南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4): 168-176.doi: 10.12302/j.issn.1000-2006.202207008
收稿日期:
2022-07-18
修回日期:
2023-04-11
出版日期:
2024-07-30
发布日期:
2024-08-05
作者简介:
宗建伟(acbczjw@163.com),讲师,博士。
基金资助:
ZONG Jianwei(), LI Cheng, ZHANG Jing, YANG Yuhua
Received:
2022-07-18
Revised:
2023-04-11
Online:
2024-07-30
Published:
2024-08-05
摘要:
【目的】探究接种丛枝菌根(arbuscular mycorrhizal,AM)真菌对盐胁迫下文冠果(Xanthoceras sorbifolium)生长、生理代谢及耐盐能力的影响。【方法】以摩西斗管囊霉(Funneliformis mosseae)为供试菌种,选用1年生文冠果实生苗进行盆栽试验,进行接种与不接种处理,分别设置5种不同浓度(0、80、160、240、320 mmol/L)的NaCl胁迫,胁迫结束后测定文冠果幼苗生物量、侵染特性及生理指标。【结果】①盐胁迫下,接种AM真菌提高了文冠果地上、地下生物量;随着盐浓度的增加,其根系菌根侵染率显著降低。②接种AM真菌增加了文冠果叶片可溶性蛋白、脯氨酸、还原型谷胱甘肽(GSH)和还原型抗坏血酸(AsA)含量,增强了超氧化物歧化酶(SOD)和过氧化物酶(POD)活性,而相对电导率和丙二醛(MDA)含量明显降低。③双因素方差分析显示时间和浓度对接种与未接种AM真菌处理下的文冠果叶片MDA、脯氨酸、可溶性蛋白和AsA含量有极显著交互效应(P <0.01);文冠果接种组对320 mmol/L盐胁迫的抗性最好。【结论】AM真菌可提高盐胁迫下文冠果渗透调节能力,增强抗氧化酶活性,增加抗氧化物含量,表明AM真菌能够提升文冠果耐盐能力,促进植物生长。
中图分类号:
宗建伟,李柽,张静,等. 接种丛枝菌根真菌对盐胁迫下文冠果生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 168-176.
ZONG Jianwei, LI Cheng, ZHANG Jing, YANG Yuhua. Effects of arbuscular mycorrhizal fungi on the growth and physiological characteristics of Xanthoceras sorbifolium under salt stress[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(4): 168-176.DOI: 10.12302/j.issn.1000-2006.202207008.
表1
不同浓度盐胁迫下接种AM真菌对文冠果植株生长和菌根侵染率的影响"
处理组 treatment group | 处理/ (mmol·L-1) treatment | 地上部分生物量/g aboveground biomass | 地下部分生物量/g underground biomass | 菌根侵染率/% mycorrhizal infection rate | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
鲜质量 fresh weight | 干质量 dry weight | 鲜质量 fresh weight | 干质量 dry weight | ||||||||
未接种 NM | CK | 22.267±3.809 a | 10.367±1.656 bc | 30.000±13.229 ab | 16.600±1.947 ab | — | |||||
80 | 24.000±6.729 a | 14.533±1.007 a | 31.667±2.887 ab | 17.43±3.602 ab | — | ||||||
160 | 26.667±13.605 a | 12.367±1.750 ab | 37.333±6.807 a | 22.600±9.953 a | — | ||||||
240 | 21.433±9.673 a | 8.367±2.417 cd | 29.000±1.000 ab | 14.933±4.130 b | — | ||||||
320 | 17.567±3.625 a | 6.233±0.666 d | 22.667±2.930 b | 9.530±0.912 b | — | ||||||
接种 AM | CK | 25.267±3.868 a | 13.533±1.387 a | 37.926±2.607 ab | 17.967±0.971 ab | 46.110±1.904 a | |||||
80 | 27.400±10.566 a | 17.033±2.627 a | 45.000±13.229 ab | 20.667±4.954 ab | 40.108±1.843 b | ||||||
160 | 31.533±10.792 a | 15.167±3.707 a | 53.333±7.638 a | 25.467±10.140 a | 36.560±2.833 c | ||||||
240 | 21.133±10.644 a | 8.567±3.201 b | 33.557±12.633 b | 13.100±4.133 b | 33.667±2.034 d | ||||||
320 | 18.900±5.118 a | 7.167±1.553 b | 27.867±2.579 b | 10.400±1.114 b | 29.781±3.100 e |
表2
不同浓度盐胁迫下接种AM真菌对文冠果植株相对电导率和丙二醛含量的影响"
处理组 treatment group | 处理/ (mmol·L-1) treatment | 不同胁迫时间相对电导率 relative conductivity at different stress time | 不同胁迫时间丙二醛含量/(mmol·g-1) MDA content at different stress time | ||||
---|---|---|---|---|---|---|---|
10 d | 20 d | 30 d | 10 d | 20 d | 30 d | ||
未接种 NM | CK | 0.279±0.009 c | 0.274±0.029 c | 0.327±0.048 c | 3.439±0.122 a | 2.204±0.320 b | 2.327±0.411 a |
80 | 0.319±0.023 bc | 0.323±0.017 bc | 0.386±0.039 bc | 3.724±0.200 a | 2.323±0.460 ab | 2.386±0.345 a | |
160 | 0.323±0.033 bc | 0.373±0.035 b | 0.494±0.029 ab | 4.705±0.430 a | 2.403±0.410 a | 2.494±0.206 a | |
240 | 0.359±0.033 b | 0.392±0.048 b | 0.330±0.045 ab | 6.138±0.465 a | 2.492±0.313 b | 2.530±0.118 a | |
320 | 0.441±0.015 a | 0.517±0.039 a | 0.558±0.019 a | 6.243±0.301 a | 2.557±0.204 ab | 2.558±0.260 a | |
接种 AM | CK | 0.250±0.018 c | 0.295±0.030 b | 0.291±0.034 b | 2.800±0.120 a | 1.295±0.305 b | 1.291±0.336 a |
80 | 0.322±0.010 b | 0.319±0.025 b | 0.392±0.039 ab | 3.200±0.283 a | 1.400±0.362 a | 1.392±0.205 a | |
160 | 0.331±0.033 b | 0.384±0.021 ab | 0.480±0.007 ab | 3.800±0.361 a | 1.558±0.341 b | 1.450±0.122 c | |
240 | 0.342±0.004 b | 0.353±0.038 b | 0.481±0.034 ab | 4.100±0.390 a | 1.899±0.280 b | 1.500±0.120 bc | |
320 | 0.423±0.015 a | 0.459±0.007 a | 0.523±0.036 a | 5.000±0.332 a | 2.000±0.350 b | 1.600±0.211 ab |
表3
不同浓度盐胁迫下接种AM真菌对文冠果植株可溶性蛋白和脯氨酸含量的影响"
处理组 treatment group | 处理/ (mmol·L-1) treatment | 不同胁迫时间可溶性蛋白含量/(mg·g-1) soluble protein content at different stress time | 不同胁迫时间脯氨酸含量/(mg·g-1) proline content at different stress time | ||||
---|---|---|---|---|---|---|---|
10 d | 20 d | 30 d | 10 d | 20 d | 30 d | ||
未接种 NM | CK | 5.401±0.269 c | 5.444±0.350 c | 5.652±0.286 a | 4.282±0.522 c | 3.948±0.752 c | 4.998±0.637 c |
80 | 6.661±0.156 b | 6.499±0.255 b | 7.527±0.314 a | 6.640±1.076 b | 7.100±0.670 b | 6.439±0.462 b | |
160 | 7.572±0.373 a | 6.580±0.330 b | 7.328±0.099 a | 8.163±0.182 a | 9.676±0.291 a | 7.841±0.166 a | |
240 | 7.761±0.211 a | 7.651±0.332 a | 7.608±0.299 a | 9.492±0.222 a | 8.952±0.256 a | 7.303±0.202 ab | |
320 | 8.347±0.255 a | 7.337±0.462 ab | 6.265±0.134 a | 8.743±0.099 a | 8.493±0.331 a | 6.599±0.245 b | |
接种 AM | CK | 5.788±0.100 c | 5.697±0.117 b | 7.436±0.311 bc | 3.582±0.344 d | 4.887±0.457 e | 5.551±0.279 c |
80 | 6.572±0.124 b | 7.580±0.269 a | 7.067±0.476 c | 6.950±0.734 c | 6.490±0.109 d | 6.124±0.102 c | |
160 | 6.383±0.198 bc | 7.923±0.113 a | 8.076±0.217 ab | 7.291±0.446 bc | 7.339±0.214 c | 7.454±0.366 b | |
240 | 7.753±0.078 a | 7.832±0.275 a | 8.346±0.198 a | 8.518±0.324 ab | 8.246±0.145 b | 11.191±0.851 a | |
320 | 7.942±0.509 a | 8.255±0.364 a | 8.788±0.104 a | 9.387±0.598 a | 9.775±0.142 a | 10.432±0.191 a |
表4
不同浓度盐胁迫下接种AM真菌对文冠果植株SOD和POD活性的影响"
处理组 treatment group | 处理/ (mmol·L-1) treatment | 不同胁迫时间超氧化物歧化酶活性/(μmol·min-1·g-1) SOD activity at different stress time | 不同胁迫时间过氧化物酶活性/(μmol·min-1·g-1) POD activity at different stress time | ||||
---|---|---|---|---|---|---|---|
10 d | 20 d | 30 d | 10 d | 20 d | 30 d | ||
未接种 NM | CK | 57.894±4.844 c | 65.086±4.714 d | 43.723±3.336 e | 3 590.277±366.980 b | 4 327.591±212.824 b | 2 770.533±204.939 b |
80 | 118.063±6.447 b | 112.308±9.869 b | 93.495±3.772 b | 5 182.393±147.280 a | 6 128.697±104.689 a | 4 281.866±221.022 a | |
160 | 140.125±6.304 a | 153.007±3.853 a | 129.495±4.022 a | 3 232.707±231.156 bc | 4 863.825±1166.377 ab | 2 516.357±272.923 b | |
240 | 101.980±5.336 b | 96.358±5.241 bc | 83.509±3.449 c | 3 137.370±306.966 bc | 4 549.806±412.243 b | 2 668.161±311.280 b | |
320 | 93.136±6.852 b | 86.930±7.663 c | 72.923±2.989 d | 2 543.643±323.736 c | 3 729.770±234.730 b | 2 461.493±412.745 b | |
接种 AM | CK | 76.580±2.911 e | 84.327±4.565 e | 61.511±1.013 e | 3 352.050±256.806 d | 4 608.813±298.373 c | 3 652.570±267.773 d |
80 | 119.100±6.597 d | 132.356±6.980 d | 105.011±3.459 d | 4 066.270±187.425 c | 5 264.917±260.797 b | 4 577.660±225.797 c | |
160 | 151.754±1.551 c | 164.667±4.337 c | 134.492±3.897 c | 4 260.917±78.471 bc | 5 405.603±287.098 b | 4 898.276±128.219 bc | |
240 | 210.821±3.759 a | 219.985±3.914 a | 193.613±2.981 a | 4 636.910±71.334 b | 5 669.860±97.288 b | 5 403.367±305.685 b | |
320 | 181.50±6.211 b | 190.404±4.115 b | 164.299±3.540 b | 5 611.753±108.206 a | 6 592.995±151.271 a | 6 360.720±196.715 a |
表5
不同浓度盐胁迫下接种AM真菌对文冠果植株还原谷胱甘肽和还原抗坏血酸含量的影响"
处理组 group | 处理/ (mmol·L-1) treatment | 不同胁迫时间还原型谷胱甘肽含量/(μmol·g-1) GSH content at different stress time | 不同胁迫时间还原型抗坏血酸含量/(μmol·g-1) AsA content at different stress time | ||||
---|---|---|---|---|---|---|---|
10 d | 20 d | 30 d | 10 d | 20 d | 30 d | ||
未接种 NM | CK | 0.266±0.032 b | 0.267±0.041 b | 0.263±0.042 d | 0.045±0.002 a | 0.048±0.001 a | 0.047±0.004 b |
80 | 0.339±0.048 ab | 0.373±0.024 ab | 0.333±0.024 c | 0.046±0.002 a | 0.056±0.003 a | 0.061±0.005 ab | |
160 | 0.502±0.049 ab | 0.590±0.050 a | 0.564±0.018 a | 0.051±0.003 a | 0.057±0.007 a | 0.076±0.002 a | |
240 | 0.626±0.052 a | 0.603±0.049 a | 0.536±0.014 ab | 0.049±0.001 a | 0.055±0.005 a | 0.083±0.007 a | |
320 | 0.586±0.041 a | 0.473±0.045 ab | 0.476±0.015 b | 0.048±0.002 a | 0.052±0.003 a | 0.087±0.001 a | |
接种 AM | CK | 0.372±0.004 b | 0.373±0.005 c | 0.325±0.048 c | 0.048±0.001 b | 0.048±0.002 b | 0.065±0.003 b |
80 | 0.342±0.053 b | 0.340±0.043 c | 0.329±0.021 c | 0.047±0.002 b | 0.055±0.002 b | 0.066±0.003 b | |
160 | 0.715±0.060 a | 0.750±0.060 b | 0.838±0.010 b | 0.053±0.001 a | 0.058±0.003 ab | 0.073±0.006 b | |
240 | 0.755±0.039 a | 0.887±0.048 ab | 0.927±0.024 a | 0.055±0.000 a | 0.052±0.009 b | 0.094±0.009 a | |
320 | 0.882±0.041 a | 0.947±0.024 a | 0.948±0.006 a | 0.053±0.001 a | 0.069±0.001 a | 0.097±0.003 a |
表6
不同浓度盐胁迫下接种AM真菌各生理指标的双因素方差分析"
处理组 treatment group | 因子 factors | 相对电导率 relative conductivity | 丙二醛 含量 MDA content | 可溶性 蛋白含量 soluble protein content | 脯氨酸 含量 proline content | 超氧化物 歧化酶活性 SOD activity | 过氧化物酶 活性 POD activity | 还原型 谷胱甘肽 含量 GSH content | 还原型 抗坏血酸 含量 AsA content |
---|---|---|---|---|---|---|---|---|---|
时间 time | 27.248** | 427.374** | NS | 14.081** | 46.783** | 74.378** | NS | 48.702** | |
未接种NM | 浓度 concentration | 30.525** | 19.875** | 21.778** | 91.316** | 281.493** | 40.314** | 22.135** | 10.067** |
时间×浓度 time×concentration | NS | 5.626** | 3.699** | 6.455** | NS | NS | NS | 4.949** | |
时间 time | 14.980** | 6.987** | 40.850** | 16.248** | 145.361** | 106.421** | 3.617* | 1 160.496** | |
接种AM | 浓度 concentration | 16.915** | 7.824** | 54.837** | 153.945** | 1 320.891** | 146.065** | 171.684** | 20.168** |
时间×浓度 time×concentration | NS | 3.772** | 7.185** | 7.752** | NS | NS | NS | 6.802** |
表7
主成分分析旋转后的成分载荷矩阵"
指标 index | PC1 | PC2 |
---|---|---|
相对电导率 relative conductivity | 0.304 | -0.134 |
丙二醛含量 MDA content | 0.362 | -0.233 |
可溶性蛋白含量 soluble protein content | 0.119 | 0.122 |
脯氨酸含量 proline content | 0.161 | 0.071 |
超氧化物歧化酶活性 SOD activity | -0.076 | 0.306 |
过氧化物酶活性 POD activity | -0.253 | 0.418 |
还原型谷胱甘肽含量 GSH content | 0.046 | 0.191 |
还原型抗坏血酸含量 AsA content | 0.125 | 0.117 |
特征值 eigen value | 4.021 | 3.437 |
方差贡献率/% variance contribution rate | 50.266 | 42.959 |
累计贡献率/% cumulative contribution rate | 50.266 | 93.225 |
表8
不同浓度盐胁迫下接种AM真菌文冠果的综合得分及排名"
处理/ (mmol·L-1) treatment | PC1 (F1) | PC2 (F2) | 综合得分 overall ratings | 综合得分排名 overall score ranking |
---|---|---|---|---|
AM+ NaCl320 | 0.594 | 1.673 | 101.727 | 1 |
AM | -1.208 | -0.492 | 81.840 | 2 |
AM+NaCl240 | 0.170 | 1.438 | 70.307 | 3 |
AM+NaCl160 | 0.076 | 0.557 | 27.771 | 4 |
NaCl240 | 1.072 | -0.679 | 24.736 | 5 |
NaCl320 | 1.667 | -1.405 | 23.408 | 6 |
NaCl160 | 0.456 | -0.222 | 13.363 | 7 |
AM+NaCl80 | -0.571 | -0.018 | -29.457 | 8 |
NaCl80 | -0.858 | 0.178 | -35.444 | 9 |
CK | -1.398 | -1.031 | -114.571 | 10 |
[1] | YANG Z, WANG Y, WEI X C, et al. Transcription profiles of genes related to hormonal regulations under salt stress in sweet sorghum[J]. Plant Mol Biol Rep, 2017, 35(6):586-599. DOI: 10.1007/s11105-017-1047-x. |
[2] | 赵艳兰, 曾鑫奕, 弓晋超, 等. 丛枝菌根真菌接种对白车轴草耐盐性的影响[J]. 草业学报, 2023, 32(3):179-188. |
ZHAO Y L, ZENG X Y, GONG J C, et al. Effect of arbuscular mycorrhizal fungi on the salt tolerance of Trifolium repens[J]. Acta Pratac Sin, 2023, 32(3):179-188. DOI: 10.11686/cyxb2022101. | |
[3] | 黎远东, 江海霞, 谢丽琼. 植物盐胁迫适应性机制研究进展[J]. 植物遗传资源学报, 2022, 23(6):1585-1593. |
LI Y D, JIANG H X, XIE L Q. Review of plant adaptation mechanism to salt stress[J]. J Plant Genet Resour, 2022, 23(6):1585-1593.DOI: 10.13430/j.cnki.jpgr.20220518003. | |
[4] | 王敏强, 吴沛鸿, 沈益康, 等. 盐胁迫下接种丛枝苗根真菌对甜菊生长和氮磷吸收的影响[J]. 应用与环境生物学报, 2018, 24(5):960-966. |
WANG M Q, WU P H, SHEN Y K, et al. Effects of arbuscular mycorrhizal fungi on the growth and nitrogen and phosphorus acquisition of salt-stressed Stevia rebaudiana[J]. Chin J Appl Environ Biol, 2018, 24 (5):960-966.DOI: 10.19675/j.cnki.1006-687x.2017.12038. | |
[5] | LIU H G, WANG Y J, CHEN H, et al. Influence of Rhizoglomus irregulare on nutraceutical quality and regeneration of Lycium barbarum leaves under salt stress[J]. Can J Microbiol, 2017, 63(5):365-374.DOI: 10.1139/cjm-2016-0597. |
[6] | 韩冰, 贺超兴, 郭世荣. 丛枝菌根真菌对盐胁迫下黄瓜幼苗渗透调节物质含量和抗氧化酶活性的影响[J]. 西北植物学报, 2011, 31(12):2492-2497. |
HAN B, HE X C, GUO S R. Effects of arbuscular mycorrhizal fungi on osmoregulation substance content and antioxidant enzyme activities of cucumber seedlings under salt stress[J]. Acta Bot Bor-Occid.Sin, 2011, 31(12):2492-2497. | |
[7] | 崔令军, 刘瑜霞, 林健, 等. 盐胁迫下丛枝菌根真菌对桢楠根系生长和激素的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4):119-124. |
CUI L J, LIU Y X, LIN J, et al. Effects of arbuscular mycorrhizal fungi on roots growth and endogenous hormones of Phoebe zhennan under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(4):119-124. DOI: 10.3969/j.issn.1000-2006.201912030. | |
[8] | AAKP, BABDA. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicol Environ Saf, 2005, 60(3):324-349.DOI: 10.1016/J.ECOENV.2004.06.010. |
[9] | 马小芬, 王兴芳, 李强, 等. 不同种源地文冠果叶片解剖结构比较及抗旱性分析[J]. 干旱区资源与环境, 2013, 27(6):92-96. |
MA X F, WANG X F, LI Q, et al. The analysis of drought resistance and the comparison of anatomical structures of the leave of Xanthoceras sorbifolia Bunge introduced from different regions[J]. J Arid Land, 2013, 27(6):92-96. DOI: 10.13448/j.cnki.jalre.2013.06.013. | |
[10] | 陈晓楠, 伊力努尔·艾力, 高文礼, 等. 盐胁迫下丛枝菌根真菌对疏叶骆驼刺幼苗生长和生理的影响[J]. 草业科学, 2022, 39(9):1763-1772. |
CHEN X N, Yilinuer·Aili, GAO W L, et al. Effect of arbuscular mycorrhizal fungi on the growth and physiology of Alhagi sparsifolia seedling under salt stress[J]. Pratac Sci, 2022, 39(9):1763-1772.DOI: 10.11829/j.issn.1001-0629.2022-0215. | |
[11] | 李勇德, 李旭, 金香花, 等. NaCl胁迫对文冠果幼苗生长和生理生化特征的影响[J]. 延边大学农学学报, 2015, 37(3):212-216. |
LI Y D, LI X, JIN X H, et al. Growth and physiological characteristics of Xanthoceras sorbifolia seedlings under NaCl stress[J]. J Agric Sci, 2015, 37(3):5. DOI: 10.13478/J.CNKI.JASYU.2015.03.006. | |
[12] | 曾婧祎, 朱凌骏, 马仕林, 等. 盐胁迫和接种丛枝菌根真菌对榉树根系的影响[J]. 东北林业大学学报, 2022, 50(9):11-17. |
ZENG J Y, ZHU L J, MA S L, et al. Effects of salt stress on root system and rhizosphere soil of Zelkova serrata inoculated with arbuscular mycorrhizal fungi[J]. J Northeast For Univ, 2022, 50(9):11-17.DOI: 10.13759/j.cnki.dlxb.2022.09.006. | |
[13] | CARILLO P, MASTROLONARDO G, NACCA F, et al. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine[J]. Funct Plant Biol, 2008, 35(5):412-426.DOI: 10.1071/FP08108. |
[14] | 潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及 AMF 提高植物耐盐性的机制[J]. 地球科学进展, 2018, 33(4):361-372.DOI: 10.11867/j.issn.1001-8166.2018.04.0361. |
PAN J, HUANG C H, LUO J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants[J]. Adv Earth Sci, 2018, 33(4) :361-372.DOI: 10.11867/j.issn.1001-8166.2018.04.0361. | |
[15] | 孙守江, 唐艺涵, 马馼, 等. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3):152-162. |
SUN S J, TANG Y H, MA W, et al. Response of mitochondria AsA-GSH cycle during alfalfa seed germination to low temperature stress[J]. Pratac Sin, 2023, 32(3):152-162. DOI: 10.11686/cyxb2022272. | |
[16] | 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007:365. |
LIU R J, CHEN Y L. Mycorrhizology[M]. Beijing: Science Press, 2007:365. | |
[17] | 马剑, 刘贤德, 张芬琴, 等. NaCl胁迫对文冠果生长及生理生化指标的影响[J]. 干旱区资源与环境, 2018, 32(2):182-187.DOI: 10.13448/j.cnki.jalre.2018.067. |
MA J, LIU X D, ZHANG F Q. Effects of NaCl stress on growth and physiological-biochemical indexes of Xanthoceras sorbifolia[J]. Sci Silvae Sin, 2018, 32(2):182-187.DOI: 10.13448/j.cnki.jalre.2018.067. | |
[18] | 周玲, 王乃江, 张丽楠. PEG胁迫对文冠果种子萌发和幼苗生理特性的影响[J]. 西北植物学报, 2012, 32(11):2293-2298. |
ZHU L, WANG N J, ZHANG L N. Effect of PEG treatment on seed germination and growth of seedlings of Xanthoceras sorbifolia[J]. Acta Bot Bor-Occid.Sin, 2012, 32(11):2293-2298. | |
[19] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000:261-263. |
LI H S. Principles and techniques of plant physiology and biochemical experiments[M]. Beijing: Higher Education Press, 2000:261-263. | |
[20] | 张明轩, 黄苏珍, 绳仁立, 等. NaCl胁迫对马蔺生长及生理生化指标的影响[J]. 植物资源与环境学报, 2011, 20(1):46-52. |
ZHNG M X, HUANG S Z, SHENG R L, et al. Effects of NaCl stress on growth and physiological-biochemical indexes of Iris lactea var. Chinensis[J]. J Plant Resour&Environ, 2011, 20(1):46-52. | |
[21] | GRIFFITH O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J]. Anal Biochem, 1980, 106(1):207-212. DOI: 10.1016/0003-2697(80)90139-6. |
[22] | LAW M Y, CHARLES S A, HALLIWELL B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat[J]. Biochem J, 1983, 210(3):899-903.DOI: 10.1042/bj2100899. |
[23] | 曹岩坡, 代鹏, 戴素英. 丛枝菌根真菌(AMF)对盐胁迫下芦笋植株渗透调节物质及抗氧化酶活性的影响[J]. 西南大学学报(自然科学版), 2017, 39(5):43-48. |
CAO Y P, DAI P, DAI S Y. Effect of arbuscular mycorrhizal fungi on osmoregulation substances antioxidant enzyme activities of asparagus plant under salt stress[J]. J Southwest Univ(Nat Sci Ed), 2017, 39(5):43-48. DOI: 10.13718/j.cnki.xdzk.2017.05.007. | |
[24] | ZHAO S S, ZHANG Q K, LIU M Y, et al. Regulation of plant responses to salt stress[J]. Int J Mol Sci, 2021, 22(9).DOI: 10.3390/ijms22094609. |
[25] | 徐瑶, 樊艳, 俞云鹤, 等. 丛枝菌根真菌对盐胁迫下红花幼苗生长及耐盐生理指标的影响[J]. 生态学杂志, 2014, 33(12):3395-3402. |
XU Y, FAN Y, YU Y H, et al. Effects of arbuscular mycorrhizal fungus on the growth and physiological salt tolerance parameters of Carthamus tinctorius seedlings under salt stress[J]. Chin J Ecol, 2014, 33 (12):3395-3402. DOI: 10.13292/j.1000-4890.2014.0305. | |
[26] | 马仕林, 曹鹏翔, 张金池, 等. 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1):122-130. |
MA S L, CAO P X, ZHANG J C, et al. Effects of AMF on the growth and photosynthetic characteristics of Zelkova serrata under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(1):122-130. DOI: 10.12302/J.issn1000-2006.202010026. | |
[27] | 朱燕芳, 王延秀, 胡亚, 等. 多效唑对水分胁迫下苹果砧木八棱海棠光合及抗氧化酶活性等生理特性的影响[J]. 干旱地区农业研究, 2018, 36 (4):178-186. |
ZHU Y F, WANG Y X, HU Y, et al. Effects of paclobutrazol on photosynthetic and antioxidant enzyme activities and other physiological characteristics of Malus robusta Rehd. under water stress[J]. Agric Res Arid Areas, 2018, 36(4):178-186.DOI: 10.7606/j.issn.1000-7601.2018.04.26. | |
[28] | EHLERT B, HINCHA D K. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves[J]. Plant Methods, 2008, 4(1):1-7. DOI: 10.1186/1746-4811-4-12. |
[29] | 龚远博, 胡吉怀, 胡丁猛, 等. 丛枝菌根真菌对盐碱胁迫下杜梨幼苗生长和生理特性的影响[J]. 西北植物学报, 2022, 42(8):1320-1329. |
GONG, Y B, HU J H, HU D M, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological traits of Pyrus betulifolia under salt-alkali stress[J]. Acta Bot Bor-Occid.Sin, 2022, 42(8):1320-1329. DOI: 10.7606/j.issn.1000-4025.2022.08.1320. | |
[30] | 朱志梅, 杨持. 沙漠化过程中四个共有种的生长和抗氧化系统酶类变化[J]. 应用生态学报, 2004(12):2261-2266. |
ZHU Z M, YANG C. Changes of four common plant populations growth and their anti-oxidative enzymatic system in desertification process[J]. Chin J Appl Ecol, 2004(12):2261-2266. DOI :10.13287/j.1001-9332.2004.0466. | |
[31] | 郭卫珍, 张亚利, 奉树成. NaCl胁迫对2个山茶品种盐害及叶绿素荧光特性的影响[J]. 江苏农业学报, 2021, 37(3):562-569. |
GUO W Z, ZHANG Y L, FENG S C. Effects of NaCl stress on salt injury and chlorophyll fluorescence characteristics of two Camellia cultivars[J]. Jiangsu J Agr Sci, 2021, 37(3):562-569.DOI: 10.3969/j.issn.1000-4440.2021.03.003. | |
[32] | 黄相玲, 林妃妃, 张明月, 等. 盐胁迫对小叶榄仁幼苗生长和渗透调节物质含量的影响[J]. 南方农业学报, 2018, 49(7):1364-1369. |
HUANG X L, LIN F F, ZHANG M Y, et al. Effects of salt stress on growth and osmoregulatory substances in Terminalia neotaliala Capuron seedlings[J]. J South Agric, 2018, 49(7):1364-1369.DOI: 10.3969/j.issn.2095-1191.2018.07.16. | |
[33] | 常丽丽, 彭存智, 王丹, 等. 盐芥叶片应答盐胁迫的蛋白质组学分析[J]. 江苏农业学报, 2022, 38(1):49-64. |
CHANG L L, PENG C Z, WANG D, et al. Proteomics analysis of Eutrema salsugineum leaves in response to salt stress[J]. Jiangsu J Agr Sci, 2022, 38(1):49-64. DOI: 10.3969/j.issn.1000-4440.2022.01.006. | |
[34] | 慕铭. 中国柽柳品种‘鲁柽1号’对盐胁迫的生理响应[D]. 泰安: 山东农业大学, 2021. |
MU M. Physiological response of Tamarix chinensis Lour. Cultivar ‘Lucheng No. 1’to salt stress[D]. Taian: Shandong Agricultural University, 2021. | |
[35] | 贾旭梅, 朱燕芳, 王海, 等. 垂丝海棠应对盐碱复合胁迫的生理响应[J]. 生态学报, 2019, 39(17):6349-6361. |
JIANG X M, ZHU Y F, WANG H, et al. Study on physiological response of Malus halliana to saline-alkali stress[J]. Acta Ecol Sin, 2019, 39(17):6349-6361.DOI: 10.5846/stxb201804230919. | |
[36] | 王英男, 陶爽, 华晓雨, 等. 盐碱胁迫下AM真菌对羊草生长及生理代谢的影响[J]. 生态学报, 2018, 38(6):2187-2194. |
WANG Y N, TAO S, HUA X Y, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological metabolism of Leymus chinensis under salt-alkli stress[J]. Acta Ecol Sin, 2018, 38(6):2187-2194.DOI: 10.5846/stxb201610192141. | |
[37] | 王穗子, 金则新, 李月灵, 等. 铜胁迫条件下AMF对海州香薷光合色素含量、抗氧化能力和膜脂过氧化的影响[J]. 生态学报, 2015, 35(23):7699-7708. |
WANG S Z, JIN Z X, LI Y L, et al. Effects of arbuscular mycorrhizal fungi inoculation on the photosynthetic pigment contents, anti-oxidation capacity and membrane lipid peroxidation of Elsholtzia splendens leaves under copper stress[J]. Acta Ecol Sin, 2015, 35(23):7699-7708.DOI: 10.5846/stxb201407251511. | |
[38] | 徐嘉美, 郭静怡, 吴杨, 等. AM真菌对留兰香和常夏石竹耐盐性的影响[J]. 西北植物学报, 2021, 41(12):2014-2112. |
XU J M, GUO J Y, WU Y, et al. Effects of AM fungi on the salt tolerance of Mentha spicata and Dianthus plumarius[J]. Acta Bot Bor-Occid.Sin, 2021, 41(12):2014-2112. DOI: 10.7606/j.issn.1000-4025.2021.12.2104. | |
[39] | EVELIN H, KAPOOR R. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants[J]. Mycorrhiza, 2014, 24(3):197-208.DOI: 10.1007/s00572-013-0529-4. |
[40] | 宰学明, 郝振萍, 张焕仕, 等. NaCl胁迫下AM真菌对滨梅叶片中抗坏血酸-谷胱甘肽循环的影响[J]. 植物生理学报, 2013, 49(1):41-46. |
ZAI X M, HAO Z P, ZHANG H S, et al. Effects of AM fungi on Ascorbate-Glutathione cycle metabolism in leaves of Prunus maritima Marshall under NaCl stress[J]. Acta Phytophysiol Sin, 2013, 49(1):41-46. DOI: 10.13592/j.cnki.ppj.2013.01.014. | |
[41] | 姜磊, 李焕勇, 张芹, 等. AM真菌对盐碱胁迫下杜梨幼苗生长与生理代谢的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6):152-160. |
JIANG L, LI H Y, ZHANG Q, et al. Effects of arbuscular mycorrhiza fungi on the growth and physiological metabolism of Pyrus betulaefolia Bunge seedlings under saline-alkaline stress[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):152-160.DOI: 10.3969/j.issn.1000-2006.202001045. | |
[42] | 王建伟, 何晓玲, 崔金霞, 等. 外源硒对NaCl胁迫下加工番茄幼苗膜脂过氧化和AsA-GSH循环的影响[J]. 新疆农业科学, 2014, 51(10):1814-1820. |
WANG J W, HE X L, CUI J X, et al. Effect of exogenous selenium on membrane lipid peroxidation and ascorbate-glutathione cycle of tomato seedlings under salt stress[J]. Xinjiang Agric Sci, 2014, 51(10):1814-1820. DOI: 10.6048/j.issn.1001-4330.2014.10.010. |
[1] | 宋子荷, 甄艳. 植物干旱和盐胁迫响应相关miRNA研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 1-11. |
[2] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[3] | 苏泾涵, 王改萍, 刘玉华, 戚亚, 彭大庆, 李守科, 曹福亮. 叶用文冠果总多酚提取工艺及抗氧化活性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 129-137. |
[4] | 杨素芝, 段磊, 张丽, 冯昭辉, 陆昕, 韩立华, 白玉茹, 乌志颜. 文冠果新品种‘蒙冠1号’和‘蒙冠2号’[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 262-264. |
[5] | 宋泽君, 李培培, 袁斓方, 郭小兰, 王德炉. 土壤含水率对蓝莓叶片生理及果实品质的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 147-156. |
[6] | 麻周德, 张焕朝, 曹福亮, 乔禹凡, 李守科, 赵祥树. 叶面喷施中微肥对文冠果的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 95-100. |
[7] | 芦治国, 华建峰, 殷云龙, 施钦. 盐胁迫下氮素形态对海滨木槿幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 91-98. |
[8] | 张强, 周鹏, 刘昌来, 余永帆, 张敏, 杨甲定. NaCl处理下全缘冬青和红果冬青根系的转录组活性比较[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 99-108. |
[9] | 马仕林, 曹鹏翔, 张金池, 刘京, 王金平, 朱凌骏, 袁钟鸣. 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 122-130. |
[10] | 张晓荣, 段广德, 郝龙飞, 刘婷岩, 张友, 张盛晰. 氮沉降和接种菌根真菌对灌木铁线莲非结构性碳水化合物及根际土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 171-178. |
[11] | 王邵军, 左倩倩, 曹乾斌, 王平, 杨波, 赵爽, 陈闽昆. 云南寻甸石漠化土壤易氧化碳对丛枝菌根真菌共生的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 7-14. |
[12] | 佘建炜, 张康, 郑旭, 赵小军, 程方, 唐罗忠. 海水处理对沼泽小叶桦苗木生长和生理的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 102-108. |
[13] | 张磊, 童龙, 谢锦忠, 李俞佳, 张玮. 不同灌水时间下毛竹伐桩根系化学计量及生理特性变化[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 25-30. |
[14] | 黎梦娟, 朱礼明, 霍俊男, 张景波, 施季森, 成铁龙. 唐古特白刺NtCBL1、NtCBL2基因克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 93-99. |
[15] | 杨瑞珍, 张焕朝, 胡立煌, 范之馨. 接种AMF及施氮对滨海盐土氮矿化的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 145-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||