[1] |
ZHANG L, XI Z X, WANG M C, et al. Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows[J]. Ecol Evol, 2018, 8(16):7817-7823.DOI:10.1002/ece3.4261.
|
[2] |
LI M M, WANG D Y, ZHANG L, et al. Intergeneric relationships within the family Salicaceae s.l.based on plastid phylogenomics[J]. Int J Mol Sci, 2019, 20(15):E3788.DOI:10.3390/ijms20153788.
|
[3] |
YANG F X, SU Y Q, LI X H, et al. Preparation of biodiesel from Idesia polycarpa var. vestita fruit oil[J]. Ind Crops Prod, 2009, 29(2/3):622-628.DOI:10.1016/j.indcrop.2008.12.004.
|
[4] |
FAN R S, CAI G, ZHOU X Y, et al. Characterization of diacylglycerol acyltransferase 2 from Idesia polycarpa and function analysis[J]. Chem Phys Lipids, 2021, 234:105023.DOI:10.1016/j.chemphyslip.2020.105023.
|
[5] |
COX C, MANN J, CHISHOLM A, et al. Effects of coconut oil,butter and safflower oil on lipids and lipoproteins in persons with moderately elevated cholesterol levels[J]. Atherosclerosis, 1994, 109(1/2):146-147.DOI:10.1016/0021-9150(94)93598-X.
|
[6] |
SIRI-TARINO P W, SUN Q, HU F B, et al. Saturated fatty acids and risk of coronary heart disease:modulation by replacement nutrients[J]. Curr Atheroscler Rep, 2010, 12(6):384-390.DOI:10.1007/s11883-010-0131-6.
|
[7] |
RODRÍGUEZ M F R, SÁNCHEZ-GARCÍA A, SALAS J J, et al. Characterization of soluble acyl-ACP desaturases from Camelina sativa,Macadamia tetraphylla and Dolichandra unguiscati[J]. J Plant Physiol, 2015, 178:35-42.DOI:10.1016/j.jplph.2015.01.013.
|
[8] |
GE Y, CHANG Y, XU W L, et al. Sequence variations in the FAD2 gene in seeded pumpkins[J]. Genet Mol Res, 2015, 14(4):17482-17488.DOI:10.4238/2015.December.21.19.
|
[9] |
FOX B G, SHANKLIN J, SOMERVILLE C, et al. Stearoyl-acyl carrier protein delta 9 desaturase from Ricinus communis is a diiron-oxo protein[J]. Proc Natl Acad Sci USA, 1993, 90(6):2486-2490.DOI:10.1073/pnas.90.6.2486.
|
[10] |
LIGHTNER J, WU J, BROWSE J. A mutant of Arabidopsis with increased levels of stearic acid[J]. Plant Physiol, 1994, 106(4):1443-1451.DOI:10.1104/pp.106.4.1443.
|
[11] |
KNUTZON D S, THOMPSON G A, RADKE S E, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene[J]. Proc Natl Acad Sci USA, 1992, 89(7):2624-2628.DOI:10.1073/pnas.89.7.2624.
|
[12] |
CRAIG W, LENZI P, SCOTTI N, et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance[J]. Transgenic Res, 2008, 17(5):769-782.DOI:10.1007/s11248-008-9164-9.
|
[13] |
HORIGUCHI G, IWAKAWA H, KODAMA H, et al. Expression of a gene for plastid w-3 fatty acid desaturase and changes in lipid and fatty acid compositions in light-and dark-grown wheat leaves[J]. Physiol Plant, 1996, 96(2):275-283.
|
[14] |
WANG C, CHIN C K, CHEN A. Expression of the yeast Δ9 desaturase gene in tomato enhances its resistance to powdery mildew[J]. Physiol Mol Plant Pathol, 1998, 52(6):371-383.DOI:10.1006/pmpp.1998.0158.
|
[15] |
SHAH J, KACHROO P, NANDI A, et al. A recessive mutation in the Arabidopsis SSI2 gene confers SA-and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens[J]. Plant J, 2001, 25:563-574.DOI:10.1046/j.1365-313x.2001.00992.x.
|
[16] |
KACHROO A, LAPCHYK L, FUKUSHIGE H, et al. Plastidial fatty acid signaling modulates salicylic acid-and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant[J]. Plant Cell, 2003, 15(12):2952-2965.DOI:10.1105/tpc.017301.
|
[17] |
KACHROO A, VENUGOPAL S C, LAPCHYK L, et al. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis[J]. PNAS, 2004, 101(14):5152-5157.DOI:10.1073/pnas.0401315101.
|
[18] |
MADI L A, WANG X J, KOBILER I, et al. Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression,fatty acid composition,antifungal diene level and resistance to Colletotrichum gloeosporioides attack[J]. Physiol Mol Plant Pathol, 2003, 62(5):277-283.DOI:10.1016/S0885-5765(03)00076-6.
|
[19] |
KUMAR S, STECHER G, LI M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549.DOI:10.1093/molbev/msy096.
|
[20] |
NICHOLAS K B. GeneDoc: analysis and visualization of genetic variation, EMBNEW[J]. Embnew News, 1997, 4. DOI:10.11118/actaun201361041061.
|
[21] |
WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.DOI:10.1093/nar/gkr1293.
|
[22] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI:10.1016/j.molp.2020.06.009.
|
[23] |
SUN P C, JIAO B B, YANG Y Z, et al. WGDI:a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes[J]. BioRxiv, 2021, DOI:10.1101/2021.04.29.441969.
|
[24] |
KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4):357-360.DOI:10.1038/nmeth.3317.
|
[25] |
PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3):290-295.DOI:10.1038/nbt.3122.
|
[26] |
段郅臻, 王童欣, 王健. VIGS技术在观赏植物花色研究上的应用[J]. 分子植物育种, 2021, 19(24):8170-8178.
|
|
DUAN Z Z, WANG T X, WANG J. Applications of virus-induced gene silencing(VIGS) technology in flower color research of ornamental plants[J]. Mol Plant Breed, 2021, 19(24):8170-8178.DOI:10.13271/j.mpb.019.008170.
|
[27] |
YE J, QU J, BUI H T N, et al. Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing[J]. Plant Biotechnol J, 2009, 7(9):964-976.DOI:10.1111/j.1467-7652.2009.00457.x.
|
[28] |
BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Can J Biochem Physiol, 1959, 37(8):911-917.DOI:10.1139/o59-099.
|
[29] |
FOLCH J, LEES M, STANLEY G H S. A simple method for the isolation and purification of total lipides from animal tissues[J]. J Biol Chem, 1957, 226(1):497-509.DOI:10.1016/S0021-9258(18)64849-5.
|
[30] |
SCHNEIDER G, LINDQVIST Y, SHANKLIN J, et al. Preliminary crystallographic data for stearoyl-acyl carrier protein desaturase from castor seed[J]. J Mol Biol, 1992, 225(2):561-564.DOI:10.1016/0022-2836(92)90941-C.
|
[31] |
LINDQVIST Y, HUANG W, SCHNEIDER G, et al. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins[J]. EMBO J, 1996, 15(16):4081-4092.
|
[32] |
SONG N, HU Z R, LI Y H, et al. Overexpression of a wheat stearoyl-ACP desaturase (SACPD) gene TaSSI2 in Arabidopsis ssi2 mutant compromise its resistance to powdery mildew[J]. Gene, 2013, 524(2):220-227.DOI:10.1016/j.gene.2013.04.019.
|
[33] |
Ⅱ P R, WHETTEN R, CARDINAL A, et al. Effect of Δ9-stearoyl-ACP-desaturase-C mutants in a high oleic background on soybean seed oil composition[J]. Theor Appl Genet, 2014, 127(2):349-358.DOI:10.1007/s00122-013-2223-5.
|
[34] |
KACHROO A, SHANKLIN J, WHITTLE E, et al. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis[J]. Plant Mol Biol, 2007, 63(2):257-271.DOI:10.1007/s11103-006-9086-y.
|
[35] |
ZHANG Y F, MAXIMOVA S N, GUILTINAN M J. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree,Theobroma cacao L[J]. Front Plant Sci, 2015, 6:239.DOI:10.3389/fpls.2015.00239.
|
[36] |
邓咪咪, 刘宝玲, 王志龙, 等. 大豆硬脂酰-ACP Δ9脱氢酶(GmSAD)基因家族的鉴定及功能分析[J]. 生物工程学报, 2020, 36(4):716-731.
|
|
DENG M M, LIU B L, WANG Z L, et al. Identification and functional analysis of soybean stearoyl-ACP Δ9 desaturase(GmSAD) gene family[J]. Chin J Biotechnol, 2020, 36(4):716-731.DOI:10.13345/j.cjb.190550.
|
[37] |
SHANG X G, CHENG C Z, DING J, et al. Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition[J]. Mol Genet Genomics, 2017, 292(1):173-186.DOI:10.1007/s00438-016-1265-1.
|
[38] |
LANGE M, YELLINA A L, ORASHAKOVA S, et al. Virus-induced gene silencing (VIGS) in plants:an overview of target species and the virus-derived vector systems[J]. Methods Mol Biol (Clifton N J), 2013, 975:1-14.DOI:10.1007/978-1-62703-278-0_1.
|
[39] |
ZHOU L N, ZHU C, FANG X J, et al. Gene duplication drove the loss of awn in sorghum[J]. Mol Plant, 2021, 14(11):1831-1845.DOI:10.1016/j.molp.2021.07.005.
|
[40] |
ISHIKAWA A, KABEYA N, IKEYA K, et al. A key metabolic gene for recurrent freshwater colonization and radiation in fishes[J]. Science, 2019, 364(6443):886-889.DOI:10.1126/science.aau5656.
|