南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6): 167-176.doi: 10.12302/j.issn.1000-2006.202209008
所属专题: 南京林业大学120周年校庆特刊
邹晓明1,2,*(), 王国兵1,3, 葛之葳1,3, 谢友超4, 阮宏华1,*(), 吴小巧4, 杨艳4
收稿日期:
2022-09-04
修回日期:
2022-10-13
出版日期:
2022-11-30
发布日期:
2022-11-24
通讯作者:
邹晓明,阮宏华
基金资助:
ZOU Xiaoming1,2,*(), WANG Guobing1,3, GE Zhiwei1,3, XIE Youchao4, RUAN Honghua1,*(), WU Xiaoqiao4, YANG Yan4
Received:
2022-09-04
Revised:
2022-10-13
Online:
2022-11-30
Published:
2022-11-24
Contact:
ZOU Xiaoming,RUAN Honghua
摘要:
降低大气CO2含量、缓解气候变暖,已成为当今科学界和国际社会广泛关注的前沿热点问题。林业碳汇作为基于自然解决方案实现“碳达峰、碳中和”的一个重要途径,在应对全球气候变化方面发挥着基础性、战略性、独特的作用。林业碳汇不仅是森林碳汇,林产品碳汇也起着不可忽视的重要作用。林业碳汇潜力提升是一个森林生态系统净碳收支平衡和全产业链林产品碳汇的调控过程,主要包括无机碳的植物固定(光合过程、净生产力等)、土壤有机碳的周转与固定(动植物和微生物残体分解与黏土固定)、林产品碳的固持(林产品产量、木材转换效率、种类和使用寿命等)等3方面的调控原理。笔者从森林碳汇和林产品碳汇两个维度阐述了提升林业碳汇的主要原理、方法或途径。提升林业碳汇潜力的主要途径包括:①通过适地适树、适钙适树人工造林,以增加森林面积;②以完善森林经营措施来增加森林净生产力;③利用矿质黏土对有机碳的保护来增加森林土壤碳汇;④提升林产品产量和改进林产品用途以增加其寿命。在全球尺度上,增加森林面积或提高森林净生产力3.4%,或用可再生能源替换薪炭木材,再将薪炭木材用于制造锯材和人造板,都可以连续30 a每年增加1 Pg的碳汇量。减少全球森林火灾面积1/4或增加森林土壤有机碳含量0.23%,也可以增加碳汇1 Pg。此外,林业固碳还有巨大潜力可以挖掘。
中图分类号:
邹晓明,王国兵,葛之葳,等. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176.
ZOU Xiaoming, WANG Guobing, GE Zhiwei, XIE Youchao, RUAN Honghua, WU Xiaoqiao, YANG Yan. Mechanisms and methods for augmenting carbon sink in forestry[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 167-176.DOI: 10.12302/j.issn.1000-2006.202209008.
表1
2020年全球不同地区锯材和人造板的消费总量以及人均消费量"
地区 region | 人口/万人 | 锯材消费量/ 万m3 | 人均锯材消费量/ (m3·万人-1) | 人造板消费量/ 万m3 | 人均人造板消费量/ (m3·万人-1) |
---|---|---|---|---|---|
亚洲 | 464 100 | 17 600 | 379 | 25 000 | 539 |
非洲 | 134 000 | 1 700 | 127 | 500 | 37 |
南美洲 | 47 400 | 2 400 | 506 | 1 400 | 295 |
欧洲 | 74 800 | 10 900 | 1 457 | 7 800 | 1 043 |
北中美州 | 54 800 | 12 400 | 2 263 | 5 600 | 1 022 |
大洋洲 | 4 300 | 800 | 1 860 | 400 | 930 |
全球 | 779 400 | 45 800 | 588 | 40 700 | 525 |
表2
2020年中国木材全生命周期碳储量变化表[61,63,71,72]"
阶段 | 采伐后种类 | 碳储量/Tg | 比例/% | 备注 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
stage | post-cut type | carbon storage | ratio | note | ||||||||||
采伐环节 | 原木 | 工业用原木 | 47.24 | 34.87 | 碳储量 | |||||||||
109.89 Tg; | ||||||||||||||
直接用原木 | 38.02 | 28.07 | 碳排放 | |||||||||||
薪材 | -2.79 | 2.06 | 28.37 Tg; | |||||||||||
采伐剩余物 | 做木材产品原材料 | 21.84 | 16.12 | 净碳储量 | ||||||||||
原地分解 | -25.58 | 18.88 | 81.52 Tg | |||||||||||
阶段 stage | 木质林产品原材料碳储量storage of raw material | 木质林产品碳储量storage of forest products | 备注 | |||||||||||
种类 type | 碳储量/Tg | 比例/% | 种类 | 碳储量/Tg | 比例/% | note | ||||||||
carbon storage | ratio | type | carbon storage | ratio | ||||||||||
加工及使用环节 | 除薪材外原木回收纸 | 85.26 | 77.58 | 锯材 | 19.24 | 14.24 | 原材料利 | |||||||
2.8 | 2.55 | 胶合板 | 18.28 | 13.53 | 用率89.5%; | |||||||||
部分采伐剩余物 | 21.84 | 19.87 | 其他人造板 | 8.06 | 5.97 | 碳储量 | ||||||||
刨花板 | 0.88 | 0.65 | 126.71 Tg; | |||||||||||
纤维板 | 18.53 | 13.71 | 碳排放 | |||||||||||
纸和纸板 | 58.57 | 43.35 | 8.41 Tg; | |||||||||||
加工剩余物 | 焚烧 | -3.47 | 2.57 | 净碳储量 | ||||||||||
填埋 | 碳排放 | -4.94 | 3.66 | 118.30 Tg | ||||||||||
碳封存 | 3.15 | 2.33 | ||||||||||||
阶段 | 种类 | 碳储量/Tg | 比例/% | 备注 | ||||||||||
stage | type | carbon storage | ratio | note | ||||||||||
废弃环节(废弃木质林产品) | 焚烧 | -28.28 | 22.89 | 碳储量 | ||||||||||
55.02 Tg; | ||||||||||||||
填埋 | 碳排放 | -40.26 | 32.58 | 碳排放 | ||||||||||
68.54 Tg; | ||||||||||||||
碳封存 | 25.74 | 20.83 | 净碳储量 | |||||||||||
-13.52 Tg | ||||||||||||||
回收纸 | 29.28 | 23.7 |
[1] | IPCC. Climate change 2022: impacts, adaptation, and vulnerability[M]// Working Group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2022. |
[2] | WANG J, FENG L, PALMER P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data[J]. Nature, 2020, 586(7831):720-723.DOI:10.1038/s41586-020-2849-9. |
[3] | 陈家新, 杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(4):1-8. |
CHEN J X, YANG H Q. Advances and frontiers in global forest and harvested wood products carbon science[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4):1-8.DOI: 10.3969/j.issn.1000-2006.201801035. | |
[4] | 方精云. 碳中和的生态学透视[J]. 植物生态学报, 2021, 45(11):1173-1176. |
FANG J Y. Ecological perspectives of carbon neutrality[J]. Chin J Plant Ecol, 2021, 45(11):1173-1176.DOI:10.17521/cjpe.2021.0394. | |
[5] | YANG Y, SUN K, LIU J, et al. Changes in soil properties and CO2 emissions after biochar addition:role of pyrolysis temperature and aging[J]. Sci Total Environ, 2022, 839:156333.DOI:10.1016/j.scitotenv.2022.156333. |
[6] | YANG Y H, SHI Y, SUN W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Sci China Life Sci, 2022, 65(5):861-895.DOI:10.1007/s11427-021-2045-5. |
[7] | ANDEREGG W R L, SCHWALM C, BIONDI F, et al. Forest ecology.Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models[J]. Science, 2015, 349(6247):528-532.DOI:10.1126/science.aab1833. |
[8] | WANG Y L, WANG X H, WANG K, et al. The size of the land carbon sink in China[J]. Nature, 2022, 603(7901):E7-E9.DOI:10.1038/s41586-021-04255-y. |
[9] | 国家林业和草原局. 我国实施退耕还林还草工程20年成林面积占全球增绿面积4%以上:《中国退耕还林还草二十年(1999—2019)》白皮书摘要[J]. 中国林业, 2020(7):8-15. |
National Forestry and Grassland Administration (China). Chinese implementation of the project of returning farmland to forest and grassland in the past 20 years accounts for more than 4% of the global green area: abstract of the white paper “China’s 20 years of returning farmland to forest and grassland (1999-2019)”[J]. Forestry in China, 2020 (7):8-15. | |
[10] | PAN Y D, BIRDSEY R A, PHILLIPS O L, et al. The structure,distribution,and biomass of the world’s forests[J]. Annu Rev Ecol Evol Syst, 2013, 44:593-622.DOI:10.1146/annurev-ecolsys-110512-135914. |
[11] | FAO. Global Forest resources assessment 2020 [EB/OL]. [2022-08-30]. http://www.fao.org/forest-resources-assessment/en/, 2018. |
[12] | 李怒云, 郑小贤, 李金良, 等. 碳汇城市评价指标体系研究[J]. 林业资源管理, 2016(4):1-4. |
LI N Y, ZHENG X X, LI J L, et al. Study on the assessment indicator system for carbon sink city[J]. For Resour Manag, 2016(4):1-4.DOI:10.13466/j.cnki.lyzygl.2016.04.001. | |
[13] | 刘桂芳, 关瑞敏, 夏梦琳, 等. 西双版纳地区森林变化碳效应与生态效益评估[J]. 生态学报, 2022, 42(3):1118-1129. |
LIU G F, GUAN R M, XIA M L, et al. Comprehensive assessment on both carbon and ecosystem-based benefits from Xishuangbanna’s tropical forests changes[J]. Acta Ecol Sin, 2022, 42(3):1118-1129.DOI:10.5846/stxb202003290735. | |
[14] | 方精云, 陈安平. 中国森林植被碳库的动态变化及其意义[J]. 植物学报, 2001, 43(9):967-973. |
FANG J Y, CHEN A P. Dynamic forest biomass carbon pools in China and their significance[J]. J Integr Plant Biol, 2001, 43(9):967-973.DOI:10.3321/j.issn:1672-9072.2001.09.014. | |
[15] | FENG Y H, SCHMID B, LOREAU M, et al. Multispecies forest plantations outyield monocultures across a broad range of conditions[J]. Science, 2022, 376(6595):865-868.DOI:10.1126/science.abm6363. |
[16] | YU Z, CIAIS P, PIAO S L, et al. Forest expansion dominates China’s land carbon sink since 1980[J]. Nat Commun, 2022, 13:5374.DOI:10.1038/s41467-022-32961-2. |
[17] | 刘勇, 石敏俊, 沈大军, 等. 水资源利用与区域协调发展[J]. 区域经济评论, 2021(5): 20-31. |
SHI Y, SHI M J, SHEN D J, et al. Water resources utilization and regional coordinated development[J]. Regional Economic Review, 2021 (5): 20-31. | |
[18] | 王新峰, 宋绵, 龚磊, 等. 赣南基岩缺水区安全供水示范工程建设的7个科学问题[J]. 科技导报, 2020, 38(13):122-128. |
WANG X F, SONG M, GONG L, et al. Seven scientific concepts in the construction of safe water supply demonstration project in bedrock water-scarce areas of southern Jiangxi Province[J]. Sci & Technol Rev, 2020, 38(13):122-128.DOI:10.3981/j.issn.1000-7857.2020.13.014. | |
[19] | 党小峰, 赵学瑞, 宋佳奇, 等. 陇南市油橄榄灌溉工程现状调查与管理研究[C]// 2021第九届中国水生态大会论文集.西安: 2021:98-110. |
[20] | 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10):2308-2316. |
FANG S Z. Silviculture of poplar plantation in China:a review[J]. Chin J Appl Ecol, 2008, 19(10):2308-2316.DOI:10.13287/j.1001-9332.2008.0396. | |
[21] | 徐生旺, 谢文娟. 汇集径流抗旱造林整地技术及效果分析[J]. 青海农林科技, 2000(2):64-66. |
XU S W, XIE W J. Land preparation technology and effect analysis of collecting runoff for drought-resistant afforestation[J]. Sci Technol Qinghai Agric For, 2000(2):64-66. | |
[22] | 尹祚栋. 径流林业:旱塬曙光[J]. 国土绿化, 1994(5):33-34. |
YIN Z D. Runoff-dawn of dryland[J]. Land Green, 1994(5):33-34. | |
[23] | PIAO S L, HE Y, WANG X H, et al. Estimation of China’s terrestrial ecosystem carbon sink:methods,progress and prospects[J]. Sci China Earth Sci, 2022, 65(4):641-651.DOI:10.1007/s11430-021-9892-6. |
[24] | LIEBIG J. Die organische chemie in ihrer anwendung auf agricultur und physiologie von justus liebig[M]. Braunschweig: Vieweg,1841. |
[25] | 卜丹蓉, 周丹燕, 葛之葳, 等. 施用沼液对苏北沿海杨树人工林土壤活性有机碳的影响[J]. 生态学杂志, 2015, 34(7):1785-1790. |
BU D R, ZHOU D Y, GE Z W, et al. Effects of biogas slurry on soil labile organic carbon of poplar plantation in a coastal area of northern Jiangsu,China[J]. Chin J Ecol, 2015, 34(7):1785-1790.DOI:10.13292/j.1000-4890.20150615.002. | |
[26] | REN T T, YU X Y, LIAO J H, et al. Application of biogas slurry rather than biochar increases soil microbial functional gene signal intensity and diversity in a poplar plantation[J]. Soil Biol Biochem, 2020, 146:107825.DOI:10.1016/j.soilbio.2020.107825. |
[27] | 周永斌, 邹晓明. 从适地适树到适钙适树的理论与例证[J]. 南京林业大学学报(自然科学版), 2017, 41(2):1-8. |
ZHOU Y B, ZOU X M. From matching site with trees towards matching calcium with trees[J]. J Nanjing For Univ (Nat Sci Ed),2017, 41(2):1-8.DOI: 10.3969/j.issn.1000-2006.2017.02.001 | |
[28] | YIN Y, ZHOU Y B, LI H, et al. Linking tree water use efficiency with calcium and precipitation[J]. Tree Physiol, 2022:tpac069.DOI:10.1093/treephys/tpac069. |
[29] | 胡瑞瑞. 森林病虫基指数模型的建立及验证[D]. 北京: 中国林业科学研究院, 2019. |
HU R R. Establishment and verification of forest pest based index model[D]. Beijing: Chinese Academy of Forestry, 2019.DOI:10.27625/d.cnki.gzlky.2019.000075 | |
[30] | CHI J L, FAN Y K, WANG L J, et al. Retention of soil organic matter by occlusion within soil minerals[J]. Rev Environ Sci Biotechnol, 2022, 21:727-746. DOI:10.1007/s11157-022-09628-x. |
[31] | 景天忠, 豆晓洁. 害虫对森林碳汇的影响及其机理[J]. 世界林业研究, 2016, 29(1):29-35. |
JING T Z, DOU X J. Impact and mechanism of insect pests on forest carbon sequestration[J]. World For Res, 2016, 29(1):29-35.DOI:10.13348/j.cnki.sjlyyj.2016.0002.y. | |
[32] | KURZ W A, DYMOND C C, STINSON G, et al. Mountain pine beetle and forest carbon feedback to climate change[J]. Nature, 2008, 452(7190):987-990.DOI:10.1038/nature06777. |
[33] | PFEIFER E M, HICKE J A, MEDDENS A J H. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States[J]. Glob Change Biol, 2011, 17(1):339-350.DOI:10.1111/j.1365-2486.2010.02226.x. |
[34] | 何鑫. 火对森林生态环境及碳排放的影响[J]. 低碳世界, 2021, 11(1):221-222. |
HE X. Influence of fire on forest ecological environment and carbon emission[J]. Low Carbon World, 2021, 11(1):221-222.DOI:10.16844/j.cnki.cn10-1007/tk.2021.01.109. | |
[35] | 田晓瑞, 舒立福, 王明玉. 1991—2000年中国森林火灾直接释放碳量估算[J]. 火灾科学, 2003, 12(1):6-10. |
TIAN X R, SHU L F, WANG M Y. Direct carbon emissions from Chinese forest fires,1991-2000[J]. Fire Saf Sci, 2003, 12(1):6-10. | |
[36] | 胡海清, 魏书精, 孙龙, 等. 气候变化、火干扰与生态系统碳循环[J]. 干旱区地理, 2013, 36(1):57-75. |
HU H Q, WEI S J, SUN L, et al. Interaction among climate change,fire disturbance and ecosystem carbon cycle[J]. Arid Land Geogr, 2013, 36(1):57-75.DOI:10.13826/j.cnki.cn65-1103/x.2013.01.017. | |
[37] | 赵凤君, 舒立福, 姚树人. 森林火灾碳排放估算方法与研究进展[J]. 森林防火, 2012(1):25-29. |
ZHAO F J, SHU L F, YAO S R. Estimation methods and research progress of forest fire carbon emissions[J]. For Fire Prev, 2012(1):25-29.DOI:10.3969/j.issn.1002-2511.2012.01.015 | |
[38] | 胡海清, 魏书精, 孙龙. 1965—2010年大兴安岭森林火灾碳排放的估算研究[J]. 植物生态学报, 2012, 36(7):629-644. |
HU H Q, WEI S J, SUN L. Estimation of carbon emissions due to forest fire in Daxing’an Mountains from 1965 to 2010[J]. Chin J Plant Ecol, 2012, 36(7):629-644.DOI:10.3724/SP.J.1258.2012.00629. | |
[39] | 魏书精, 罗碧珍, 魏书威, 等. 黑河市森林火灾碳排放的计量估算研究[J]. 南京林业大学学报(自然科学版), 2014, 38(1):70-76. |
WEI S J, LUO B Z, WEI S W, et al. Estimates of carbon emissions in Heihe City due to forest fires[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(1):70-76.DOI:10.3969/j.issn.1000-2006.2014.01.013. | |
[40] | JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 2007, 137(3/4):253-268.DOI:10.1016/j.geoderma.2006.09.003. |
[41] | BRANDANI C B, ABBRUZZINI T F, CONANT R T, et al. Soil organic and organomineral fractions as indicators of the effects of land management in conventional and organic sugar cane systems[J]. Soil Res, 2017, 55(2):145.DOI:10.1071/sr15322. |
[42] | LOPEZ-SANGIL L, ROVIRA P. Sequential chemical extractions of the mineral-associated soil organic matter:an integrated approach for the fractionation of organo-mineral complexes[J]. Soil Biol Biochem, 2013, 62:57-67.DOI:10.1016/j.soilbio.2013.03.004. |
[43] | HE Y J, TRUMBORE S E, TORN M S, et al. Radiocarbon constraints imply reduced carbon uptake by soils during the 21st Century[J]. Science, 2016, 353(6306):1419-1424.DOI:10.1126/science.aad4273. |
[44] | 国家统计局. 中国统计年鉴2021[M]. 北京: 中国统计出版社, 2021. |
National Bureau of Statistics. China statistical yearbook 2021[M]. Beijing: China Statistics Press, 2021. | |
[45] | BUCKERIDGE K M, LA ROSA A F, MASON K E, et al. Sticky dead microbes:rapid abiotic retention of microbial necromass in soil[J]. Soil Biol Biochem, 2020, 149:107929.DOI:10.1016/j.soilbio.2020.107929. |
[46] | BUCKERIDGE K M, CREAMER C, WHITAKER J. Deconstructing the microbial necromass continuum to inform soil carbon sequestration[J]. Funct Ecol, 2022, 36(6):1396-1410.DOI:10.1111/1365-2435.14014. |
[47] | RILLIG M, WRIGHT S, NICHOLS K, et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant Soil, 2001, 233:167-177.DOI:10.1023/A:1010364221169. |
[48] | 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6):2642-2650. |
LIU M Q, HU F, CHEN X Y. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecol Sin, 2007, 27(6):2642-2650.DOI:10.3321/j.issn:1000-0933.2007.06.059. | |
[49] | 周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1):99-105. |
ZHOU L, LI B G, ZHOU G S. Advances in controlling factors of soil organic carbon[J]. Adv Earth Sci, 2005, 20(1):99-105.DOI:10.3321/j.issn:1001-8166.2005.01.016. | |
[50] | LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Glob Chang Biol, 2019, 25(11):3578-3590.DOI:10.1111/gcb.14781. |
[51] | JIA S X, LIU X F, LIN W S, et al. Tree roots exert greater influence on soil microbial necromass carbon than above-ground litter in subtropical natural and plantation forests[J]. Soil Biol Biochem, 2022, 173:108811.DOI:10.1016/j.soilbio.2022.108811. |
[52] | ZOU X M. Species effects on earthworm density in tropical tree plantations in Hawaii[J]. Biol Fertil Soils, 1993, 15(1):35-38.DOI:10.1007/BF00336285. |
[53] | JACKMAN R H. Accumulation of organic matter in some New Zealand soils under permanent pasture[J]. N Z J Agric Res, 1964, 7(4):472-479.DOI:10.1080/00288233.1964.10416374. |
[54] | DIXON J B, WEED S B, DINAUER R C. Minerals in soil environments[M]. Madison: Soil Science Society of America,1977 |
[55] | BONACHELA J A, PRINGLE R, SHEFFER E, et al. Termite mounds can increase the robustness of dryland ecosystems to climatic change[J]. Science, 2015, 347:651-655.DOI:10.1126/science.1261487. |
[56] | 陈顺洋, 陈光程, 陈彬, 等. 红树林湿地相手蟹科动物摄食生态研究进展[J]. 生态学报, 2014, 34(19):5349-5359. |
CHEN S Y, CHEN G C, CHEN B, et al. Feeding ecology of sesarmid crabs in mangroves[J]. Acta Ecol Sin, 2014, 34(19):5349-5359.DOI: 10.5846/stxb201301160110. | |
[57] | LIANG C, CHENG G, WIXON D L, et al. An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization[J]. Biogeochemistry, 2011, 106(3):303-309.DOI:10.1007/s10533-010-9525-3. |
[58] | 孙悦超, 麻硕士, 陈智, 等. 砾石覆盖对抑制旱作农田土壤风蚀效果的风洞模拟[J]. 农业工程学报, 2010, 26(11):151-155. |
SUN Y C, MA S S, CHEN Z, et al. Wind tunnel simulation of impact of gravel coverage on soil erosion in arid farmland[J]. Trans Chin Soc Agric Eng, 2010, 26(11):151-155.DOI:10.3969/j.issn.1002-6819.2010.11.027. | |
[59] | 姬惜珠, 王红, 张爱军. 三北防护林中杨树的碳汇和放氧功能及其价值估算[J]. 河北林果研究, 2005, 20(3): 217-219. |
JI X Z, WANG H, ZHANG A J. Function of carbon sequestration and oxygen release of poplar trees in the Three-North Protection Forest and its evaluation[J]. Hebei Journal of Forestry and Orchard Research, 2005, 20(3): 217-219. DOI:10.3969/j.issn.1007-4961.2005.03.005. | |
[60] | 谭梦, 黄贤金, 钟太洋, 等. 土地整理对农田土壤碳含量的影响[J]. 农业工程学报, 2011, 27(8):324-329. |
TAN M, HUANG X J, ZHONG T Y, et al. Impacts of land consolidation on soil organic carbon content[J]. Trans Chin Soc Agric Eng, 2011, 27(8):324-329.DOI:10.3969/j.issn.1002-6819.2011.08.057. | |
[61] | 白彦锋, 姜春前, 鲁德, 等. 中国木质林产品碳储量变化研究[J]. 浙江林学院学报, 2007, 24(5):587-592. |
BAI Y F, JIANG C Q, LU D, et al. Carbon stock change of harvested wood products in China[J]. J Zhejiang For Coll, 2007, 24(5):587-592.DOI:10.3969/j.issn.2095-0756.2007.05.014. | |
[62] | FAO. Global forest resources assessment 2020: Key findings[DB/OL]. [2022-08-30] http://www.fao.org/forestry/statistics. |
[63] | Food and Agricultural Organization of United Nations. Food and Agricultural Organization of United Nations Statistics Database (FAOSTAT) (Forestry Production and Trade)[DB/OL]. [2021-12-16] https://www.fao.org/faostat/zh/#data/FO |
[64] | LAL R. Carbon sequestration[J]. Philosophical Transactions of the Royal Society B, 2008, 363(1492): 815-830. DOI:10.1098/rstb.2007.2185. |
[65] | 郝章程. 两种生物基橡胶轮胎,全球原创![J]. 中国橡胶, 2021, 37(7):16-17. |
HAO Z C. Two kinds of bio-based rubber tires,original in the world![J]. China Rubber, 2021, 37(7):16-17. | |
[66] | KOCH G W, MOONEY H A. Carbon dioxide and terrestrial ecosystems.response of terrestrial ecosystems to elevated CO2:a synthesis and summary[M]. Amsterdam:Elsevier, 1996, 404(2-3):415-429.DOI:10.1016/b978-012505295-5/50023-9. |
[67] | BUCHANAN A H, HONEY B G. Energy and carbon dioxide implications of building construction[J]. Energy Build, 1994,20(3):205-217.DOI:10.1016/0378- 7788(94)90024-8. |
[68] | BUCHANAN A H, LEVINE S B. Wood-based building materials and atmospheric carbon emissions[J]. Environ Sci Policy, 1999, 2(6):427-437.DOI:10.1016/S1462-9011(99)00038-6. |
[69] | LIPPKE B, GUSTAFSON R, VENDITTI R, et al. Comparing life-cycle carbon and energy impacts for biofuel,wood product,and forest management alternatives[J]. For Prod J, 2012, 62(4):247-257.DOI:10.13073/fpj-d-12-00017.1. |
[70] | 刘锐金, 杨琳, 莫业勇. 2020年天然橡胶市场形势及2021年展望[J]. 农业展望, 2021, 17(4):9-14. |
LIU R J, YANG L, MO Y Y. Market situation of natural rubber in 2020 and its outlook for 2021[J]. Agric Outlook, 2021, 17(4):9-14.DOI:10.3969/j.issn.1673-3908.2021.04.003 | |
[71] | 蒲刚清, 刘贞, 汪毅霖. 生态因素下森林生物质动态潜力研究[J]. 重庆理工大学学报(社会科学), 2017, 31(10):51-59. |
PU G Q, LIU Z, WANG Y L. Research on the potential of forest biomass based on ecological factors[J]. J Chongqing Univ Technol (Soc Sci), 2017, 31(10):51-59. | |
[72] | 张小标. 中国木质林产品碳收支与碳减排贡献:基于CBM-MRIO模型的构建与实证[D]. 南京: 南京林业大学, 2019. |
ZHANG X B. Carbon budget and contribution of China’s wood forest products to carbon emission reduction: based on CBM-MRIO model construction and demonstration[D]. Nanjing: Nanjing Forestry University, 2019.DOI:10.27242/d.cnki.gnjlu.2019.000161. | |
[73] | 苏毅. 生物质废物厌氧消化特性及产气潜势研究[D]. 重庆: 重庆大学, 2017. |
SU Y. Study on the performance and potential of biogass production in anaerobic digestion of biomass waste[D]. Chongqing: Chongqing University, 2017. | |
[74] | ZHANG D D, CHEN X J, QI Z Y, et al. Superheated steam as carrier gas and the sole heat source to enhance biomass torrefaction[J]. Bioresour Technol, 2021, 331:124955.DOI:10.1016/j.biortech.2021.124955. |
[75] | 钱新锋, 赏国锋, 沈国清. 园林绿化废弃物生物质炭化与应用技术研究进展[J]. 中国园林, 2012, 28(11):101-104. |
QIAN X F, SHANG G F, SHEN G Q. Reviews on carbonization of green waste and its application technique[J]. Chin Landsc Archit, 2012, 28(11):101-104.DOI:10.3969/j.issn.1007-5070.2014.16.536. | |
[76] | 武志红, 姚程, 蒙真真, 等. 生物质衍生碳基复合吸波材料的研究进展[J]. 硅酸盐学报, 2022, 50(7):2056-2066. |
WU Z H, YAO C, MENG Z Z, et al. Research progress on biomass-derived carbonaceous composite microwave absorbing materials[J]. J Chin Ceram Soc, 2022, 50(7):2056-2066.DOI:10.14062/j.issn.0454-5648.20211095. | |
[77] | 王国兵, 徐瑾, 王瑞, 等. 添加生物炭对东台滨海区杨树人工林3种温室气体排放的长期影响[J]. 生态环境学报, 2019, 28(6):1152-1158. |
WANG G B, XU J, WANG R, et al. Long term effects of biochar addition on three greenhouse gases emission under a poplar plantation in Dongtai coastal region[J]. Ecol Environ Sci, 2019, 28(6):1152-1158.DOI:10.16258/j.cnki.1674-5906.2019.06.010. | |
[78] | 陈绍荣. 玉米秸秆生物炭及其老化对石灰性农田土壤氨氧化和氨挥发的影响[D]. 太原: 太原理工大学, 2018. |
CHEN S R. Effects of fresh and aged maize straw-derived biochars on Ammonia oxidation and volatilization in a calcareous farmland soil[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
[79] | 朱时祥, 徐新建, 李明, 等. 木质素/无机填料复合补强橡胶的研究进展[J]. 生物加工过程, 2020, 18(5):612-618. |
ZHU S X, XU X J, LI M, et al. Advance in reinforcing rubber with lignin/inorganic fillers[J]. Chin J Bioprocess Eng, 2020, 18(5):612-618.DOI:10.3969/j.issn.1672-3678.2020.05.011. | |
[80] | 段亮, 吕永康. 木质素工业研究进展[J]. 山西化工, 2010, 30(3):34-38. |
DUAN L, LYU Y K. Progress of lignin in industry[J]. Shanxi Chem Ind, 2010, 30(3):34-38.DOI:10.16525/j.cnki.cn14-1109/tq.2010.03.007. | |
[81] | 张玉飞. 基于酚化木质素改性的木材胶粘剂制备及性能研究[D]. 南宁: 广西大学, 2021. |
ZHANG Y F. Preparation and properties of wood adhesive modified by phenolic lignin[D]. Nanning: Guangxi University, 2021. | |
[82] | 刘紫薇. 废弃生物质基聚氨酯及其性能研究[D]. 北京: 北京化工大学, 2021. |
LIU Z W. Preparation and properties of waste biomass-based polyurethane[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
[83] | 陈子璇, 吴夏芫, 陈雪茹, 等. 生物电化学系统降解废水中抗生素的研究进展[J]. 生物加工过程, 2021, 19(5):522-530. |
CHEN Z X, WU X Y, CHEN X R, et al. Progress of bioelectrochemical degradation of antibiotics residues in wastewater[J]. Chinese Journal of Bioprocess Engineering, 2021, 19(5):522-530. DOI:10.3969/j.issn.1672-3678.2021.05.008. | |
[84] | 王晓迪. 木质纤维素生物质基储能材料的构建及其性能研究[D]. 天津: 天津科技大学, 2020. |
WANG X D. Study on construction and properties of lignocellulosic biomass-based energy storage materials[D]. Tianjin:Tianjin University of Science & Technology, 2020. |
[1] | 罗顺兰, 胡原, 曾维忠, 郑雯雪. 相对视角下森林碳汇项目农村经济福利效应[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 253-261. |
[2] | 储安婷, 宁卓, 杨红强. 林业碳汇对人工林最优轮伐期的影响--以杉木和落叶松为例[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 225-233. |
[3] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[4] | 孙美佳, 周志勇, 王勇强, 沈颖, 夏威. 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 67-75. |
[5] | 彭红军, 徐笑, 俞小平. 林业碳汇产品价值实现路径综述[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 177-186. |
[6] | 赵凯歌, 周正虎, 金鹰, 王传宽. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 177-184. |
[7] | 刘珂, 李明阳, 李灵, 田康, 樊亚男, 王志刚, 瞿明凯, 黄标. 南水北调中线工程水源地土壤有机碳密度空间分异及驱动因素研究[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 35-43. |
[8] | 朱珠, 徐侠, 杨赛兰, 彭凡茜, 张惠光, 蔡斌. 陆地生态系统土壤有机碳分解温度敏感性研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 33-39. |
[9] | 高沁怡, 潘春霞, 刘强, 顾光同, 祝雅璐, 吴伟光. 基于贝叶斯网络的林业碳汇项目风险评价[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 210-218. |
[10] | 季淮, 韩建刚, 李萍萍, 朱咏莉, 郭俨辉, 郝达平, 崔皓. 洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 141-150. |
[11] | 罗碧珍, 胡海清, 罗斯生, 魏书精, 吴泽鹏, 刘菲. 林火干扰对广东马尾松林土壤有机碳密度及其活性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 132-140. |
[12] | 权伟,郑方东,戎建涛. 浙江乌岩岭7种林分土壤碳密度及碳氮比分布特征[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 175-180. |
[13] | 田耀武,刘谊锋,王聪,王罡,和武宇恒. 伏牛山森林土壤有机碳密度与环境因子的关联性分析[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 83-90. |
[14] | 孟苗婧,张金池,郭晓平,吴家森,赵有朋,叶立新,刘胜龙. 海拔变化对黄山松阔叶混交林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(06): 106-112. |
[15] | 曾维忠,成蓥,杨帆. 基于CDM碳汇造林再造林项目的森林碳汇扶贫绩效评价指标体系研究[J]. 南京林业大学学报(自然科学版), 2018, 42(04): 9-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||