南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (2): 182-190.doi: 10.12302/j.issn.1000-2006.202209007
韩新宇1(), 高露双1,*(), 秦莉2, 庞荣荣1, 刘鸣谦1, 朱一泓3, 田益雨4, 张金4
收稿日期:
2022-09-03
修回日期:
2022-10-18
出版日期:
2024-03-30
发布日期:
2024-04-08
通讯作者:
*高露双(gaolushuang@bjfu.edu.cn),副教授。作者简介:
韩新宇(737065091@qq.com)。
基金资助:
HAN Xinyu1(), GAO Lushuang1,*(), QIN Li2, PANG Rongrong1, LIU Mingqian1, ZHU Yihong3, TIAN Yiyu4, ZHANG Jin4
Received:
2022-09-03
Revised:
2022-10-18
Online:
2024-03-30
Published:
2024-04-08
摘要:
【目的】 研究不同密度下兴安落叶松径向生长与气候因子动态关系,为全球变暖背景下兴安落叶松林可持续经营中合理的林分密度确定提供依据。【方法】 根据林分密度指数(SDI)选取大兴安岭中北部地区低、中和高3种林分密度梯度兴安落叶松(Larix gmelinii)纯林为研究对象,采用Mann-Kendall检验确定研究区气温突变点,基于野外调查和树轮数据,分析气温突变点后各林分密度下兴安落叶松径向生长趋势,并利用皮尔森相关和滑动相关分析其与各气候因子的关系及稳定性。【结果】 在气温突变点后,研究区域兴安落叶松生长出现增强和衰退趋势,且随着林分密度增加,树木生长衰退比例增高。高林分密度下兴安落叶松生长受抑制程度最高,1988—1990年平均生长变化率为-25%,处于衰退状态。林分密度改变了兴安落叶松生长对气候的响应关系,高密度下衰退组树木生长与8月标准化降水蒸散指数(SPEI)正相关关系最强(P<0.05),与夏季温度呈稳定的显著负相关关系(P<0.05)。研究区气候呈现明显暖干化趋势,而低林分密度兴安落叶松保持54%的生长增强比例,树木与温度由低密度下的正相关关系向高密度的负相关关系转变。【结论】 气温发生显著改变后,随着林分密度增加,树木生长衰退比例增高。低密度林分对干旱的抵抗力较强,而高密度林分增强了树木生长对气候因子的敏感性。因此,较低林分密度可以减缓气候变暖对兴安落叶松生长带来的负面影响,调整林分密度成为减缓兴安落叶松林树木生长衰退趋势的必要经营措施。
中图分类号:
韩新宇,高露双,秦莉,等. 林分密度对兴安落叶松径向生长-气候关系的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 182-190.
HAN Xinyu, GAO Lushuang, QIN Li, PANG Rongrong, LIU Mingqian, ZHU Yihong, TIAN Yiyu, ZHANG Jin. Effect of stand density on radial growth-climate relationship of Larix gmelinii[J].Journal of Nanjing Forestry University (Natural Science Edition), 2024, 48(2): 182-190.DOI: 10.12302/j.issn.1000-2006.202209007.
表1
采样点基本信息"
林分类别 sample plot category | 树种组成 species composition | 林龄/a stand age | 样地经纬度 longitude and latitude | 海拔/m altitude | 平均胸径/cm mean DBH | 地位指数 site index (SI) | 林分密度 stand density (SDI) | 样芯数量/个 number of sampling cores |
---|---|---|---|---|---|---|---|---|
低密度 low density | 100%落 | 45 | 123°19'E,52°51'N | 567.4 | 16.29 | 16 | 380.7 | 42 |
90%落10%桦 | 69 | 122°10'E,51°21'N | 855.5 | 12.70 | 16 | 386.6 | 37 | |
90%落10%桦 | 53 | 121°27'E,52°15'N | 690.7 | 12.60 | 16 | 445.6 | 68 | |
中密度 middle density | 100%落 | 64 | 121°30'E,50°55'N | 850.2 | 22.03 | 16 | 561.2 | 41 |
90%落10%桦 | 53 | 122°23'E,52°18'N | 741.5 | 16.27 | 14 | 618.9 | 67 | |
90%落10%桦 | 56 | 121°10'E,50°49'N | 791.8 | 24.43 | 16 | 662.2 | 34 | |
高密度 high density | 70%落30%桦 | 78 | 120°49'E,52°35'N | 464.7 | 20.07 | 16 | 779.0 | 33 |
80%落20%桦 | 41 | 121°30'E,50°55'N | 835.0 | 25.24 | 16 | 754.9 | 59 | |
100%落 | 50 | 120°26'E,51°27'N | 589.7 | 18.98 | 16 | 1 000.2 | 51 |
图5
研究区不同密度兴安落叶松标准年表与气候因子相关关系 *.P<0.05。P10、P11、P12表示上一年10、11、12月份,C1、C2、C3、C4、C5、C6、C7、C8、C9表示当年1、2、3、4、5、6、7、8、9月份。P10,P11,P12 designate the previous year October, November, December, respectively and C1,C2,C3,C4,C5,C6,C7,C8,C9 designate the current year January, February, March, April, May, June, July, August, September."
图6
兴安落叶松标准年表与关键气候因子的5年滑动相关系数 L-EG. 低密度增强组 enhance group under low stand density; L-DG. 低密度衰退组 decline group under low stand density; M-EG. 中密度增强组 enhance group under middle stand density; M-DG. 中密度衰退组 decline group under middle stand density; H-EG. 高密度增强组 enhance group under high stand density; H-DG. 高密度衰退组 decline group under high stand density。 "
[1] | ADLARD P G, KARIYAPPA G S, SRINIVASALU N V. Spacing at planting of short-rotation Eucalyptus in Karnataka[C]// Growth and water use of forest plantations. New York: Wiley, 1992,103-127. |
[2] | CAI H Y, DI X Y, CHANG S X, et al. Stand density and species richness affect carbon storage and net primary productivity in early and late successional temperate forests differently[J]. Ecol Res, 2016, 31(4):525-533.DOI: 10.1007/s11284-016-1361-z. |
[3] | GIZACHEW B, BRUNNER A. Density-growth relationships in thinned and unthinned Norway spruce and Scots pine stands in Norway[J]. Scand J For Res, 2011, 26(6):543-554.DOI: 10.1080/02827581.2011.611477. |
[4] | GIUGGIOLA A, BUGMANN H, ZINGG A, et al. Reduction of stand density increases drought resistance in Xeric Scots pine forests[J]. For Ecol Manag, 2013, 310:827-835.DOI: 10.1016/j.foreco.2013.09.030. |
[5] | ROUTA J, KELLOMÄKI S, STRANDMAN H. Effects of forest management on total biomass production and CO2 emissions from use of energy biomass of Norway spruce and Scots pine[J]. Bioenerg Res, 2012, 5(3):733-747.DOI: 10.1007/s12155-012-9183-5. |
[6] | JIANG S S, CHEN X, SMETTEM K, et al. Climate and land use influences on changing spatiotemporal patterns of mountain vegetation cover in southwest China[J]. Ecol Indic, 2021, 121:107193.DOI: 10.1016/j.ecolind.2020.107193. |
[7] | HELLUY M, PRÉVOSTO B, CAILLERET M, et al. Competition and water stress indices as predictors of Pinus halepensis Mill.radial growth under drought[J]. For Ecol Manag, 2020, 460:117877.DOI: 10.1016/j.foreco.2020.117877. |
[8] | LIU H Y, PARK WILLIAMS A, ALLEN C D, et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia[J]. Glob Chang Biol, 2013, 19(8):2500-2510.DOI: 10.1111/gcb.12217. |
[9] | 吴秀臣, 裴婷婷, 李小雁, 等. 树木生长对气候变化的响应研究进展[J]. 北京师范大学学报(自然科学版), 2016, 52(1):109-116. |
WU X C, PEI T T, LI X Y, et al. Tree growth responding to climate changes[J]. J Beijing Norm Univ (Nat Sci), 2016, 52(1):109-116.DOI: 10.16360/j.cnki.jbnuns.2016.01.021. | |
[10] | 李宗善, 陈维梁, 韦景树, 等. 北京东灵山辽东栎林树木生长对气候要素的响应特征[J]. 生态学报, 2021, 41(1):27-37. |
LI Z S, CHEN W L, WEI J S, et al. Tree-ring growth responses of Liao-dong oak(Quercus wutaishanica)to climate in the Beijing Dongling Mountain of China[J]. Acta Ecol Sin, 2021, 41(1):27-37.DOI: 10.5846/stxb201910212210. | |
[11] | WU X, JIANG F, LI X, et al. Major features of decline of Pinus sylvestris var.mongolica plantation on sandy land[J]. Ying Yong Sheng Tai Xue Bao, 2004, 15(12):2221-2224. |
[12] | ANDREWS C M, D’AMATO A W, FRAVER S, et al. Low stand density moderates growth declines during hot droughts in se-miarid forests[J]. J Appl Ecol, 2020, 57(6):1089-1102.DOI: 10.1111/1365-2664.13615. |
[13] | STECKEL M, MOSER W K, DEL RÍO M, et al. Implications of reduced stand density on tree growth and drought susceptibility:a study of three species under varying climate[J]. Forests, 2020, 11(6):627.DOI: 10.3390/f11060627. |
[14] | BEMBENEK M, KARASZEWSKI Z, KONDRACKI K, et al. Value of merchantable timber in Scots pine stands of different densities[J]. Drewno, 2014, 57(192):133-142.DOI: 10.12841/wood.1644-3985.S14.09. |
[15] | SCHMITT A, TROUVÉ R, SEYNAVE I, et al. Decreasing stand density favors resistance,resilience,and recovery of Quercus petraea trees to a severe drought,particularly on dry sites[J]. Ann For Sci, 2020, 77(2):1-21.DOI: 10.1007/s13595-020-00959-9. |
[16] | 贺伟, 布仁仓, 熊在平, 等. 1961—2005年东北地区气温和降水变化趋势[J]. 生态学报, 2013, 33(2):519-531. |
HE W, BU R C, XIONG Z P, et al. Characteristics of temperature and precipitation in northeastern China from 1961 to 2005[J]. Acta Ecol Sin, 2013, 33(2):519-531.DOI: 10.5846/stxb201111241799. | |
[17] | 全先奎, 王传宽. 兴安落叶松光合特性对环境的适应及其影响因素[J]. 科学通报, 2016, 61(20):2273-2286. |
QUAN X K, WANG C K. Responses and influencing factors of foliar photosynthetic characteristics of Larix gmelinii to changing environments[J]. Chin Sci Bull, 2016, 61(20):2273-2286. | |
[18] | 全先奎, 王传宽. 兴安落叶松对环境变化的物候驯化和光合能力适应[J]. 生态学报, 2015, 35(13):4538-4546. |
QUAN X K, WANG C K. Acclimation of leaf phenology and adaptation of photosynthetic capacity of Larix gmelinii to environmental changes[J]. Acta Ecol Sin, 2015, 35(13):4538-4546.DOI: 10.5846/stxb201404070661. | |
[19] | 杨婧雯, 张秋良, 宋文琦, 等. 大兴安岭兴安落叶松和樟子松径向生长对气候变化的响应差异[J]. 应用生态学报, 2021, 32(10):3415-3427. |
YANG J W, ZHANG Q L, SONG W Q, et al. Response differences of radial growth of Larix gmelinii and Pinus sylvestris var.mongolica to climate change in Daxing'an Mountains,Northeast China[J]. Chin J Appl Ecol, 2021, 32(10):3415-3427.DOI: 10.13287/j.1001-9332.202110.005. | |
[20] | 刘丹, 杜春英, 于成龙, 等. 黑龙江省兴安落叶松和红松的生态地理分布变化[J]. 安徽农业科学, 2011, 39(16):9643-9645. |
LIU D, DU C Y, YU C L, et al. Eco-geographical distribution change of Larix gmelinii and Pinus koraiensis in Heilongjiang Province[J]. J Anhui Agric Sci, 2011, 39(16):9643-9645.DOI: 10.13989/j.cnki.0517-6611.2011.16.227. | |
[21] | 张朋磊, 刘滨辉. 气候变化对不同纬度兴安落叶松径向生长的影响[J]. 东北林业大学学报, 2015, 43(3):10-13,22. |
ZHANG P L, LIU B H. Effeet of chinate change on Larix gmelinii growth in different latitudes[J]. J Northeast For Univ, 2015, 43(3):10-13,22.DOI: 10.13759/j.cnki.dlxb.20150120.017. | |
[22] | 刘欣, 刘滨辉. 大兴安岭不同坡向兴安落叶松径向生长对气候变化的响应[J]. 东北林业大学学报, 2014, 42(12):13-17,21. |
LIU X, LIU B H. Response of Larix gmelinii(Rupr.) Kuzen radial growth to climate for different slope direction in daxing'an mountain[J]. J Northeast For Univ, 2014, 42(12):13-17,21.DOI: 10.13759/j.cnki.dlxb.20141104.002. | |
[23] | 常永兴, 陈振举, 张先亮, 等. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3):279-289. |
CHANG Y X, CHEN Z J, ZHANG X L, et al. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming[J]. Chin J Plant Ecol, 2017, 41(3):279-289.DOI: 10.17521/cjpe.2016.0222. | |
[24] | 陈俊宇, 刘鸣谦, 杨晶, 等. 基于气候响应关系研究火干扰对兴安落叶松直径结构的影响[J]. 地球环境学报, 2020, 11(6):606-615. |
CHEN J Y, LIU M Q, YANG J, et al. Relationship between diameter structure dynamics and climate factors of Larix gmelinii under fire disturbance[J]. J Earth Environ, 2020, 11(6):606-615.DOI: 10.7515/JEE192059. | |
[25] | 齐光, 王庆礼, 王新闯, 等. 大兴安岭林区兴安落叶松人工林植被碳贮量[J]. 应用生态学报, 2011, 22(2):273-279. |
QI G, WANG Q L, WANG X C, et al. Vegetation carbon storage in Larix gmelinii plantations in Great Xing'an Mountains[J]. Chin J Appl Ecol, 2011, 22(2):273-279.DOI: 10.13287/j.1001-9332.2011.0072. | |
[26] | 魏亚伟, 周旺明, 周莉, 等. 兴安落叶松天然林碳储量及其碳库分配特征[J]. 生态学报, 2015, 35(1):189-195. |
WEI Y W, ZHOU W M, ZHOU L, et al. Carbon storage and its distribution pattern in the natural Larix gmelinii forests on Daxing'an Mountains[J]. Acta Ecol Sin, 2015, 35(1):189-195.DOI: 10.5846/stxb201407271520. | |
[27] | 梁媛. 大兴安岭兴安落叶松径向生长对气候变化响应[D]. 哈尔滨: 东北林业大学, 2014. |
LIANG Y. The response of the growth of Larix gmelinii to the climate change in Great Khingan[D]. Harbin: Northeast Forestry University, 2014. | |
[28] | 霍宏. 气候暖化对兴安落叶松光合和生长影响的研究[D]. 哈尔滨: 东北林业大学, 2007. |
HUO H. The effects of climate warming on photosynthesis and growth of Larix gmelinii[D]. Harbin: Northeast Forestry University, 2007. | |
[29] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策:等水与非等水行为[J]. 植物生态学报, 2017, 41(9):1020-1032. |
LUO D D, WANG C K, JIN Y. Plant water-regulation strategies:isohydric versus anisohydric behavior[J]. Chin J Plant Ecol, 2017, 41(9):1020-1032.DOI: 10.17521/cjpe.2016.0366. | |
[30] | D’AMATO A W, BRADFORD J B, FRAVER S, et al. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems[J]. Ecol Appl, 2013, 23(8):1735-1742.DOI: 10.1890/13-0677.1. |
[31] | KERHOULAS L P, KOLB T E, KOCH G W. Tree size,stand density,and the source of water used across seasons by ponderosa pine in northern Arizona[J]. For Ecol Manag, 2013, 289:425-433.DOI: 10.1016/j.foreco.2012.10.036. |
[32] | 李伟光, 易雪, 侯美亭, 等. 基于标准化降水蒸散指数的中国干旱趋势研究[J]. 中国生态农业学报, 2012, 20(5):643-649. |
LI W G, YI X, HOU M T, et al. Standardized precipitation evapotranspiration index shows drought trends in China[J]. Chin J Eco Agric, 2012, 20(5):643-649. | |
[33] | 韩艳刚, 盖学瑞, 邱思玉, 等. 大兴安岭兴安落叶松径向生长对气候响应的时空变化[J]. 应用生态学报, 2021, 32(10):3397-3404. |
HAN Y G, GAI X R, QIU S Y, et al. Spatial and temporal variations of the responses of radial growth of Larix gmelinii to climate in the Daxing'anling Mountains of northeast China[J]. Chin J Appl Ecol, 2021, 32(10):3397-3404.DOI: 10.13287/j.1001-9332.202110.021. | |
[34] | 张楠, 郭雪梅, 张冬有. 兴安落叶松树轮宽度指数与归一化植被指数的关系研究[J]. 森林工程, 2022, 38(1):1-8. |
ZHANG N, GUO X M, ZHANG D Y. A study on the relationship between tree ring width index and NDVI of Larix gmelinii[J]. For Eng, 2022, 38(1):1-8.DOI: 10.16270/j.cnki.slgc.2022.01.019. | |
[35] | 张先亮, 崔明星, 马艳军, 等. 大兴安岭库都尔地区兴安落叶松年轮宽度年表及其与气候变化的关系[J]. 应用生态学报, 2010, 21(10):2501-2507. |
ZHANG X L, CUI M X, MA Y J, et al. Larix gmelinii tree-ring width chronology and its responses to climate change in Kuduer,Great Xing'an Mountains[J]. Chin J Appl Ecol, 2010, 21(10):2501-2507.DOI: 10.13287/j.1001-9332.2010.0353. | |
[36] | 毛沂新, 张慧东, 王睿照, 等. 辽东山区蒙古栎径向生长对林分密度和气候因子的响应[J]. 应用生态学报, 2021, 32(10):3477-3486. |
MAO Y X, ZHANG H D, WANG R Z, et al. Responses of radial growth of Quercus mongolica to stand density and climatic factors in a mountainous area of eastern Liaoning Province,China[J]. Chin J Appl Ecol, 2021, 32(10):3477-3486.DOI: 10.13287/j.1001-9332.202110.008. | |
[37] | MAZZA G, CUTINI A, MANETTI M C. Influence of tree density on climate-growth relationships in a Pinus pinaster Ait.forest in the northern mountains of Sardinia (Italy)[J]. IForest, 2015, 8(4):456-463.DOI: 10.3832/ifor1190-007. |
[38] | CAO J, LIU H Y, ZHAO B, et al. High forest stand density exacerbates growth decline of conifers driven by warming but not broad-leaved trees in temperate mixed forest in northeast Asia[J]. Sci Total Environ, 2021, 795:148875.DOI: 10.1016/j.scitotenv.2021.148875. |
[39] | GEA-IZQUIERDO G, MARTIN-BENITO D, CHERUBINI P, et al. Climate-growth variability in Quercus ilex L.west Iberian open woodlands of different stand density[J]. Ann For Sci, 2009, 66(8):802p1-802p12.DOI: 10.1051/forest/2009080. |
[40] | ZHANG X L, MANZANEDO R D, D’ORANGEVILLE L, et al. Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests[J]. Glob Chang Biol, 2019, 25(10):3462-3471.DOI: 10.1111/gcb.14749. |
[1] | 左壮, 张韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147-154. |
[2] | 罗楚滢, 佘济云, 唐子朝. 基于SSPs气候场景的濒危植物银杉潜在分布区预测[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 161-168. |
[3] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[4] | 黄梓良, 徐子恒, 孙操稳. 青钱柳种子雨的季节动态及土壤种子库特征[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 18-26. |
[5] | 高羽, 李静, 刘洋, 乌雅瀚, 巩家星, 辛启睿. 结构方程模型在兴安落叶松林生长中的应用[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 38-46. |
[6] | 郭常酉, 郭宏仙, 王宝华. 基于气候因子的杉木单木胸径生长模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 47-56. |
[7] | 谢立红, 黄庆阳, 曹宏杰, 杨帆, 王继丰, 倪红伟. 气候变暖对黑龙江省五大连池兴安落叶松径向生长的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 150-158. |
[8] | 吴帆, 朱沛煌, 季孔庶. 马尾松分布格局对未来气候变化的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 196-204. |
[9] | 王君杰, 姜立春*. 基于线性分位数组合的兴安落叶松冠幅预测[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 161-170. |
[10] | 王冰, 张鹏杰, 张秋良. 不同林型兴安落叶松林土壤团聚体及其有机碳特征[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 15-24. |
[11] | 刘亚静, 周来, 张博, 陈丽萍, 潘磊, 孙玉军. 不同林龄杉木径向变化及其对气象因子的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 135-144. |
[12] | 何培, 夏宛琦, 姜立春. 基于非参数方法的落叶松树干削度方程[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 184-192. |
[13] | 周司涵, 张韫, 崔晓阳. 兴安落叶松林火烧迹地土壤速效钾时空动态分析[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 141-147. |
[14] | 黄红兰, 钟沃谷, 衣德萍, 蔡军火, 张露. 未来气候变化对我国毛红椿适生区分布格局的影响预测[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 163-170. |
[15] | 魏玉龙, 张秋良. 兴安落叶松林缘天然更新与立地环境因子的相关分析[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 165-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||