薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响

田梦阳, 朱树林, 窦全琴, 季艳红

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (2) : 86-96.

PDF(3031 KB)
PDF(3031 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (2) : 86-96. DOI: 10.12302/j.issn.1000-2006.202208022
研究论文

薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响

作者信息 +

The effects of intercropping of Carya illinoinensis and Camellia sinensis ‘Anjibaicha’ on photosynthetic characteristics of C. sinensis tree during rapid growth period

Author information +
文章历史 +

摘要

【目的】 探讨薄壳山核桃(Carya illinoinensis)-‘安吉白茶’(Camellia sinensis ‘Anjibaicha’)(安吉白茶)间作下安吉白茶速生期光合和荧光特性差异, 为构建薄壳山核桃-安吉白茶高效复合栽培体系提供理论依据。【方法】 在薄壳山核桃与安吉白茶复合栽培下分别以冠下(T1)、冠缘(T2)、冠外(T3)和单作安吉白茶(T0)为对照等4个测定点,测定10年生安吉白茶速生期(7—9月)光合日变化、光响应曲线、荧光参数和叶绿素含量等光合生理指标变化情况。【结果】 T2处理可显著提高安吉白茶的净光合速率(Pn),7月高温下T1、T2、T3测定点Pn均显著高于T0,8月T0处理存在光合午休现象,T2处理的Pn显著高于T0的,9月3个处理的Pn值均显著高于对照单作的;T2具有较高的表观量子效率(ηAQY)、最大净光合速率( Pn,max)、光饱和点( PLSP) 以及较低水平的光补偿点(PLCP);暗呼吸速率(Rd) 随着光照强度的降低呈逐渐下降的趋势;7—9月茶树叶绿素含量以间作显著高于单作,随着光照强度的降低,叶绿素a(Chla)、叶绿素b(Chlb)含量和叶绿素总含量(ChlT)逐渐增加,叶绿素a与叶绿素b质量比(Chla/b)值呈下降趋势。遮阴产生较多叶绿素利于茶树捕获更多的光能进行光合作用;7、8月间作下茶树PSⅡ最大光化学效率(Fv/Fm)与PSⅡ潜在的光化学活性(Fv/F0)均显著高于单作,高温与高光强对单作安吉白茶产生了明显的光抑制,光能转换效率与电子传递能力下降;9月间作下冠缘茶树Fv/FmFv/F0显著高于冠下和单作,遮阴过度抑制茶树PSⅡ的光化学活性,影响其光合作用中的能量传递与转化。【结论】 薄壳山核桃林下安吉白茶的多项光合生理指标得以提高,其中冠缘下有利于安吉白茶叶片光合同化作用,冠外次之,冠下和单作较差;高温与高强光对单作安吉白茶产生了明显的光抑制,降低了茶树光合效率。

Abstract

【Objective】 This article explores the differences in photosynthetic and fluorescence characteristics of Camellia sinensis ‘Anjibaicha’ at different measuring points of Carya illinoinensis-Camellia sinensis intercropping to provide a theoretical basis for high-efficiency compound cultivation of Carya illinoinensis-Camellia sinensis ‘Anjibaicha’.【Method】 In this compound model, the daily change in photosynthetic rate, light-response curves, fluorescence parameters and chlorophyll content of 10-year-old Camellia sinensis ‘Anjibaicha’ trees were measured in the fast-growing period (July-September) at four measuring points, i.e., under-crown (T1), crown-margin (T2), outside-crown (T3), and single Camellia sinensis comparison (T0).【Result】 The net photosynthetic rate(Pn) of Camellia sinensis ‘Anjibaicha’ could be significantly altered in T2. The Pn values at T1, T2 and T3 were significantly higher than those at T0 in July under high temperatures. The leaves had a midday depression of photosynthesis at T0 in August, and the Pn at T2 was significantly higher than that at T0. The Pn at different measuring points (T1, T2 and T3) were significantly higher than those of T0 in September. Compared with the control (T0), the higher apparent quantum efficiency (ηAQY), maximum net photosynthetic rate ( P n , m a x), and light saturation point (PLSP) were high, and the light compensation point (PLCP) was low at T2. The dark respiration rate (Rd) gradually decreased with decreasing light intensity. From July to September, the chlorophyll content of Camellia sinensis leaves was significantly higher in intercropping than in single Camellia sinensis cropping. With the decrease in light intensity, chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chl) gradually increased, and the chlorophyll a/b value showed a decreasing trend. Camellia sinensis leaves produce more chlorophyll, which helps Camellia sinensis trees capture more light energy for photosynthesis. The maximum photochemical efficiency (FV/Fm) and potential photochemical activity (FV/F0) of PSⅡ of Camellia sinensis trees in intercropping were significantly higher than those of single Camellia sinensis cropping in July and August. The light energy conversion efficiency and electron transfer ability of Camellia sinensis ‘Anjibaicha’ leaves in single cropping decreased because high temperature and high-intensity light could produce obvious photoinhibition. In September, the FV/Fm and FV/F0 of Camellia sinensis trees at T2 during intercropping were significantly higher than those of T1 and T0. The results showed that excessive shading inhibited the photochemical activity of PSⅡ, which blocked energy transfer and transformation in photosynthesis. 【Conclusion】 In the Carya illinoinensis-Camellia sinensis ‘Anjibaicha’ forest compound model, many photosynthetic physiological indexes of Camellia sinensis ‘Anjibaicha’ were improved, among which the crown-margin (T2) environment was favorable for the photosynthesis of Camellia sinensis ‘Anjibaicha’ leaves, followed by the outside-crown (T3), and the under-crown (T1) and monoculture (T0) were poor. High temperature and high-intensity light have obvious photoinhibition in single-cropped Camellia sinensis ‘Anjibaicha’, which reduced photosynthetic efficiency.

关键词

薄壳山核桃 / ‘安吉白茶’ / 间作 / 光合特征参数 / 叶绿素荧光

Key words

Carya illinoinensis / Camellia sinensis ‘Anjibaicha’ / intercropping / photosynthetic characteristic parameters / chlorophyll fluorescence

引用本文

导出引用
田梦阳, 朱树林, 窦全琴, . 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版). 2024, 48(2): 86-96 https://doi.org/10.12302/j.issn.1000-2006.202208022
TIAN Mengyang, ZHU Shulin, DOU Quanqin, et al. The effects of intercropping of Carya illinoinensis and Camellia sinensis ‘Anjibaicha’ on photosynthetic characteristics of C. sinensis tree during rapid growth period[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(2): 86-96 https://doi.org/10.12302/j.issn.1000-2006.202208022
中图分类号: S718   

参考文献

[1]
尧渝, 张厅, 马伟伟, 等. 不同间作模式对茶树光合生理及茶叶品质的影响[J]. 山西农业科学, 2016, 44(4):470-473.
YAO Y, ZHANG T, MA W W, et al. Effects of different intercropping patterns on photosynthetic physiology characteristics of tea plants and tea quality[J]. J Shanxi Agric Sci, 2016, 44(4):470-473.DOI: 10.3969/j.issn.1002-2481.2016.04.12.
[2]
巩雪峰, 余有本, 肖斌, 等. 不同栽培模式对茶园生态环境及茶叶品质的影响[J]. 西北植物学报, 2008, 28(12):2485-2491.
GONG X F, YU Y B, XIAO B, et al. Effects of different cultivating modes of tea gardens on environment and tea quality[J]. Acta Bot Boreali Occidentalia Sin, 2008, 28(12):2485-2491.
[3]
阮旭, 张玥, 杨忠星, 等. 果茶间作模式下茶树光合特征参数的日变化[J]. 南京农业大学学报, 2011, 34(5):53-57.
RUAN X, ZHANG Y, YANG Z X, et al. Diurnal variation of photosynthetic characteristic parameters of tea plant under fruit-tea intercropping patterns[J]. J Nanjing Agric Univ, 2011, 34(5):53-57.
[4]
周志翔. 林茶间作下的光照条件与茶树生理生态研究综述[J]. 生态学杂志, 1995, 14(3):56-63.
ZHOU Z X. Review on light variation in tea and other woody plants intercropped plantations and eco-physiology of tea plants[J]. Chin J Ecol, 1995, 14(3):56-63.
[5]
谢文钢, 邵济波, 韩楠, 等. 安吉白茶的研究进展及发展前景[J]. 蚕桑茶叶通讯, 2011(5):22-25.
XIE W G, SHAO J B, HAN N, et al. Research progress and development prospect of Anji white tea[J]. Newsl Seric Tea, 2011(5):22-25.DOI: 10.3969/j.issn.1007-1253.2011.05.014.
[6]
邓静, 王远兴, 丁建. 白茶与安吉白茶的研究进展[J]. 食品工业科技, 2013, 34(4):368-371,377.
DENG J, WANG Y X, DING J. Research progress in white tea and Anji white tea[J]. Sci Technol Food Ind, 2013, 34(4):368-371,377.DOI: 10.13386/j.issn1002-0306.2013.04.080.
[7]
方敏瑜, 傅懋毅, 李纪元, 等. 林-茶间种模式对安吉白茶生长的防护功能分析[J]. 林业科学研究, 1999, 12(4):433-437.
FANG M Y, FU M Y, LI J Y, et al. Shelter function analysis on Anjibaicha growth in the model of tea plant intercropping with trees[J]. For Res, 1999, 12(4):433-437.
[8]
唐荣南, 汤兴陆. 湿地松与茶树间作生态效应的研究[J]. 南京林业大学学报(自然科学版), 1987, 11(2):35-44.
TANG R N, TANG X L. Studies of ecological benefits of interplanting slash pines in tea plantation[J]. J Nanjing For Univ, 1987, 11(2):35-44.
[9]
叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报, 2010, 34(6):727-740.
YE Z P. A review on modeling of responses of photosynthesis to light and CO2[J]. Chin J Plant Ecol, 2010, 34(6):727-740.DOI: 10.3773/j.issn.1005-264x.2010.06.012.
[10]
潘平平, 窦全琴, 谢寅峰, 等. 薄壳山核桃15个家系子代苗期生长和荧光特性比较[J]. 江西农业大学学报, 2019, 41(3):454-463.
PAN P P, DOU Q Q, XIE Y F, et al. Comparison of growth and fluorescence characteristics of the progeny seedlings of 15 families of Carya illinoensis[J]. Acta Agric Univ Jiangxiensis, 2019, 41(3):454-463.DOI: 10.13836/j.jjau.2019054.
[11]
汤文华, 窦全琴, 潘平平, 等. 不同薄壳山核桃品种光合特性研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3):81-88.
TANG W H, DOU Q Q, PAN P P, et al. Photosynthetic characteristics of grafted plants of different Carya illinoinensis varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):81-88.DOI: 10.3969/j.issn.1000-2006.201903004.
[12]
孙君, 朱留刚, 林志坤, 等. 茶树光合作用研究进展[J]. 福建农业学报, 2015, 30(12):1231-1237.
SUN J, ZHU L G, LIN Z K, et al. Research progress on photosynthesis of tea plants[J]. Fujian J Agric Sci, 2015, 30(12):1231-1237.DOI: 10.19303/j.issn.1008-0384.2015.12.018.
[13]
陆文渊, 钱文春, 赖建红, 等. 安吉白茶品质的气候成因初探[J]. 茶叶科学技术, 2012, 53(3):37-39.
LU W Y, QIAN W C, LAI J H, et al. Preliminary study on the climatic causes of Anji white tea quality[J]. Tea Sci Technol, 2012, 53(3):37-39.
[14]
季琳琳, 佘诚棋, 肖正东, 等. 油茶-茶复合模式对茶树光合特性的影响[J]. 经济林研究, 2013, 31(1):39-43.
JI L L, SHE C Q, XIAO Z D, et al. Effects of oiltea-tea compound mode on photosynthetic characteristics in tea bush[J]. Nonwood For Res, 2013, 31(1):39-43.DOI: 10.14067/j.cnki.1003-8981.2013.01.008.
[15]
江新凤, 李琛, 蔡翔, 等. 遮阴对 “黄金菊” 茶树生长与茶叶品质的影响[J]. 茶叶通讯, 2019, 46(4):424-428.
JIANG X F, LI C, CAI X, et al. Effects of shading treatment on growing and quality of ‘Huangjinju’ (Camellia sinensis)[J]. Tea Commun, 2019, 46(4):424-428.
[16]
李杰, 贾豪语, 颉建明, 等. 生物肥部分替代化肥对花椰菜产量、品质、光合特性及肥料利用率的影响[J]. 草业学报, 2015, 24(1):47-55.
LI J, JIA H Y, XIE J M, et al. Effects of partial substitution of mineral fertilizer by bio-fertilizer on yield,quality,photosynthesis and fertilizer utilization rate in broccoli[J]. Acta Prataculturae Sin, 2015, 24(1):47-55.DOI: 10.11686/cyxb20150107.
[17]
叶子飘, 谢志亮, 段世华, 等. 设施栽培条件下三叶青叶片光合的气孔和非气孔限制[J]. 植物生理学报, 2020, 56(1):41-48.
YE Z P, XIE Z L, DUAN S H, et al. Stomatal and non-stomatal limitation of photosynthesis for Tetrastigma hemsleyanum under the condition of facility cultivation[J]. Plant Physiol J, 2020, 56(1):41-48.DOI: 10.13592/j.cnki.ppj.2019.0303.
[18]
FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982, 33:317-345.DOI: 10.1146/annurev.pp.33.060182.001533.
[19]
赵康, 肖正东, 佘诚棋, 等. 栽培模式对茶树叶片光合生理及茶叶品质的影响[J]. 安徽农业大学学报, 2012, 39(6):934-939.
ZHAO K, XIAO Z D, SHE C Q, et al. Effects of plantation patterns on photosynthetic characteristics and quality of tea[J]. J Anhui Agric Univ, 2012, 39(6):934-939.DOI: 10.13610/j.cnki.1672-352x.2012.06.023.
[20]
张勇, 程怡, 王清明, 等. 遮荫对月季光合特性及生长发育的影响[J]. 西北植物学报, 2014, 34(1):162-168.
ZHANG Y, CHENG Y, WANG Q M, et al. Effects of shading on growth and photosynthetic characteristics of Rosa hybrida[J]. Acta Bot Boreali Occidentalia Sin, 2014, 34(1):162-168.DOI: 10.7606/j.issn.1000-4025.2014.01.0162.
[21]
CHAI S F, TANG J M, MALLIK A, et al. Eco-physiological basis of shade adaptation of Camellia nitidissima,a rare and endangered forest understory plant of southeast Asia[J]. BMC Ecol, 2018, 18(1):5.DOI: 10.1186/s12898-018-0159-y.
[22]
BOARDMAN N K. Comparative photosynthesis of sun and shade plants[J]. Annu Rev Plant Physiol, 1977, 28:355-377.DOI: 10.1146/annurev.pp.28.060177.002035.355-371.
[23]
闫小莉, 王德炉. 遮荫对苦丁茶树叶片特征及光合特性的影响[J]. 生态学报, 2014, 34(13):3538-3547.
YAN X L, WANG D L. Effects of shading on the leaves and photosynthetic characteristics of Ligustrum robustum[J]. Acta Ecol Sin, 2014, 34(13):3538-3547.DOI: 10.5846/stxb201306241761.
[24]
王晨光, 郝兴宇, 李红英, 等. CO2浓度升高对大豆光合作用和叶绿素荧光的影响[J]. 核农学报, 2015, 29(8):1583-1588.
WANG C G, HAO X Y, LI H Y, et al. Effects of elevated atmospheric CO2 concentration on soybean photosynthesis and chlorophyll fluorescence parameters[J]. J Nucl Agric Sci, 2015, 29(8):1583-1588.DOI: 10.11869/j.issn.100-8551.2015.08.1583.
[25]
原向阳, 郭平毅, 黄洁, 等. 缺磷胁迫下草甘膦对抗草甘膦大豆幼苗光合作用和叶绿素荧光参数的影响[J]. 植物营养与肥料学报, 2014, 20(1):221-228.
YUAN X Y, GUO P Y, HUANG J, et al. Effect of glyphosate on photosynthesis and chlorophyll fluorescence of leaves of glyphosate-resistant soybean[Glycine max(L.) Merr.]seedlings under phosphorus deficiency stress[J]. J Plant Nutr Fertil, 2014, 20(1):221-228.
[26]
许大全. 光合作用学[M]. 北京: 科学出版社: 2013,94-95, 231-232.
XU D Q. The science of photosynthesis[M]. Beijing: Science Press: 2013,94-95, 231-232.
[27]
潘伟彬. 生态茶园复合栽培的农学与生态学研究[J]. 江西农业学报, 2009, 21(2):65-67,70.
PAN W B. Studies on agronomy and ecology of composite cultivation of ecological tea garden[J]. Acta Agric Jiangxi, 2009, 21(2):65-67,70.DOI: 10.19386/j.cnki.jxnyxb.2009.02.022.
[28]
杨巨仙, 窦全琴. 薄壳山核桃等3树种叶片水浸液对茶树种子萌发和幼苗生长的影响[J]. 江苏林业科技, 2022, 49(3):1-8.
YANG J X, DOU Q Q. Allelopathic effects of leaf aqueous extracts from three plant species on tea (Camellia sinensis)[J]. J Jiangsu For Sci Technol, 2022, 49(3):1-8.DOI: 10.3969/j.issn.1001?7380.2022.03.001.

基金

江苏省重点研发计划(现代农业)项目(BE2019397)

编辑: 吴祝华
PDF(3031 KB)

Accesses

Citation

Detail

段落导航
相关文章

/