
林业碳汇提升的主要原理和途径
邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳
南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6) : 167-176.
林业碳汇提升的主要原理和途径
Mechanisms and methods for augmenting carbon sink in forestry
降低大气CO2含量、缓解气候变暖,已成为当今科学界和国际社会广泛关注的前沿热点问题。林业碳汇作为基于自然解决方案实现“碳达峰、碳中和”的一个重要途径,在应对全球气候变化方面发挥着基础性、战略性、独特的作用。林业碳汇不仅是森林碳汇,林产品碳汇也起着不可忽视的重要作用。林业碳汇潜力提升是一个森林生态系统净碳收支平衡和全产业链林产品碳汇的调控过程,主要包括无机碳的植物固定(光合过程、净生产力等)、土壤有机碳的周转与固定(动植物和微生物残体分解与黏土固定)、林产品碳的固持(林产品产量、木材转换效率、种类和使用寿命等)等3方面的调控原理。笔者从森林碳汇和林产品碳汇两个维度阐述了提升林业碳汇的主要原理、方法或途径。提升林业碳汇潜力的主要途径包括:①通过适地适树、适钙适树人工造林,以增加森林面积;②以完善森林经营措施来增加森林净生产力;③利用矿质黏土对有机碳的保护来增加森林土壤碳汇;④提升林产品产量和改进林产品用途以增加其寿命。在全球尺度上,增加森林面积或提高森林净生产力3.4%,或用可再生能源替换薪炭木材,再将薪炭木材用于制造锯材和人造板,都可以连续30 a每年增加1 Pg的碳汇量。减少全球森林火灾面积1/4或增加森林土壤有机碳含量0.23%,也可以增加碳汇1 Pg。此外,林业固碳还有巨大潜力可以挖掘。
Rising atmospheric CO2 concentration is recognized as the major driver for global climate warming. Thus, reducing atmospheric CO2 is also recognized as the main remediation method for climate change. Forestry practices play an essential role in atmospheric CO2 sequestration and global environmental engineering. Forestry carbon sequestration includes forest carbon sequestration and forest product carbon sequestration. Carbon sequestration in forests relies mainly on processes of ecosystem carbon balancing and forest product production, including photosynthesis and ecosystem net primary productivity, stabilization of soil organic carbon, and wood use efficiency and product lifespan. Forestry carbon sequestration can be achieved through (1) expanding forest areas with afforestation practices guided by the “matching trees with site or calcium” principle; (2) increasing forest net productivity with integrated forest management of water, nutrients, and pest or fire control; (3) enhancing the stabilization of soil organic carbon content by clay minerals; (4) promoting the use and improving the lifespan of forest products. At the global scale, an additional 1 Pg (C) of carbon can be sequestrated each year for 30 years by increasing forest area or net productivity by 3.4%, or by converting fuel wood to sawn wood or wood-based panels. Furthermore, reducing carbon loss from forest fire by a quarter or elevating soil organic carbon by 0.23% can also decrease carbon emissions by 1 Pg (C) each year. Carbon sequestration in forestry has great potential for reducing atmospheric carbon dioxide and mediating global climate warming.
林业碳汇 / 森林碳汇 / 林产品碳汇 / 森林生产力 / 全球气候变化 / 土壤有机碳
carbon sink in forestry / carbon sink in forest / carbon sink in wood products / forest productivity / global climate change / soil organic carbon
[1] |
IPCC. Climate change 2022: impacts, adaptation, and vulnerability[M]// Working Group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2022.
|
[2] |
|
[3] |
陈家新, 杨红强. 全球森林及林产品碳科学研究进展与前瞻[J]. 南京林业大学学报(自然科学版), 2018, 42(4):1-8.
|
[4] |
方精云. 碳中和的生态学透视[J]. 植物生态学报, 2021, 45(11):1173-1176.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
国家林业和草原局. 我国实施退耕还林还草工程20年成林面积占全球增绿面积4%以上:《中国退耕还林还草二十年(1999—2019)》白皮书摘要[J]. 中国林业, 2020(7):8-15.
National Forestry and Grassland Administration (China). Chinese implementation of the project of returning farmland to forest and grassland in the past 20 years accounts for more than 4% of the global green area: abstract of the white paper “China’s 20 years of returning farmland to forest and grassland (1999-2019)”[J]. Forestry in China, 2020 (7):8-15.
|
[10] |
|
[11] |
FAO. Global Forest resources assessment 2020 [EB/OL]. [2022-08-30]. http://www.fao.org/forest-resources-assessment/en/, 2018.
|
[12] |
李怒云, 郑小贤, 李金良, 等. 碳汇城市评价指标体系研究[J]. 林业资源管理, 2016(4):1-4.
|
[13] |
刘桂芳, 关瑞敏, 夏梦琳, 等. 西双版纳地区森林变化碳效应与生态效益评估[J]. 生态学报, 2022, 42(3):1118-1129.
|
[14] |
方精云, 陈安平. 中国森林植被碳库的动态变化及其意义[J]. 植物学报, 2001, 43(9):967-973.
|
[15] |
|
[16] |
|
[17] |
刘勇, 石敏俊, 沈大军, 等. 水资源利用与区域协调发展[J]. 区域经济评论, 2021(5): 20-31.
|
[18] |
王新峰, 宋绵, 龚磊, 等. 赣南基岩缺水区安全供水示范工程建设的7个科学问题[J]. 科技导报, 2020, 38(13):122-128.
|
[19] |
党小峰, 赵学瑞, 宋佳奇, 等. 陇南市油橄榄灌溉工程现状调查与管理研究[C]// 2021第九届中国水生态大会论文集.西安: 2021:98-110.
|
[20] |
方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008, 19(10):2308-2316.
|
[21] |
徐生旺, 谢文娟. 汇集径流抗旱造林整地技术及效果分析[J]. 青海农林科技, 2000(2):64-66.
|
[22] |
尹祚栋. 径流林业:旱塬曙光[J]. 国土绿化, 1994(5):33-34.
|
[23] |
|
[24] |
|
[25] |
卜丹蓉, 周丹燕, 葛之葳, 等. 施用沼液对苏北沿海杨树人工林土壤活性有机碳的影响[J]. 生态学杂志, 2015, 34(7):1785-1790.
|
[26] |
|
[27] |
周永斌, 邹晓明. 从适地适树到适钙适树的理论与例证[J]. 南京林业大学学报(自然科学版), 2017, 41(2):1-8.
|
[28] |
|
[29] |
胡瑞瑞. 森林病虫基指数模型的建立及验证[D]. 北京: 中国林业科学研究院, 2019.
|
[30] |
|
[31] |
景天忠, 豆晓洁. 害虫对森林碳汇的影响及其机理[J]. 世界林业研究, 2016, 29(1):29-35.
|
[32] |
|
[33] |
|
[34] |
何鑫. 火对森林生态环境及碳排放的影响[J]. 低碳世界, 2021, 11(1):221-222.
|
[35] |
田晓瑞, 舒立福, 王明玉. 1991—2000年中国森林火灾直接释放碳量估算[J]. 火灾科学, 2003, 12(1):6-10.
|
[36] |
胡海清, 魏书精, 孙龙, 等. 气候变化、火干扰与生态系统碳循环[J]. 干旱区地理, 2013, 36(1):57-75.
|
[37] |
赵凤君, 舒立福, 姚树人. 森林火灾碳排放估算方法与研究进展[J]. 森林防火, 2012(1):25-29.
|
[38] |
胡海清, 魏书精, 孙龙. 1965—2010年大兴安岭森林火灾碳排放的估算研究[J]. 植物生态学报, 2012, 36(7):629-644.
|
[39] |
魏书精, 罗碧珍, 魏书威, 等. 黑河市森林火灾碳排放的计量估算研究[J]. 南京林业大学学报(自然科学版), 2014, 38(1):70-76.
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
国家统计局. 中国统计年鉴2021[M]. 北京: 中国统计出版社, 2021.
National Bureau of Statistics. China statistical yearbook 2021[M]. Beijing: China Statistics Press, 2021.
|
[45] |
|
[46] |
|
[47] |
|
[48] |
刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6):2642-2650.
|
[49] |
周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005, 20(1):99-105.
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
陈顺洋, 陈光程, 陈彬, 等. 红树林湿地相手蟹科动物摄食生态研究进展[J]. 生态学报, 2014, 34(19):5349-5359.
|
[57] |
|
[58] |
孙悦超, 麻硕士, 陈智, 等. 砾石覆盖对抑制旱作农田土壤风蚀效果的风洞模拟[J]. 农业工程学报, 2010, 26(11):151-155.
|
[59] |
姬惜珠, 王红, 张爱军. 三北防护林中杨树的碳汇和放氧功能及其价值估算[J]. 河北林果研究, 2005, 20(3): 217-219.
|
[60] |
谭梦, 黄贤金, 钟太洋, 等. 土地整理对农田土壤碳含量的影响[J]. 农业工程学报, 2011, 27(8):324-329.
|
[61] |
白彦锋, 姜春前, 鲁德, 等. 中国木质林产品碳储量变化研究[J]. 浙江林学院学报, 2007, 24(5):587-592.
|
[62] |
FAO. Global forest resources assessment 2020: Key findings[DB/OL]. [2022-08-30] http://www.fao.org/forestry/statistics.
|
[63] |
Food and Agricultural Organization of United Nations. Food and Agricultural Organization of United Nations Statistics Database (FAOSTAT) (Forestry Production and Trade)[DB/OL]. [2021-12-16] https://www.fao.org/faostat/zh/#data/FO
|
[64] |
|
[65] |
郝章程. 两种生物基橡胶轮胎,全球原创![J]. 中国橡胶, 2021, 37(7):16-17.
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
刘锐金, 杨琳, 莫业勇. 2020年天然橡胶市场形势及2021年展望[J]. 农业展望, 2021, 17(4):9-14.
|
[71] |
蒲刚清, 刘贞, 汪毅霖. 生态因素下森林生物质动态潜力研究[J]. 重庆理工大学学报(社会科学), 2017, 31(10):51-59.
|
[72] |
张小标. 中国木质林产品碳收支与碳减排贡献:基于CBM-MRIO模型的构建与实证[D]. 南京: 南京林业大学, 2019.
|
[73] |
苏毅. 生物质废物厌氧消化特性及产气潜势研究[D]. 重庆: 重庆大学, 2017.
|
[74] |
|
[75] |
钱新锋, 赏国锋, 沈国清. 园林绿化废弃物生物质炭化与应用技术研究进展[J]. 中国园林, 2012, 28(11):101-104.
|
[76] |
武志红, 姚程, 蒙真真, 等. 生物质衍生碳基复合吸波材料的研究进展[J]. 硅酸盐学报, 2022, 50(7):2056-2066.
|
[77] |
王国兵, 徐瑾, 王瑞, 等. 添加生物炭对东台滨海区杨树人工林3种温室气体排放的长期影响[J]. 生态环境学报, 2019, 28(6):1152-1158.
|
[78] |
陈绍荣. 玉米秸秆生物炭及其老化对石灰性农田土壤氨氧化和氨挥发的影响[D]. 太原: 太原理工大学, 2018.
|
[79] |
朱时祥, 徐新建, 李明, 等. 木质素/无机填料复合补强橡胶的研究进展[J]. 生物加工过程, 2020, 18(5):612-618.
|
[80] |
段亮, 吕永康. 木质素工业研究进展[J]. 山西化工, 2010, 30(3):34-38.
|
[81] |
张玉飞. 基于酚化木质素改性的木材胶粘剂制备及性能研究[D]. 南宁: 广西大学, 2021.
|
[82] |
刘紫薇. 废弃生物质基聚氨酯及其性能研究[D]. 北京: 北京化工大学, 2021.
|
[83] |
陈子璇, 吴夏芫, 陈雪茹, 等. 生物电化学系统降解废水中抗生素的研究进展[J]. 生物加工过程, 2021, 19(5):522-530.
|
[84] |
王晓迪. 木质纤维素生物质基储能材料的构建及其性能研究[D]. 天津: 天津科技大学, 2020.
|
于母校华诞120年喜庆之际,特向老师先辈们深表敬意。笔者汇总了一部分成熟和潜在碳汇途径,希望起抛砖引玉的作用,激励林业工作者在增加林业碳汇的伟大事业中做出重要贡献!
/
〈 |
|
〉 |