
不同基质配比对短叶对齿藓植物生长的影响
Effects of different substrate compositions and concentrations on the growth of Didymodon tectorus
【目的】对齿藓属(Didymodon)作为典型的耐旱藓类植物,是沙漠、沙地和黄土丘陵区生物结皮的优势植物。探究不同配比基质对短叶对齿藓(D. tectorus)生长的影响,为短叶对齿藓的快速繁殖提供理论依据。【方法】以短叶对齿藓为试验材料,选取泥炭土、珍珠岩、蛭石3种材料为培养基质,通过测定分析短叶对齿藓的盖度、密度及叶绿素含量的变化,研究不同配比基质对短叶对齿藓植物生长的影响。【结果】不同配比基质对短叶对齿藓的盖度、密度等均产生不同的影响。在泥炭土与蛭石体积比2∶1基质处理下,短叶对齿藓盖度、植株密度达到最大(盖度为70.67%,植株密度为12.2株/cm2),并且该处理下测定的叶绿素含量最高,为2.157 mg/g。【结论】综合分析不同配比基质处理下短叶对齿藓的生长指标和生理指标,泥炭土与蛭石体积比2∶1基质处理最有助于短叶对齿藓的生长,该基质配比可适用于短叶对齿藓的快速繁殖。
【Objective】Didymodon tectorus is a typical drought-tolerant moss species and a dominant plant in biological soil crusts in deserts, sandy areas, and loess hilly regions. This study aims to investigate the effects of different substrate proportions on the growth of D. tectorus and provide a scientific basis for the rapid propagation of D. tectorus.【Method】D. tectorus was selected as the experimental material, and three materials, including peat soil, perlite and vermiculite, were chosen as substrate components. The coverage, density and chlorophyll content of D. tectorus were measured to study the impact of different substrate proportions on its growth.【Result】Different substrate proportions had varions effects on the coverage and density of D. tectorus. The substrate with a volume ratio of 2∶1 of peat soil to vermiculite showed the highest coverage (70.67%) and density (12.2 plants/cm2) of D. tectorus. Additionally, this substrate proportion exhibited the highest chlorophyll content (2.157 mg/g).【Conclution】Through comprehensive analysis of the growth and physiological indicators of D. tectorus under different substrate proportions, the 2∶1 volume ratio of peat soil to vermiculite was found to be best for its growth. This substrate proportion can be effectively applied for the rapid propagation of D. tectorus.
Didymodon tectorus / substrate proportion / artificial culture / chlorophyll content
[1] |
朱秀敏. 丛藓科湿地藓属植物对环境的指示作用[J]. 北方园艺, 2010(22):27-30.
|
[2] |
赵德先, 王成, 孙振凯, 等. 树附生苔藓植物多样性及其影响因素[J]. 生态学报, 2020, 40(8):17-26.
|
[3] |
吴鹏程. 苔藓植物生物学[M]. 北京: 科学出版社, 1998.
|
[4] |
|
[5] |
吴玉环, 程佳强, 冯虎元, 等. 耐旱藓类的抗旱生理及其机理研究[J]. 中国沙漠, 2004, 24(1):23-29.
|
[6] |
王丹. 短叶对齿藓在不同钙环境下的适应性研究[D]. 呼和浩特: 内蒙古大学, 2021.
|
[7] |
雷少刚, 张周爱, 陈航, 等. 草原煤电基地景观生态恢复技术策略[J]. 煤炭学报, 2019, 44(12):3662-3669.
|
[8] |
胡小京, 曾燕颖, 敖飞雄, 等. 不同栽培基质对两种石斛生长及生理的影响[J]. 西南师范大学学报(自然科学版), 2019, 44(11):29-35.
|
[9] |
段智慧. 两种观赏藓快繁技术及光合生理研究[D]. 南京: 南京林业大学, 2013.
|
[10] |
丁雪, 郭水良, 娄玉霞. 栽培基质和营养液浓度对白发藓生长影响的研究[J]. 上海师范大学学报(自然科学版), 2015, 44(6):612-618.
|
[11] |
杨琳, 张红敏, 沈萍, 等. 圆叶匐灯藓的繁殖基质及方法筛选[J]. 黑龙江农业科学, 2018(4):83-85.
|
[12] |
梁书丰. 三种藓类的快速繁殖研究[D]. 上海: 华东师范大学, 2010.
|
[13] |
黄强, 罗学刚, 唐微, 等. 不同栽培基质对3种苔藓植物生长的影响[J]. 广东农业科学, 2019, 46(9):56-62.
|
[14] |
杨雪伟. 黄土丘陵半干旱区优势耐干藓生态适应性[D]. 杨凌: 西北农林科技大学, 2016.
|
[15] |
徐杰, 白学良, 田桂泉, 等. 腾格里沙漠固定沙丘结皮层藓类植物的生态功能及与土壤环境因子的关系[J]. 中国沙漠, 2005, 25(2):234-242.
|
[16] |
王雪芹, 张元明, 张伟民, 等. 古尔班通古特沙漠生物结皮对地表风蚀作用影响的风洞实验[J]. 冰川冻土, 2004, 26(5):632-638.
|
[17] |
叶吉, 郝占庆, 于德永, 等. 苔藓植物生态功能的研究进展[J]. 应用生态学报, 2004, 15(10):1939-1942.
|
[18] |
杨武. 藓类植物适应环境的形态结构及生理学机制[D]. 金华: 浙江师范大学, 2008.
|
[19] |
毛可红, 朱姝蕊. 不同基质容器栽培对大灰藓生长的影响[J]. 中国农业信息, 2016(3):129-130.
|
[20] |
于瀚, 欧静, 杨小燕, 等. 不同基质配比对‘阳光’樱容器苗生长生理的影响[J]. 中国农学通报, 2021, 37(29):47-55.
|
[21] |
李晨辉, 赵允格. 糖蜜对人工培养银叶真藓生长发育的影响[J]. 西北林学院学报, 2019, 34(1):130-136.
|
[22] |
熊庆娥. 植物生理学实验教程[M]. 成都: 四川科学技术出版社, 2003.
|
[23] |
窦金熙, 郭玉明, 王盛, 等. 土壤含水率测定方法研究[J]. 山西农业科学, 2017, 45(3):482-485.
|
[24] |
王利平, 李艳莉. 不同基质条件对虾脊兰叶片叶绿素含量的影响[J]. 陕西林业科技, 2021, 49(5):72-74,79.
|
[25] |
鲜开梅. 不同复配基质理化性质及其对辣椒幼苗生长发育的影响[J]. 长江蔬菜, 2014(18):60-64.
|
[26] |
杜宝明, 张楠, 季梦成. 苔藓植物的繁殖栽培研究进展[J]. 江苏林业科技, 2011, 38(2):44-48.
|
[27] |
朱玮. 泥炭资源在园艺栽培中的应用探讨[J]. 现代园艺, 2014 (22):76.
|
[28] |
曹钰, 胡涛, 张鸽香. 基质配比对美国流苏容器苗生长的影响[J]. 东北林业大学学报, 2018, 46(9):26-30.
|
[29] |
蒲胜海, 冯广平, 李磐, 等. 无土栽培基质理化性状测定方法及其应用研究[J]. 新疆农业科学, 2012, 49(2):267-272.
|
[30] |
石磊, 刘伟才, 何红燕, 等. 不同培养液中3种藓类光合色素含量比较[J]. 山地农业生物学报, 2009, 28(2):175-179.
|
[31] |
陈蓉蓉, 刘宁, 杨松, 等. pH值对黔灵山喀斯特生境中几种苔藓植物生长的影响[J]. 贵州环保科技, 1998(1):22-24,28.
|
/
〈 |
|
〉 |