[1] |
KINSMAN D J J. Rhododendrons in Yunnan, China: pH of associated soils[J]. J Ame Rhod Soc, 1999, 53(1):10-14. https://scholar.lib.vt.edu/ejournals/JARS/v53n1/v53n1-kinsman.html.
|
[2] |
SHI D C, SHENG Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors[J]. Environ Exp Bot, 2005, 54(1):8-21.DOI: 10.1016/j.envexpbot.2004.05.003.
|
[3] |
GUO R, SHI L X, DING X M, et al. Effects of saline and alkaline stress on germination,seedling growth,and ion balance in wheat[J]. Agron J, 2010, 102(4):1252-1260.DOI: 10.2134/agronj2010.0022.
|
[4] |
YANG C W, SHI D C, WANG D L. Comparative effects of salt and alkali stresses on growth,osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.)[J]. Plant Growth Regul, 2008, 56(2):179-190.DOI: 10.1007/s10725-008-9299-y.
|
[5] |
张潭, 唐达, 李思思, 等. 盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响[J]. 西北植物学报, 2017, 37(12):2474-2482.
|
|
ZHANG T, TANG D, LI S S, et al. Responses of growth and photosynthesis of Lycium barbarum L.seedling to salt-stress and alkali-stress[J]. Acta Bot Boreali Occidentalia Sin, 2017, 37(12):2474-2482.DOI: 10.7606/j.issn.1000-4025.2017.12.2474.
|
[6] |
刘杰, 张美丽, 张义, 等. 人工模拟盐、碱环境对向日葵种子萌发及幼苗生长的影响[J]. 作物学报, 2008, 34(10):1818-1825.
|
|
LIU J, ZHANG M L, ZHANG Y, et al. Effects of simulated salt and alkali conditions on seed germination and seedling growth of sunflower (Helianthus annuus L.)[J]. Acta Agron Sin, 2008, 34(10):1818-1825.DOI: 10.3321/j.issn:0496-3490.2008.10.019.
|
[7] |
杨雨桦, 鉴晶晶, 邱小蝶, 等. 复合盐碱胁迫对OT百合生长和生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4):117-126.
|
|
YANG Y H, JIAN J J, QIU X D, et al. Effects of combined saline-alkali stress on physiological and biochemical characteristics of OT hybrid lily[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(4):117-126.DOI:10.12302/j.issn.1000-2006.202105041.
|
[8] |
SCARIOT V, CASER M, KOBAYASHI N. Evergreen azaleas tolerant to neutral and basic soils:breeding potential of wild genetic resources[J]. Acta Hortic, 2013(990):287-291.DOI: 10.17660/actahortic.2013.990.34.
|
[9] |
姚元涛, 刘谦, 张丽霞, 等. 山东棕壤茶园幼龄茶树叶片黄化病因诊断与防治研究[J]. 植物营养与肥料学报, 2009, 15(1):219-224.
|
|
YAO Y T, LIU Q, ZHANG L X, et al. Diagnosis and prevention of tea leaf etiolation of young trees planted in brown soil of Shandong Province[J]. Plant Nutr Fertil Sci, 2009, 15(1):219-224.DOI: 10.3321/j.issn:1008-505X.2009.01.032.
|
[10] |
JIANG Y Q, ZENG Q L, WEI J G, et al. Growth,fruit yield,photosynthetic characteristics,and leaf microelement concentration of two blueberry cultivars under different long-term soil pH treatments[J]. Agronomy, 2019, 9(7):357.DOI: 10.3390/agronomy9070357.
|
[11] |
FU L N, CHAI L J, DING D K, et al. A novel Citrus rootstock tolerant to iron deficiency in calcareous soil[J]. J Amer Soc Hort Sci, 2016, 141(2):112-118.DOI: 10.21273/jashs.141.2.112.
|
[12] |
TAVAKKOLI E, FATEHI F, COVENTRY S, et al. Additive effects of Na+ and Cl- ions on barley growth under salinity stress[J]. J Exp Bot, 2011, 62(6):2189-2203.DOI: 10.1093/jxb/erq422.
|
[13] |
闫永庆, 刘兴亮, 王崑, 等. 白刺对不同浓度混合盐碱胁迫的生理响应[J]. 植物生态学报, 2010, 34(10):1213-1219.
|
|
YAN Y Q, LIU X L, WANG K, et al. Effect of complex saline-alkali stress on physiological parameters of Nitratia tangutorum[J]. Chin J Plant Ecol, 2010, 34(10):1213-1219.DOI: 10.3773/j.issn.1005-264x.2010.10.010.
|
[14] |
XIAO C X, CUI X L, LU H Y, et al. Comparative adaptive strategies of old and young leaves to alkali-stress in hexaploid wheat[J]. Environ Exp Bot, 2020, 171:103955.DOI: 10.1016/j.envexpbot.2019.103955.
|
[15] |
GUO J X, LU X Y, TAO Y F, et al. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress[J]. Front Plant Sci, 2022, 13:871387.DOI: 10.3389/fpls.2022.871387.
|
[16] |
刘攀, 耿兴敏, 宦智群, 等. 盐碱胁迫对4种杜鹃属植物种子萌发和幼苗生长的影响[J]. 中国野生植物资源, 2021, 40(1):36-42.
|
|
LIU P, GENG X M, HUAN Z Q, et al. Effects of salt or alkali stress on seed germination and seedling growth of four Rhododendron species[J]. Chinese Wild Plant Resources, 2021, 40(1):36-42..
|
[17] |
徐倩, 李华雄, 鲜小林, 等. β-氨基丁酸对NaHCO3胁迫下杜鹃光合特性和抗氧化系统的影响[J]. 林业科学研究, 2018, 31(2):133-140.
|
|
XU Q, LI H X, XIAN X L, et al. Effects of BABA on photosynthetic characteristics and antioxidative system in Rhododendron under NaHCO3 stress[J]. Forest Research, 2018, 31(2):133-140.
|
[18] |
刘攀, 耿兴敏, 赵晖. 碱胁迫下杜鹃花抗氧化体系的响应及亚细胞分布[J]. 园艺学报, 2020, 47(5):916-926.
|
|
LIU P, GENG X M, ZHAO H. Subcellular distribution and responses of antioxidant systems in leaves of three Rhododendron cultivars under alkali stress[J]. Acta Hortic Sin, 2020, 47(5):916-926.DOI: 10.16420/j.issn.0513-353x.2019-0314.
|
[19] |
张宪政. 植物叶绿素含量测定:丙酮乙醇混合液法[J]. 辽宁农业科学, 1986(3):26-28.
|
|
ZHANG X Z. Determination of chlorophyll content in plants: acetone-ethanol mixed solution method[J]. Liaoning Agric Sci, 1986(3):26-28.
|
[20] |
王璐. 缺铁响应转录因子OsbHLH133的功能和缺铁诱导乙烯合成分子机理的研究[D]. 杭州: 浙江大学, 2013.
|
|
WANG L. Functional analysis of Fe-related transcription factor OsbHLH133 & the molecular mechanism of ethylene svnthesis induced by Fe deficiency[D]. Hangzhou: Zhejiang University, 2013.
|
[21] |
国家林业局. 森林土壤分析方法:LY/T 1210—1275-1999[S]. 北京: 中国标准出版社, 1999:279-304.
|
|
National Forestry Administration. Forest soil analysis methods: LY/T 1210—1275-1999[S]. Beijing: Standards Press of China, 1999: 279-304.
|
[22] |
MARQUES D M, JÚNIOR V V, DA SILVA A B, et al. Copper toxicity on photosynthetic responses and root morphology of Hymenaea courbaril L.(Caesalpinioideae)[J]. Water Air Soil Pollut, 2018, 229(5):138.DOI: 10.1007/s11270-018-3769-2.
|
[23] |
TURNER A J, ARZOLA C I, NUNEZ G H. High pH stress affects root morphology and nutritional status of hydroponically grown Rhododendron (Rhododendron spp.)[J]. Plants, 2020, 9(8):1019.DOI: 10.3390/plants9081019.
|
[24] |
RÖMHELD V, MARSCHNER H. Function of micronutrients in plants[M]//Micronutrients in Agriculture. Madison,WI, USA: Soil Science Society of America, 2018:297-328.DOI: 10.2136/sssabookser4.2ed.c9.
|
[25] |
SUSIN S, ABADIA A, GONZALEZ-REYES J A, et al. The pH requirement for in vivo activity of the iron-deficiency-induced turbo ferric chelate reductase (a comparison of the iron-deficiency-induced iron reductase activities of intact plants and isolated plasma membrane fractions in sugar beet)[J]. Plant Physiol, 1996, 110(1):111-123.DOI: 10.1104/pp.110.1.111.
|
[26] |
杨静慧, 杨恩芹. 介质及根际pH值对苹果植株失绿的影响研究[J]. 西南农业大学学报, 1995, 17(4):355-358.
|
|
YANG J H, YANG E Q. Chlorosis of Malus as influnced by iron and rhizosphere pH[J]. J Southwest Agric Univ, 1995, 17(4):355-358.
|
[27] |
周晓今, 陈茹梅, 范云六. 植物对铁元素吸收、运输和储存的分子机制[J]. 作物研究, 2012, 26(5):605-610.
|
|
ZHOU X J, CHEN R M, FAN Y L. Molecular mechanism of iron uptake,translocation and storage in plants[J]. Crop Res, 2012, 26(5):605-610.DOI: 10.3969/j.issn.1001-5280.2012.05.55.
|
[28] |
JOLLEY V D, COOK K A, HANSEN N C, et al. Plant physiological responses for genotypic evaluation of iron efficiency in strategy Ⅰ and strategy Ⅱ plants:a review[J]. J Plant Nutr, 1996, 19(8/9):1241-1255.DOI: 10.1080/01904169609365195.
|
[29] |
孙振元, 徐文忠, 赵梁军, 等. 高pH值和铁素对毛白杜鹃和迎红杜鹃根系Fe3+还原酶活性的影响[J]. 核农学报, 2005, 19(6):456-460.
|
|
SUN Z Y, XU W Z, ZHAO L J, et al. The effects of high-pH and iron on root Fe3+ reductase activity of Rhododendron mucronatum and Rhododendron simsii[J]. Acta Agric Nucleatae Sin, 2005, 19(6):456-460.DOI: 10.3969/j.issn.1000-8551.2005.06.011.
|
[30] |
武维华. 植物生理学[M]. 2版. 北京: 科学出版社, 2008.
|
|
WU W H. Phytophysiology[M]. 2nd ed. Beijing: Science Press, 2008.
|
[31] |
刘杰. 盐碱胁迫对向日葵体内矿质营养的影响[J]. 北方园艺, 2014(2):1-5.
|
|
LIU J. Effects of simulated salt and alkali conditions on the mineral nutrition of Helianthus annuus L[J]. North Hortic, 2014(2):1-5.
|
[32] |
黄清荣, 祁琳, 柏新富. 根环境供氧状况对盐胁迫下棉花幼苗光合及离子吸收的影响[J]. 生态学报, 2018, 38(2):528-536.
|
|
HUANG Q R, QI L, BAI X F. Effects of rhizosphere aeration on photosynthesis and ion absorption in cotton seedlings under salt stress[J]. Acta Ecol Sin, 2018, 38(2):528-536.DOI: 10.5846/stxb201607261519.
|
[33] |
RÖMHELD V. The chlorosis paradox:Fe inactivation as a secondary event in chlorotic leaves of grapevine[J]. J Plant Nutr, 2000, 23(11/12):1629-1643.DOI: 10.1080/01904160009382129.
|
[34] |
郝志, 田纪春, 姜小苓. 小麦主要亲缘种籽粒的Fe、Zn、Cu、Mn含量及其聚类分析[J]. 作物学报, 2007, 33(11):1834-1839.
|
|
HAO Z, TIAN J C, JIANG X L. Analyses of Fe,Zn,Cu,and Mn contents in grains and grouping based on the contents for main kindred germplasm of common wheat (Triticum aestivum)[J]. Acta Agron Sin, 2007, 33(11):1834-1839.DOI: 10.3321/j.issn:0496-3490.2007.11.015.
|
[35] |
李玉梅, 郭修武, 姜云天. 碱性盐胁迫对牛叠肚幼苗离子积累和运输的影响[J]. 贵州农业科学, 2016, 44(2):61-66.
|
|
LI Y M, GUO X W, JIANG Y T. Effects of alkaline salt stress on ion accumulation and transportation of Rubus crataegifolius seedlings[J]. Guizhou Agric Sci, 2016, 44(2):61-66.
|
[36] |
王树凤, 胡韵雪, 李志兰, 等. 盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响[J]. 生态学报, 2010, 30(17):4609-4616.
|
|
WANG S F, HU Y X, LI Z L, et al. Effects of NaCl stress on growth and mineral ion uptake,transportation and distribution of Quercus virginiana[J]. Acta Ecol Sin, 2010, 30(17):4609-4616.
|
[37] |
项越, 赵淑婷, 吴昊, 等. 虎尾草不同器官矿质元素含量对碱化环境的响应[J]. 草业科学, 2022, 39(3):511-519.
|
|
XIANG Y, ZHAO S T, WU H, et al. Effects of alkali stress on the content of mineral elements in different organs of Chloris virgata[J]. Prata-cultural Sci, 2022, 39(3):511-519.
|
[38] |
LÓPEZ-AGUILAR R, ORDUÑO-CRUZ A, LUCERO-ARCE A, et al. Response to salinity of three grain legumes for potential cultivation in arid areas[J]. Soil Sci Plant Nutr, 2003, 49(3):329-336.DOI: 10.1080/00380768.2003.10410017.
|
[39] |
郭淑华. NaHCO3胁迫对‘左山一’杂交砧木株系生长发育及有机酸分泌的影响[D]. 泰安: 山东农业大学, 2018.
|
|
GUO S H. Effect of NaHCO3 stress on plant growth and organic acid secretion of ‘Zuoshan1’ hybrid rootstock strains[D]. Tai'an: Shandong Agricultural University, 2018.
|
[40] |
郭瑞, 周际, 杨帆, 等. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(6):683-692.
|
|
GUO R, ZHOU J, YANG F, et al. Metabolic responses of wheat roots to alkaline stress[J]. Chin J Plant Ecol, 2017, 41(6):683-692.DOI: 10.17521/cjpe.2016.0136.
|