[1] |
曹林, 佘光辉, 代劲松, 等. 激光雷达技术估测森林生物量的研究现状及展望[J]. 南京林业大学学报(自然科学版), 2013, 37(3):163-169.
|
|
CAO L, SHE G H, DAI J S, et al. Status and prospects of the LiDAR-based forest biomass estimation[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(3):163-169.DOI: 10.3969/j.issn.1000-2006.2013.03.029.
|
[2] |
李增元, 刘清旺, 庞勇. 激光雷达森林参数反演研究进展[J]. 遥感学报, 2016, 20(5):1138-1150.
|
|
LI Z Y, LIU Q W, PANG Y. Review on forest parameters inversion using LiDAR[J]. J Remote Sens, 2016, 20(5):1138-1150.DOI: 10.11834/jrs.20165130.
|
[3] |
吴楠, 李增元, 廖声熙, 等. 国内外林业遥感应用研究概况与展望[J]. 世界林业研究, 2017, 30(6):34-40.
|
|
WU N, LI Z Y, LIAO S X, et al. Current situation and prospect of research on application of remote sensing to forestry[J]. World For Res, 2017, 30(6):34-40.DOI: 10.13348/j.cnki.sjlyyj.2017.0075.y.
|
[4] |
刘鲁霞, 庞勇. 机载激光雷达和地基激光雷达林业应用现状[J]. 世界林业研究, 2014, 27(1):49-56.
|
|
LIU L X, PANG Y. Applications of airborne laser scanning and terrestrial laser scanning to forestry[J]. World For Res, 2014, 27(1):49-56.DOI: 10.13348/j.cnki.sjlyyj.2014.01.009.
|
[5] |
花伟成, 田佳榕, 孙心雨, 等. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4):41-48.
|
|
HUA W C, TIAN J R, SUN X Y, et al. Assessing the stem taper function and volume estimation of poplar (Populus)by terrestrial laser scanning[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4):41-48.DOI: 10.12302/j.issn.1000-2006.202006023.
|
[6] |
蒋佳文, 温小荣, 顾海波, 等. 基于多站扫描的点云特征参数与材积结构动态分析[J]. 南京林业大学学报(自然科学版), 2019, 43(6):83-90.
|
|
JIANG J W, WEN X R, GU H B, et al. Dynamic analysis of point cloud characteristic parameters and volume structure based on multi-station scan[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6):83-90.DOI: 10.3969/j.issn.1000-2006.201901020.
|
[7] |
XU D D, WANG H B, XU W X, et al. LiDAR applications to estimate forest biomass at individual tree scale:opportunities,challenges and future perspectives[J]. Forests, 2021, 12(5):550.DOI: 10.3390/f12050550.
|
[8] |
刘会玲, 张晓丽, 张莹, 等. 机载激光雷达单木识别研究进展[J]. 激光与光电子学进展, 2018, 55(8):40-48.
|
|
LIU H L, ZHANG X L, ZHANG Y, et al. Review on individual tree detection based on airborne LiDAR[J]. Laser Optoelectron Prog, 2018, 55(8):40-48.DOI: 10.3788/LOP55.082805.
|
[9] |
WANG L, GONG P, BIGING G S. Individual tree-crown delineation and treetop detection in high-spatial-resolution aerial imagery[J]. Photogramm Eng Remote Sensing, 2004, 70(3):351-357.DOI: 10.14358/pers.70.3.351.
|
[10] |
刘方舟, 刘浩, 云挺. 基于分水岭优化思想的单木信息分割算法[J]. 林业工程学报, 2020, 5(5):109-116.
|
|
LIU F Z, LIU H, YUN T. Individual tree crown separation using the improved watershed method[J]. J For Eng, 2020, 5(5):109-116.DOI: 10.13360/j.issn.2096-1359.202001021.
|
[11] |
郭庆华, 刘瑾, 陶胜利, 等. 激光雷达在森林生态系统监测模拟中的应用现状与展望[J]. 科学通报, 2014, 59(6):459-478.
|
|
GUO Q H, LIU J, TAO S L, et al. Perspectives and prospects of LiDAR in forest ecosystem monitoring and modeling[J]. Chin Sci Bull, 2014, 59(6):459-478.DOI: 10.1360/972013-592.
|
[12] |
LI W K, GUO Q H, JAKUBOWSKI M K, et al. A new method for segmenting individual trees from the lidar point cloud[J]. Photogramm Eng Remote Sensing, 2012, 78(1):75-84.DOI: 10.14358/pers.78.1.75.
|
[13] |
LIANG X L, KANKARE V, HYYPPÄ J, et al. Terrestrial laser scanning in forest inventories[J]. ISPRS J Photogramm Remote Sens, 2016, 115:63-77.DOI: 10.1016/j.isprsjprs.2016.01.006.
|
[14] |
LU X C, GUO Q H, LI W K, et al. A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data[J]. ISPRS J Photogramm Remote Sens, 2014, 94:1-12.DOI: 10.1016/j.isprsjprs.2014.03.014.
|
[15] |
CHEN W, HU X B, CHEN W, et al. Airborne LiDAR remote sensing for individual tree forest inventory using trunk detection-aided mean shift clustering techniques[J]. Remote Sens, 2018, 10(7):1078.DOI: 10.3390/rs10071078.
|
[16] |
MADHULATHA T S. An overview on clustering methods[J]. IOSR J Eng, 2012, 2(4):719-725.DOI: 10.9790/3021-0204719725.
|
[17] |
林秀云, 孙圆, 刘晨曦, 等. 依据地面激光扫描数据的杉木材积建模与造材[J]. 东北林业大学学报, 2022, 50(1):33-39.
|
|
LIN X Y, SUN Y, LIU C X, et al. Volume modeling and merchantable volume for Cunninghamia lanceolata using terrestrial laser scanner[J]. J Northeast For Univ, 2022, 50(1):33-39.DOI: 10.13759/j.cnki.dlxb.2022.01.012.
|
[18] |
WANG C X, JI M, WANG J, et al. An improved DBSCAN method for LiDAR data segmentation with automatic eps estimation[J]. Sensors, 2019, 19(1):172.DOI: 10.3390/s19010172.
|
[19] |
麻卫峰, 王金亮, 麻源源, 等. 改进K均值聚类的点云林木胸径提取[J]. 测绘科学, 2021, 46(9):122-129.
|
|
MA W F, WANG J L, MA Y Y, et al. An improved K-means clustering method for DBH extraction from point cloud[J]. Science of Surveying and Mapping, 2021, 46(9):122-129.DOI: 10.16251/j.cnki.1009-2307.2021.09.016.
|
[20] |
TAO S L, WU F F, GUO Q H, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories[J]. ISPRS J Photogramm Remote Sens, 2015, 110:66-76.DOI: 10.1016/j.isprsjprs.2015.10.007.
|
[21] |
DUONG T, BECK G, AZZAG H, et al. Nearest neighbour estimators of density derivatives,with application to mean shift clustering[J]. Pattern Recognit Lett, 2016, 80:224-230.DOI: 10.1016/j.patrec.2016.06.021.
|
[22] |
朱德海. 点云库PCL学习教程[M]. 北京: 北京航空航天大学出版社, 2012:189-191.
|
|
ZHU D H. PCL learning course of point cloud library[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2012:189-191.
|
[23] |
ZHAO X Q, GUO Q H, SU Y J, et al. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas[J]. ISPRS J Photogramm Remote Sens, 2016, 117:79-91.DOI: 10.1016/j.isprsjprs.2016.03.016.
|
[24] |
KHOSRAVIPOUR A, SKIDMORE A K, ISENBURG M. Generating spike-free digital surface models using LiDAR raw point clouds:a new approach for forestry applications[J]. Int J Appl Earth Obs Geoinf, 2016, 52:104-114.DOI: 10.1016/j.jag.2016.06.005.
|
[25] |
WULDER M, NIEMANN K O, GOODENOUGH D G. Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery[J]. Remote Sens Environ, 2000, 73(1):103-114.DOI: 10.1016/S0034-4257(00)00101-2.
|
[26] |
POPESCU S C, WYNNE R H, NELSON R F. Estimating plot-level tree heights with lidar:local filtering with a canopy-height based variable window size[J]. Comput Electron Agric, 2002, 37(1/2/3):71-95.DOI: 10.1016/S0168-1699(02)00121-7.
|
[27] |
CHEN Q, BALDOCCHI D, GONG P, et al. Isolating individual trees in a savanna woodland using small footprint lidar data[J]. Photogramm Eng Remote Sensing, 2006, 72(8):923-932.DOI: 10.14358/pers.72.8.923.
|
[28] |
TANG J, JIANG F G, LONG Y, et al. Identification of the yield of Camellia oleifera based on color space by the optimized mean shift clustering algorithm using terrestrial laser scanning[J]. Remote Sens, 2022, 14(3):642.DOI: 10.3390/rs14030642.
|
[29] |
WATT P J, DONOGHUE D N M. Measuring forest structure with terrestrial laser scanning[J]. Int J Remote Sens, 2005, 26(7):1437-1446.DOI: 10.1080/01431160512331337961.
|
[30] |
MA K S, CHEN Z X, FU L Y, et al. Performance and sensitivity of individual tree segmentation methods for UAV-LiDAR in multiple forest types[J]. Remote Sens, 2022, 14(2):298.DOI: 10.3390/rs14020298.
|
[31] |
李响, 甄贞, 赵颖慧. 基于局域最大值法单木位置探测的适宜模型研究[J]. 北京林业大学学报, 2015, 37(3):27-33.
|
|
LI X, ZHEN Z, ZHAO Y H. Suitable model of detecting the position of individual treetop based on local maximum method[J]. J Beijing For Univ, 2015, 37(3):27-33.DOI: 10.13332/j.1000-1522.20140313.
|
[32] |
LISIEWICZ M, KAMINSKA A, STERENCZAK K. Recognition of specified errors of individual tree detection methods based on canopy height model[J]. Remote Sens Appl, 2022, 25:100690.DOI: 10.1016/j.rsase.2021.100690.
|
[33] |
ZHEN Z, QUACKENBUSH L, ZHANG L J. Trends in automatic individual tree crown detection and delineation: evolution of LiDAR data[J]. Remote Sens, 2016, 8(4):333.DOI: 10.3390/rs8040333.
|
[34] |
LIU J B, LIANG X L, HYYPPÄ J, et al. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references[J]. Int J Appl Earth Obs Geoinf, 2017, 56:13-23.DOI: 10.1016/j.jag.2016.11.003.
|
[35] |
WANG Y S, HYYPPÄ J, LIANG X L, et al. International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning[J]. IEEE Trans Geosci Remote Sens, 2016, 54(9):5011-5027.DOI: 10.1109/TGRS.2016.2543225.
|
[36] |
YANG Q L, SU Y J, JIN S C, et al. The influence of vegetation characteristics on individual tree segmentation methods with airborne LiDAR data[J]. Remote Sens, 2019, 11(23):2880.DOI: 10.3390/rs11232880.
|
[37] |
杨海城. 基于ULS和TLS的天然次生林不同林层单木参数估测及对比[D]. 哈尔滨: 东北林业大学, 2021.
|
|
YANG H C. Estimation and comparison of individual tree parameters for different forest canopies in natural secondary forest based on ULS and TLS[D]. Harbin: Northeast Forestry University, 2021.
|