南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6): 192-202.doi: 10.12302/j.issn.1000-2006.202207036
张晓迪(), 李明泽(), 王斌, 吴泽川, 莫祝坤, 范仲洲
收稿日期:
2022-07-22
修回日期:
2022-10-08
出版日期:
2023-11-30
发布日期:
2023-11-23
通讯作者:
*李明泽(基金资助:
ZHANG Xiaodi(), LI Mingze(), WANG Bin, WU Zechuan, MO Zhukun, FAN Zhongzhou
Received:
2022-07-22
Revised:
2022-10-08
Online:
2023-11-30
Published:
2023-11-23
摘要:
【目的】构建并优化Rothermel-惠更斯原理模型对森林火线蔓延进行预测模拟,探索林火蔓延规律,为森林火灾防治提供有效方案。【方法】对黑龙江省典型易燃树种林下细小可燃物开展点烧实验,利用图像的阈值分割算法和Canny边缘检测算法提取火线并计算林火蔓延速率。收集了8种影响林火蔓延的因子,使用皮尔逊相关分析和偏相关系数对林火蔓延因子进行相关分析。在此基础上构建了Rothermel-惠更斯原理模型对森林火灾蔓延过程进行模拟,并与实际实时所获取的火线轮廓进行对比分析。【结果】相关分析的结果表明,风速、坡度、火场温度与林火蔓延速率呈显著正相关,可燃物含水率、可燃物厚度、可燃物载量与林火蔓延速率呈显著负相关。所构建的Rothermel-惠更斯模型的室内点烧实验的总体精度达到79.25%,灵敏度为78.42%,调和平均数为79.11%,Kappa系数为0.804。室外点烧实验的总体精度达到85.15%,灵敏度为82.31%,调和平均数为82.85%,Kappa系数为0.832。这也证明了Rothermel-惠更斯原理模型可以较好地对森林火灾蔓延进行准确预测,且模型性能稳定。【结论】风速、可燃物含水率、坡度等是影响黑龙江森林火灾蔓延速率的主导因素。所构建的Rothermel-惠更斯原理模型在模拟森林火灾蔓延方面具有很好的适用性,该模型在室内与室外点烧中模拟结果均良好且能准确预测并捕捉火线位置。
中图分类号:
张晓迪,李明泽,王斌,等. 基于红外序列图像的火线实时提取及蔓延模拟火线优化[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 192-202.
ZHANG Xiaodi, LI Mingze, WANG Bin, WU Zechuan, MO Zhukun, FAN Zhongzhou. Real-time extraction of fire line and optimization of spread simulation fire line based on infrared sequence images[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(6): 192-202.DOI: 10.12302/j.issn.1000-2006.202207036.
图2
3个红外图像与2 s的间隔和火线位置计算 a)11:13:40拍摄的红外图像the infrared images captured at 11:13:40;b)11:13:42拍摄的红外图像the infrared images captured at 11:13:42;c)11:13:44拍摄的红外图像the infrared images captured at 11:13:44;d)使用透视变换从红外图像计算火线位置fire line positions computed from infrared images using perspective transformation。"
表1
林火蔓延速度与环境变量因子的相关分析"
变量 variable | 蔓延速度 spread rate | 偏相关系数 partial correlation coefficient |
---|---|---|
风速 wind speed | 0.863** | 0.919 |
温度 temperature | 0.507** | 0.615 |
相对湿度 relative humidity | -0.422 | 0.641 |
载量 loads | -0.113** | 0.233 |
可燃物厚度 fuel thickness | -0.558** | -0.352 |
可燃物面积 area of fuel | -0.828** | 0.635 |
坡度 slope | 0.417** | 0.480 |
含水率 moisture content | -0.737** | -0.682 |
[1] | KALANTAR B, UEDA N, IDREES M O, et al. Forest fire susceptibility prediction based on machine learning models with resampling algorithms on remote sensing data[J]. Remote Sens, 2020, 12(22): 3682, DOI: 10.3390/rs12223682. |
[2] | 李滨, 刘可宁. 基于无人机光学遥感的森林生物量估算研究[J]. 森林工程, 2022, 38(5): 83-92. |
LI B, LIU K N. Forest biomass estimation based on UAV optical remote sensing[J]. Forest Engineering, 2022, 38(5): 83-92. | |
[3] | NÖLTE A, MEILBY H, YOUSEFPOUR R. Multi-purpose forest management in the tropics: incorporating values of carbon, biodiversity and timber in managing Tectona grandis (teak) plantations in Costa Rica[J]. For Ecol Manag, 2018, 422: 345-357. DOI: 10.1016/j.foreco.2018.04.036. |
[4] | LI X Y, JIN H J, WANG H W, et al. Influences of forest fires on the permafrost environment: a review[J]. Adv Clim Change Res, 2021, 12(1): 48-65. DOI: 10.1016/j.accre.2021.01.001. |
[5] | WU Z C, LI M Z, WANG B, et al. Using artificial intelligence to estimate the probability of forest fires in Heilongjiang, northeast China[J]. Remote Sens, 2021, 13(9): 1813. DOI: 10.3390/rs13091813. |
[6] | 翟春婕, 曹兆楼, 郑怀兵. 基于图像的火焰锋面法向速度场测量研究[J]. 火灾科学, 2016, 25(1):28-33. |
ZHAI C J, CAO Z L, ZHENG H B. Measurement of normal velocity field at the fire front based on imaging analysis[J]. Fire Saf Sci, 2016, 25(1):28-33. DOI: 10.3969/j.issn.1004-5309.2016.01.04. | |
[7] | MARTÍNEZ-DE DIOS J R, ANDRÉ J C, GONÇALVES J C, et al. Laboratory fire spread analysis using visual and infrared images[J]. Int J Wildland Fire, 2006, 15(2): 179. DOI: 10.1071/wf05004. |
[8] | 李丹丹, 金森. 用可见光图像法测定林火蔓延速率的误差[J]. 中南林业科技大学学报, 2014, 34(3): 61-67. |
LI D D, JIN S. Study on errors of forest fire spread rate measured by visible light image method[J]. J Central South Univ For Technol, 2014, 34(3): 61-67. DOI: 10.3969/j.issn.1673-923X.2014.03.012. | |
[9] | 金森. 林火图像测量中的火场边缘提取技术[J]. 林业科学, 2007, 43(9):44-47, 157. |
JIN S. Fire boundary extracting technique in automatic measurement of rate of spread of forest fire by analyzing series of images[J]. Sci Silvae Sin, 2007, 43(9): 44-47, 157. DOI: 10.3321/j.issn:1001-7488.2007.09.009. | |
[10] | 苏漳文, 曾爱聪, 蔡奇均, 等. 基于Gompit回归模型的大兴安岭林火预测模型及驱动因子研究[J]. 林业工程学报, 2019, 4(4):135-142. |
SU Z W, ZENG A C, CAI Q J, et al. Study on prediction model and driving factors of forest fire in Da Hinggan Mountains using Gompit regression method[J]. J For Eng, 2019, 4(4): 135-142. DOI: 10.13360/j.issn.2096-1359.2019.04.020. | |
[11] | 冯俊伟. 华南地区森林地表可燃物火蔓延速度特性的实验研究[J]. 消防科学与技术, 2022, 41(6): 832-835. |
FENG J W. Experimental study on fire spread velocity characteristics of forest surface combustible materials in south China[J]. Fire Sci Technol, 2022, 41(6):832-835. DOI: 10.3969/j.issn.1009-0029.2022.06.023. | |
[12] | 张运林, 宋红, 胡海清. 云南3种乔木防火期内含水率变化及预测模型[J]. 西北林学院学报, 2019, 34(1):157-162. |
ZHANG Y L, SONG H, HU H Q. Prediction model of moisture content of 3 tree species in Yunnan Province[J]. J Northwest For Univ, 2019, 34(1):157-162. DOI: 10.3969/j.issn.1001-7461.2019.01.23. | |
[13] | 于宏洲, 柳慧, 张运林, 等. 地表细小可燃物含水率野外自动记录监测系统设计与试验[J]. 森林工程, 2022, 38(5): 38-47. |
YU H Z, LIU H, ZHANG Y L, et al. Design and experiment of monitoring system for surface fine fuel moisture[J]. Forest Engineering, 2022, 38(5): 38-47. | |
[14] | ROSSA C, FERNANDES P. On the fire-spread rate influence of some fuel bed parameters derived from Rothermel’s model thermal energy balance[J]. Sumarski List, 2018, 142(1/2): 77-80. DOI: https://doi.org/10.31298/sl.142.1-2.7. |
[15] | DASDEMIR I, AYDIN F, ERTUGRUL M. Factors affecting the behavior of large forest fires in Turkey[J]. Environ Manag, 2021, 67(1): 162-175. DOI: 10.1007/s00267-020-01389-z. |
[16] | ABDI O, KAMKAR B, SHIRVANI Z, et al. Spatial-statistical analysis of factors determining forest fires: a case study from Golestan, northeast Iran[J]. Geomat Nat Hazards Risk, 2018, 9(1): 267-280. DOI: 10.1080/19475705.2016.1206629. |
[17] | 耿道通, 宁吉彬, 李兆国, 等. 基于Rothermel模型的红松人工林地表可燃物蔓延速率及参数修正[J]. 北京林业大学学报, 2021, 43(11): 79-88. |
GENG D T, NING J B, LI Z G, et al. Spread rate and parameter correction of surface combustible materials in Korean pine plantation based on Rothermel model[J]. J Beijing For Univ, 2021, 43(11): 79-88. DOI: 10.12171/j.1000-1522.20200247. | |
[18] | 何诚, 舒立福, 张思玉, 等. 大兴安岭森林草原地下火阴燃特征研究[J]. 西南林业大学学报, 2020, 40(2):103-110. |
HE C, SHU L F, ZHANG S Y, et al. Research on underground fire smouldering characteristics of forest steppe in Daxing’an mountains[J]. J Southwest For Univ, 2020, 40(2):103-110. DOI: 10.11929/j.swfu.201907002. | |
[19] | 陶长森, 牛树奎, 陈锋, 等. 北京山区主要针叶林潜在火行为及冠层危险指数研究[J]. 北京林业大学学报, 2018, 40(9):55-62. |
TAO C S, NIU S K, CHEN F, et al. Potential fire behavior and canopy hazard index of main coniferous forests in Beijing Mountain area[J]. J Beijing For Univ, 2018, 40(9):55-62. DOI: 10.13332/j.1000-1522.20180109. | |
[20] | 尹赛男, 王东昶, 单延龙, 等. 黑龙江省3种主要火源引发森林火灾的次数和面积时空分布特征[J]. 林业科学, 2021, 57(6):115-124. |
YIN S N, WANG D C, SHAN Y L, et al. Spatial and temporal distribution of forest fires (frequency and area) caused by three main fire sources in Heilongjiang Province[J]. Sci Silvae Sin, 2021, 57(6):115-124. DOI: 10.11707/j.1001-7488.20210613. | |
[21] | 滕跃. 樟子松松瘤锈病对其燃烧性的影响[D]. 哈尔滨: 东北林业大学, 2019. |
TENG Y. Effect of Pinus sylvestris var.mongolica on its combustibility[D]. Harbin: Northeast Forestry University, 2019. | |
[22] | RIM C B, OM K C, REN G Y, et al. Establishment of a wildfire forecasting system based on coupled weather-wildfire modeling[J]. Appl Geogr, 2018, 90: 224-228. DOI: 10.1016/j.apgeog.2017.12.011. |
[23] | WU Z C, WANG B, LI M Z, et al. Simulation of forest fire spread based on artificial intelligence[J]. Ecol Indic, 2022, 136: 108653. DOI: 10.1016/j.ecolind.2022.108653. |
[24] | FONS W L. Analysis of fire spread in light forest fuels[J]. Journal of Agricultural Research, 1946, 72(3): 92-121. |
[25] | ROCHOUX M C, EMERY C, RICCI S, et al. Towards predictive data-driven simulations of wildfire spread-Part II: ensemble Kalman filter for the state estimation of a front-tracking simulator of wildfire spread[J]. Nat Hazards Earth Syst Sci, 2015, 15(8):1721-1739. DOI: 10.5194/nhess-15-1721-2015. |
[26] | MCARTHUR A G. Weather and grass land fire behaviour[R]. Forest Research Institute, Forestry and Timber Bureau, 1966. |
[27] | STOCKS B J, ALEXANDER M E, LANOVILLE R A. Overview of the international crown fire modelling experiment (ICFME)[J]. Can J For Res, 2004, 34(8): 1543-1547. DOI: 10.1139/x04-905. |
[28] | DARWISH A A, ABUBAKER A M, SALAIMEH A, et al. Ignition and burning mechanisms of live spruce needles[J]. Fuel, 2021, 304: 121371. DOI: 10.1016/j.fuel.2021.121371. |
[29] | ROTHERMEL R C. A mathematical model for predicting fire spread in wildland fuels[M]. Ogden, Utah: Intermountain Forest & Range Experiment Station, Forest Service, U. S. Dept. of Agriculture, 1972. |
[30] | MASSMAN W J, FORTHOFER J M, FINNEY M A. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior[J]. Can J For Res, 2017, 47(5): 594-603. DOI: 10.1139/cjfr-2016-0354. |
[31] | CRUZ M G, ALEXANDER M E. Uncertainty associated with model predictions of surface and crown fire rates of spread[J]. Environ Model Softw, 2013, 47: 16-28. DOI: 10.1016/j.envsoft.2013.04.004. |
[32] | GHISU T, ARCA B, PELLIZZARO G, et al. An optimal cellular automata algorithm for simulating wildfire spread[J]. Environ Model Softw, 2015, 71: 1-14. DOI: 10.1016/j.envsoft.2015.05.001. |
[33] | BALL G L, GUERTIN D P. Improved fire growth modeling[J]. Int J Wildland Fire, 1992, 2(2): 47. DOI: 10.1071/wf9920047. |
[34] | ZHOU T J, DING L, JI J, et al. Ensemble transform Kalman filter (ETKF) for large-scale wildland fire spread simulation using FARSITE tool and state estimation method[J]. Fire Saf J, 2019, 105: 95-106. DOI: 10.1016/j.firesaf.2019.02.009. |
[35] | KNIGHT I, COLEMAN J. A fire perimeter expansion algorithm-based on Huygens wavelet propagation[J]. Int J Wildland Fire, 1993, 3(2): 73. DOI: 10.1071/wf9930073. |
[36] | 祁曼. 林火蔓延仿真及扑救决策平台设计与软件实现[D]. 北京: 北京林业大学, 2017. |
QI M. Design and software implementation of forest fire spread simulation and fire fighting decision platform[D]. J Beijing: Beijing Forestry University, 2017. | |
[37] | 李炳怡, 刘冠宏, 舒立福. 北京门头沟区主要林分类型地表火行为模拟研究[J]. 北京林业大学学报, 2022, 44(6):96-105. |
LI B Y, LIU G H, SHU L F. Simulation study on surface fire behavior of main forest types in Mentougou District, Beijing[J]. J Beijing For Univ, 2022, 44(6):96-105. DOI: 10.12171/j.1000-1522.20210204. | |
[38] | LI X D, GAO H W, ZHANG M X, et al. Prediction of forest fire spread rate using UAV images and an LSTM model considering the interaction between fire and wind[J]. Remote Sens, 2021, 13(21): 4325. DOI: 10.3390/rs13214325. |
[39] | DE VIVO F, BATTIPEDE M, JOHNSON E. Infra-red line camera data-driven edge detector in UAV forest fire monitoring[J]. Aerosp Sci Technol, 2021, 111: 106574. DOI: 10.1016/j.ast.2021.106574. |
[40] | 何晓军, 徐爱功, 李玉. 利用HSI空间相似性的彩色形态学图像处理方法[J]. 计算机科学, 2019, 46(4):285-292. |
HE X J, XU A G, LI Y. Color morphology image processing method using similarity in HSI space[J]. Comput Sci, 2019, 46(4):285-292. DOI: 10.11896/j.issn.1002-137X.2019.04.045. | |
[41] | 刘若男, 辛义忠, 李岩. 基于皮尔逊相关系数的动态签名验证方法[J]. 仪器仪表学报, 2022, 43(7): 279-287. |
LIU R N, XIN Y Z, LI Y. Dynamic signature verification method based on Pearson correlation coefficient[J]. Chin J Sci Instrum, 2022, 43(7): 279-287. DOI: 10.19650/j.cnki.cjsi.J2209320. | |
[42] | RICHARDS G D. An elliptical growth model of forest fire fronts and its numerical solution[J]. Int J Numer Methods Eng, 1990, 30(6): 1163-1179. DOI: 10.1002/nme.1620300606. |
[43] | TAN L, DE CALLAFON R A, BLOCK J, et al. Improving wildfire simulations by estimation of wildfire wind conditions from fire perimeter measurements[C]// International Conference on Computational Science. Cham: Springer, 2021: 231-244. |
[44] | YARIYAN P, JANIZADEH S, PHONG T, et al. Improvement of best first decision trees using bagging and dagging ensembles for flood probability mapping[J]. Water Resour Manag, 2020, 34(9): 3037-3053. DOI: 10.1007/s11269-020-02603-7. |
[45] | WANG Y, WANG X J, YIN L. Estimation of extrinsic parameters for dynamic binocular stereo vision using unknown-sized rectangle images[J]. Rev Sci Instrum, 2019, 90(6): 065108. DOI: 10.1063/1.5086352. |
[46] | ZHAO Y, MA J L, LI X H, et al. Saliency detection and deep learning-based wildfire identification in UAV imagery[J]. Sensors, 2018, 18(3): 712. DOI: 10.3390/s18030712. |
[47] | JIAO Z T, ZHANG Y M, XIN J, et al. A deep learning based forest fire detection approach using UAV and YOLOv3[C]// 2019 1st International Conference on Industrial Artificial Intelligence (IAI). July 23-27, 2019, Shenyang, China. IEEE, 2019: 1-5. DOI: 10.1109/ICIAI.2019.8850815. |
[48] | 张笑一, 胡同欣, 刘方策, 等. 兴安落叶松针叶床层火蔓延的模拟[J]. 东北林业大学学报, 2021, 49(1):117-124. |
ZHANG X Y, HU T X, LIU F C, et al. Simulation of fire spread in coniferous bed of Larix gmelinii[J]. J Northeast For Univ, 2021, 49(1):117-124. DOI: 10.3969/j.issn.1000-5382.2021.01.022. | |
[49] | HONG H Y, TSANGARATOS P, ILIA I, et al. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models, the case of Dayu County, China[J]. Sci Total Environ, 2018, 630: 1044-1056.DOI: 10.1016/j.scitotenv.2018.02.278. |
[50] | GUO F T, SU Z W, WANG G Y, et al. Understanding fire drivers and relative impacts in different Chinese forest ecosystems[J]. Sci Total Environ, 2017, 605/606: 411-425. DOI: 10.1016/j.scitotenv.2017.06.219. |
[51] | 高仲亮, 舒立福, 王明玉, 等. 云南松烧除火蔓延速率预测模型研究[J]. 安全与环境学报, 2016, 16(4):82-86. |
GAO Z L, SHU L F, WANG M Y, et al. Model for predicting the forest fire spreading speed based on the prescriptive combustion of Pinus yunnanensis[J]. J Saf Environ, 2016, 16(4):82-86. DOI: 10.13637/j.issn.1009-6094.2016.04.016. | |
[52] | 王正非. 山火初始蔓延速度测算法[J]. 山地研究, 1983, 1(2):42-51. |
WANG Z F. The measurement method of the wildfire initial spread rate[J]. J Mt Res, 1983, 1(2):42-51. |
[1] | 吴妍, 李若楠, 赵志强. 黑龙江省国家级森林公园空间分布特征研究[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 189-196. |
[2] | 崔阳, 狄海廷, 邢艳秋, 常晓晴, 单炜. 基于MODIS数据的2001—2018年黑龙江省林火时空分布[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 205-211. |
[3] | 杨婷婷,管昉立,徐爱俊. 基于Graph Cut算法的多株立木轮廓提取方法[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 91-98. |
[4] | 赵颖慧,吕泓辰,甄贞,李凤日,魏庆彬. 黑龙江省气象因子插值优化及与落叶松NPP相关性分析[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 1-9. |
[5] | 何柏华,李春干. 基于DEM与SPOT5的小班边界自动提取[J]. 南京林业大学学报(自然科学版), 2010, 34(05): 47-50. |
[6] | 葛玉峰;周宏平;郑加强;张慧春. 基于相对色彩因子的树木图像分割算法[J]. 南京林业大学学报(自然科学版), 2004, 28(04): 19-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||