification in carbonate mining Areas[J]. Land Degrad Develop, 2017, 28(7):2222-2233.DOI:10.1002/ldr.2749.
[32]
WU Y W, ZHANG J C, GUO X P, et al. Isolation and characterisation of a rock solubilising fungus for application in mine-spoil reclamation[J]. Eur J Soil Biol, 2017, 81:76-82.DOI:10.1016/j.ejsobi.2017.06.011.
[33]
WU Y W, ZHANG J C, WANG L J, et al. A rock-weathering bacterium isolated from rock surface and its role in ecological restoration on exposed carbonate rocks[J]. Ecol Eng, 2017, 101:162-169.DOI:10.1016/j.ecoleng.2017.01.023.
[34]
张金池, 王广林, 庄家尧, 等. 一种石灰岩高效侵蚀细菌巨大芽孢杆菌NL-7及其应用:CN103087953A[P]. 2013-05-08.
ZHANG J C, WANG G L, ZHUANG J Y, et al. Efficient limestone eroded Bacillus megaterium NL-7 and application thereof:CN103087953A[P]. 2013-05-08.
[35]
张金池, 王广林, 王丽, 等. 一种石灰岩高效侵蚀放线菌嗜热一氧化碳链霉菌NL-1及其应用:CN103103151A[P]. 2013-05-15.
ZHANG J C, WANG G L, WANG L, et al. Streptomyces thermocarboxydus NL-1 as actinomycete capable of efficiently eroding limestone and application of Streptomyces thermocarboxydus NL-1:CN103103151A[P]. 2013-05-15.
[36]
王广林, 张金池, 林杰, 等. 一种石灰岩高效侵蚀真菌卵形孢球托霉NL-15及其应用:CN103087926A[P]. 2013-05-08.
WANG G L, ZHANG J C, LIN J, et al. Gongronellabutleri NL-15 fungus capable of efficiently eroding limestone and application thereof:CN103087926A[P]. 2013-05-08.
[37]
李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8):41-45.
LI L, ZHANG S, HE Q, et al. Application of response surface methodology in experiment design and optimization[J]. Res Explor Lab, 2015, 34(8):41-45.
[38]
杨津, 杨霰霜, 段中余, 等. 化学试验设计及优化方法的发展与应用[J]. 广东化工, 2010, 37(10):67-68.
YANG J, YANG X S, DUAN Z Y, et al. Development and application of studies on method of experiment design and optimization[J]. Guangdong Chem Ind, 2010, 37(10):67-68.DOI:10.3969/j.issn.1007-1865.2010.10.035.
[39]
范玲, 王鑫, 胡风华, 等. 正交试验与响应面法优选六月雪-葎草药对提取工艺比较[J]. 中国药业, 2021, 30(10):40-44.
FAN L, WANG X, HU F H, et al. Comparison of orthogonal test and response surface methodology in optimizing the extraction process of Serissa japonica-Humulus scandens[J]. China Pharm, 2021, 30(10):40-44.DOI:10.3969/j.issn.1006-4931.2021.10.010.
[40]
王瑞君, 袁欣. 响应面法优化产木聚糖酶耐热菌株的发酵条件[J]. 宜春学院学报, 2022, 44(3):83-89.
WANG R J, YUAN X. Response surface optimization of fermentation conditions for xylanase production by a thermotolerant strain[J]. J Yichun Univ, 2022, 44(3):83-89.
[41]
袁辉林, 康丽华, 马海滨. 响应曲面法及其在微生物发酵工艺优化中的应用[J]. 安徽农业科学, 2011, 39(16):9498-9500,9502.
YUAN H L, KANG L H, MA H B. Response surface method and its application in the microbial fermentation process optimization[J]. J Anhui Agric Sci, 2011, 39(16):9498-9500,9502.DOI:10.13989/j.cnki.0517-6611.2011.16.046.
[42]
田泱源, 李瑞芳. 响应面法在生物过程优化中的应用[J]. 食品工程, 2010(2):8-11,53.
TIAN Y Y, LI R F. Application of response surface method on biological process optimization[J]. Food Eng, 2010(2):8-11,53.
[43]
石子林, 李军乔, 王雅琼, 等. 密花香薷总皂苷提取工艺优化及其生物活性[J]. 江苏农业学报, 2021, 37 (1): 185-191.
SHI Z L, LI J Q, WANG Y Q, et al. Optimization on the extraction process of total saponins from the Elsholtzia densa Benth. and its biological activity[J]. Jiangsu J of Agr Sci, 2021, 37(1): 185-191. DOI:10.3969/j.issn.1000-4440.2021.01.024.
[44]
白云洲, 赵前程, 吕东, 等. 纳豆芽孢杆菌发酵海参条件的响应面优化[J]. 农产品加工, 2022(5):7-11,15.
BAI Y Z, ZHAO Q C, LV D, et al. Optimization of fermentation process of sea cucumber with Bacillus natto by response surface methodology[J]. Farm Prod Process, 2022(5):7-11,15.DOI:10.16693/j.cnki.1671-9646(X).2022.05.034.
[45]
徐宇飞, 张晓敏, 朱佳美, 等. 具有杀线虫活性的郭霍氏芽孢杆菌发酵条件优化及稳定性评价[J]. 微生物学通报, 2022, 49(7):2612-2624.
XU Y F, ZHANG X M, ZHU J M, et al. Optimization of fermentation conditions and evaluation of stability of Bacillus kochii[J]. Microbiol China, 2022, 49(7):2612-2624.DOI:10.13344/j.microbiol.china.211099.
[46]
孙承文, 赖迎迢, 巩华, 等. 基于响应面法的维氏气单胞菌灭活疫苗菌液发酵工艺优化及免疫效力比较[J]. 大连海洋大学学报, 2021, 36(4):546-553.
SUN C W, LAI Y S, GONG H, et al. Optimization of fermentation process by response surface methodology and comparison of immune efficacy of inactivated vaccine of Aeromonas veronii[J]. J Dalian Ocean Univ, 2021, 36(4):546-553.DOI:10.16535/j.cnki.dlhyxb.2020-238.
[47]
樊丹, 邓福容, 李绍戊, 等. 一株虹鳟源枯草芽孢杆菌产胞外蛋白发酵条件优化[J]. 江西农业大学学报, 2022, 44(2):452-460.
FAN D, DENG F R, LI S W, et al. Fermentation condition optimization for extracellular protein of Bacillus subtilis from rainbow trout(Oncorhynchus mykiss)[J]. Acta Agric Univ Jiangxiensis, 2022, 44(2):452-460.DOI:10.13836/j.jjau.2022047.
[48]
白长胜. 禽用乳酸菌SR1发酵条件优化[J]. 发酵科技通讯, 2022, 51(1):15-18.
BAI C S. Optimization of fermentation conditions of lactic acid bacterium SR1 as poultry[J]. Bull Ferment Sci Technol, 2022, 51(1):15-18.DOI:10.16774/j.cnki.issn.1674-2214.2022.01.005.
[49]
白雪, 李运杰, 孟冬冬, 等. 解纤维素热酸菌来源的耐热磷酸酶的酶学性质与应用[J]. 生物加工过程, 2021, 19(2):123-129.
BAI X, LI Y J, MENG D D, et al. Characterization and application of thermostable sugar phosphatase from Acidothermus cellulolyticus[J]. Chi J Bio Eng, 2021, 19(2):123-129.DOI:10.3969/j.issn.1672-3678.2021.02.002.
[50]
王金萍. 肥料配施对微生物及土壤养分的影响研究[D]. 长春: 吉林农业大学, 2014.
WANG J P. The effect research of fertilizer combined application for microorganisms and soil nutrient[D]. Changchun: Jilin Agricultural University, 2014.
[51]
RANI R, KUMAR V, GUPTA P, et al. Potential use of Solanum lycopersicum and plant growth promoting rhizobacterial (PGPR) strains for the phytoremediation of endosulfan stressed soil[J]. Chemosphere, 2021, 279:130589.DOI:10.1016/j.chemosphere.2021.130589.
[52]
HUSSAIN A, ARSHAD M, HUSSAIN A, et al. Response of maize (Zea mays) to Azotobacter inoculation under fertilized and unfertilized conditions[J]. Biol Fert Soils, 1987, 4(1):73-77.DOI:10.1007/BF00280354.
[53]
FERREIRA N S, MATOS G F, MENESES C H S G, et al. Interaction of phytohormone-producing rhizobia with sugarcane mini-setts and their effect on plant development[J]. Plant Soil, 2020, 451(1):221-238.DOI:10.1007/s11104-019-04388-0.
[54]
DA SILVA R R, SANTOS A C M D, DA SILVA C J S, et al. Biostimulants based on humic acids,amino acids and vitamins increase growth and quality of lettuce seedlings[J]. J Agric Sci, 2019, 11(6):235.DOI:10.5539/jas.v11n6p235.
[55]
PALACIOS O A, BASHAN Y, DE-BASHAN L E. Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria—an overview[J]. Biol Fertil Soils, 2014, 50(3):415-432.DOI:10.1007/s00374-013-0894-3.
[56]
MAREK-KOZACZUK M, SKORUPSKA A. Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover[J]. Biol Fertil Soils, 2001, 33(2):146-151.DOI:10.1007/s003740000304.
[57]
MD RASHEDUL ISLAM, SULTANA T, JOE M M, et al. Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper[J]. J Basic Microbiol., 2013, 53(12):1004-1015. DOI:10.1002/jobm.201200141.
[58]
SALIH S A, MASRI E A N, BARAKA A M. Effect of rhizobium inoculation, phosphorus and potassium fertilization on growth, nodulation and yield of faba bean cultivated in the newly reclaimed soils of Middle Egypt[J]. Bulletin of Faculty of Agriculture Cairo Univ, 1998, 36(10):2547-2555. DOI:10.1023/A:1017954720772.
[59]
王琦. 一株耐盐促生菌对植物的促生机制探讨[J]. 长治学院学报, 2021, 38(2):47-51.
WANG Q. Study on the growth-promoting mechanism of salt-tolerant growth-promoting bacteria on plants[J]. J Chang Univ, 2021, 38(2):47-51.
[60]
王鹰翔. 不同土壤菌配置对紫穗槐幼苗生理生态学特性的影响[D]. 南京: 南京林业大学, 2017.
WANG Y X. Effects of soil bacteria inoculation in spray seeding matrix on physiological and ecological character of Amorpha fruticose[D]. Nanjing: Nanjing Forestry University, 2017.
[61]
王鹰翔, 张金池, 吴雁雯, 等. 喷播基质中土壤菌施用对紫穗槐幼苗光合特性和叶绿素荧光参数的影响[J]. 环境科学研究, 2017, 30(6):902-910.
WANG Y X, ZHANG J C, WU Y W, et al. Effects of soil bacteria inoculation in spray seeding matrix on photosynthesis characteristics and chlorophyll fluorescence parameters of Amorpha fruticose[J]. Res Environ Sci, 2017, 30(6):902-910.DOI:10.13198/j.issn.1001-6929.2017.01.82.
[62]
刘晶晶, 孙合美, 岳胜天, 等. 不同溶磷菌菌液对盛花期大豆生长的影响[J]. 大豆科学, 2016, 35(2):275-279.
LIU J J, SUN H M, YUE S T, et al. Effect of different phosphate-solubilizing bacteria liquid on the growth of soybean in florescence stage[J]. Soybean Sci, 2016, 35(2):275-279.DOI:10.11861/j.issn.1000-9841.2016.02.0275.
[63]
蒋晓玲. 解淀粉芽孢杆菌Y19微生物菌肥的研制及其生物效益研究[D]. 昆明: 云南农业大学, 2015.
JIANG X L. Development of microbial fertilizer and biological effect of Bacillus amyloliquefaciens Y19[D]. Kunming: Yunan Agricultural University, 2015.
[64]
占新华, 蒋延惠, 徐阳春, 等. 微生物制剂促进植物生长机理的研究进展[J]. 植物营养与肥料学报, 1999, 5(2):97-105.
ZHAN X H, JIANG Y H, XU Y C, et al. Advances in researches on mechanism of microbial inoculants on promoting plant growth[J]. Plant Natrition Fertil Sci, 1999, 5(2):97-105. DOI:10.11674/zwyf.1999.0201.
[65]
ZHANG Q, GAO X, REN Y, et al. Improvement of Verticillium wilt resistance by applying arbuscular mycorrhizal fungi to a cotton variety with high symbiotic efficiency under field conditions[J]. Int J Mol Sci, 2018, 19(1):E241.DOI:10.3390/ijms19010241.
[66]
AIT RAHOU Y, AIT-EL-MOKHTAR M, ANLI M, et al. Use of mycorrhizal fungi and compost for improving the growth and yield of tomato and its resistance to Verticillium dahliae[J]. Arch Phytopathol Plant Prot, 2021, 54(13/14):665-690.DOI:10.1080/03235408.2020.1854938.
[67]
BENJAMIN L. Arbuscular mycorrhizal fungi pre-colonisation for improving the growth and health of strawberry (Fragaria × ananassa)[D]. York, UK: University of York, 2017.

基金

江苏省林业科技创新与推广项目(LYKJ[2021]30)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 王国栋
PDF(2584 KB)

Accesses

Citation

Detail

段落导航
相关文章

/