南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (1): 1-12.doi: 10.12302/j.issn.1000-2006.202209009
丁相元(), 陈尔学(), 李增元, 赵磊, 刘清旺, 徐昆鹏
收稿日期:
2022-09-05
接受日期:
2022-11-06
出版日期:
2023-01-30
发布日期:
2023-02-01
通讯作者:
陈尔学
基金资助:
DING Xiangyuan(), CHEN Erxue(), LI Zengyuan, ZHAO Lei, LIU Qingwang, XU Kunpeng
Received:
2022-09-05
Accepted:
2022-11-06
Online:
2023-01-30
Published:
2023-02-01
Contact:
CHEN Erxue
摘要:
国家森林资源(连续)清查是森林资源监测体系的重要组成部分,可为制定国家林业发展战略和调整林业方针政策提供及时有效的科学依据。遥感在推动NFI技术进步方面发挥了重要作用,已成为支撑NFI运行不可或缺的技术手段。在将遥感数据作为辅助数据用于提高NFI总体参数估测精度和效率方面,国内外学者已开展了大量估计模型和方法研究,可概括为4类:设计推断法(design-based inference method)、模型辅助法(design-based and model-assisted method)、模型法(model-dependent method)和混合法(design and model hybrid method)。笔者针对这4类估测方法,总结了国内外研究现状,分析了国内相关研究存在的问题,并就未来重点研发方向和内容提出了建议。在设计推断法方面,国内外技术水平没有太大差距;国外开展了大量模型辅助法研究并已应用于NFI业务,但国内相关研究较少,且业务应用仅体现在面积成数估计,今后应加强该方法的应用示范和推广工作。关于模型法在NFI中的应用国外对多源数据协同应用中的不确定性度量方法进行了深入研究;国内对模型法的研究也很多,但对科学评价模型的拟合效果、度量模型估测结果的不确定性等缺乏系统研究,应作为后续研究重点;国外已针对NFI应用开发了3类混合法,国内对第1类混合法研究较少,对第2类混合法的研究还仅局限于用双重回归抽样法估计地类面积,而对第3类汇合法尚未采用“数据同化”思路开展相关应用研究。建议未来加强这3类混合法在国内NFI中的深入研究和应用示范。
中图分类号:
丁相元,陈尔学,李增元,等. 国家森林资源清查遥感应用主要技术进展[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 1-12.
DING Xiangyuan, CHEN Erxue, LI Zengyuan, ZHAO Lei, LIU Qingwang, XU Kunpeng. A review of remote sensing application in national forest inventory[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(1): 1-12.DOI: 10.12302/j.issn.1000-2006.202209009.
表1
4类NFI总体参数估计方法特点的比较"
方法 method | 描述 description | 优点 advantage | 缺点 disadvantage |
---|---|---|---|
设计推断法 design-based inference method | 收集的数据为概率样本数据;认为总体是固定值;不确定性来源于抽样 | 原理简单;无偏估计;置信区间可靠 | 部分情况下,概率样本可能无法实现,成本高昂 |
模型辅助法 design-based and model-assisted method | 在概率样本数据的支撑下,利用低成本的辅助数据和模型建模,并对结果进行校正,提高估计精度;不确定性来源于抽样和模型 | 当辅助数据与目标参数之间强相关时,会提高估测效率(给定精度水平条件下,所需样地数量更少) | 需要概率样本;估计量的表达形式可能非常复杂;样本量足够时为无偏估计;小样本的置信区间不可靠 |
模型法 model-dependent method | 完全利用辅助数据和模型建模实现目标参数估计;不确定性来自各个总体单元观察值的随机性以及模型 | 无须概率抽样假设;成本较低 | 有偏估计;模型估计量对结果影响较大 |
混合法 design and model hybrid method | 基于设计和模型的混合;不确定性来源于抽样和模型 | 结合了设计的无偏估计和模型的优势;可节约成本 | 辅助数据需满足概率抽样假设;有偏估计;模型估计量对结果影响较大 |
[1] |
NASSET E. Area-based inventory in Norway-from innovation to an operational reality[C]// Forestry Applications of Airborne Laser Scanning. Dordrecht: Springer Netherlands, 2013:215-240.DOI: 10.1007/978-94-017-8663-8_11.
doi: 10.1007/978-94-017-8663-8_11 |
[2] |
BREIDENBACH J, MCROBERTS R E, ASTRUP R. Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume[J]. Remote Sens Environ, 2016, 173:274-281.DOI: 10.1016/j.rse.2015.07.026.
doi: 10.1016/j.rse.2015.07.026 pmid: 28148972 |
[3] |
RAHLF J, HAUGLIN M, ASTRUP R, et al. Timber volume estimation based on airborne laser scanning:comparing the use of national forest inventory and forest management inventory data[J]. Ann For Sci, 2021, 78(2):1-14.DOI: 10.1007/s13595-021-01061-4.
doi: 10.1007/s13595-021-01061-4 |
[4] | 肖兴威. 中国森林资源清查[M]. 北京: 中国林业出版社, 2005. |
XIAO X W. National forest inventory of China[M]. Beijing: China Forestry Publishing House, 2005. | |
[5] |
ZENG W S, TOMPPO E, HEALEY S P, et al. The national forest inventory in China:history-results-international context[J]. For Ecosyst, 2015, 2(1):23.DOI: 10.1186/s40663-015-0047-2.
doi: 10.1186/s40663-015-0047-2 |
[6] | 唐小平, 翁国庆, 陈雪峰, 等.森林资源规划设计调查技术规程:GB/T 26424—2010.[S]. 北京: 中国标准出版社, 2011. |
[7] | 张煜星, 闫宏伟, 黄国胜, 等.森林资源连续清查技术规程:GB/T 38590—2020[S]. 北京: 中国标准出版社, 2020. |
[8] |
SAARELA S, SCHNELL S, TUOMINEN S, et al. Effects of positional errors in model-assisted and model-based estimation of growing stock volume[J]. Remote Sens Environ, 2016, 172:101-108.DOI: 10.1016/j.rse.2015.11.002.
doi: 10.1016/j.rse.2015.11.002 |
[9] |
STÅHL G, SAARELA S, SCHNELL S, et al. Use of models in large-area forest surveys:comparing model-assisted,model-based and hybrid estimation[J]. For Ecosyst, 2016, 3:5.DOI: 10.1186/s40663-016-0064-9.
doi: 10.1186/s40663-016-0064-9 |
[10] |
KERSHAW J A, DUCEY M J, BEERS T W, et al. Sampling designs in forest inventories[C]//KERSHAW J A, DUCEY M J, BEERS T W, et al. Forest Mensuration. Hoboken: Wiley Online Library, 2016:305-360.DOI:10.1002/9781118902028.ch10.
doi: 10.1002/9781118902028.ch10 |
[11] |
GREGOIRE T G, VALENTINE H T. Sampling strategies for natural resources and the environment[M]. Boca Raton: Chapman and Hall/CRC, 2007.DOI: 10.1201/9780203498880.
doi: 10.1201/9780203498880 |
[12] |
MCROBERTS R E. Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data[J]. Remote Sens Environ, 2010, 114(5):1017-1025.DOI: 10.1016/j.rse.2009.12.013.
doi: 10.1016/j.rse.2009.12.013 |
[13] |
MCCONVILLE K S, MOISEN G G, FRESCINO T S. A tutorial on model-assisted estimation with application to forest inventory[J]. Forests, 2020, 11(2):244.DOI: 10.3390/f11020244.
doi: 10.3390/f11020244 |
[14] |
ENEL T, NASSET E, GOBAKKEN T, et al. Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach[J]. Remote Sens Environ, 2012, 123:579-592.DOI: 10.1016/j.rse.2012.04.017.
doi: 10.1016/j.rse.2012.04.017 |
[15] |
SAARELA S, GRAFSTRÖM A, STÅHL G, et al. Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information[J]. Remote Sens Environ, 2015, 158:431-440.DOI: 10.1016/j.rse.2014.11.020.
doi: 10.1016/j.rse.2014.11.020 |
[16] |
BREIDT F J, OPSOMER J D. Model-assisted survey estimation with modern prediction techniques[J]. Statist Sci, 2017, 32(2):190-205.DOI: 10.1214/16-sts589.
doi: 10.1214/16-sts589 |
[17] |
MÁTERN B. Spatial variation[M]. New York: Springer Verlag, 1986.DOI: 10.1007/978-1-4615-7892-5.
doi: 10.1007/978-1-4615-7892-5 |
[18] | 李陶, 李明阳, 钱春花. 结合冠层密度的森林净初级生产力遥感估测[J]. 南京林业大学学报(自然科学版), 2021, 45(5):153-160. |
LI T, LI M Y, QIAN C H. Combining crown density to estimate forest net primary productivity by using remote sensing data[J]. J Nanjing For Univ (Nat Sci Edi), 2021, 45(5): 153-160.DOI: 10.12302/j.issn.1000-2006.202008007.
doi: 10.12302/j.issn.1000-2006.202008007 |
|
[19] |
ROYALL R M. On finite population sampling theory under certain linear regression models[J]. Biometrika, 1970, 57(2):377-387.DOI: 10.1093/biomet/57.2.377.
doi: 10.1093/biomet/57.2.377 |
[20] | RENNOLLS K. The use of superpopulation-prediction methods in survey analysis,with application to the British National Census of Woodlands and Trees[C]//LUND H D. In place resource inventories:principles and practices. Maryland: Society of American Foresters, 1981: 395-401. |
[21] |
GREGOIRE T G. Design-based and model-based inference in survey sampling:appreciating the difference[J]. Can J For Res, 1998, 28(10):1429-1447.DOI: 10.1139/x98-166.
doi: 10.1139/x98-166 |
[22] | 王甜, 王雪峰, 刘嘉政. 基于RFE_RF算法的幼龄沉香叶片含水率预估模型[J]. 南京林业大学学报(自然科学版), 2022, 46(4):177-184. |
WANG T, WANG X F, LIU J Z. The prediction model of moisture content of young Aquilaria sinensis leaves based on RFE_RF algorithm[J]. J Nanjing For Univ (Nat Sci Edi), 2022, 46(4): 177-184.DOI: 10.12302/j.issn.1000-2006.202010043.
doi: 10.12302/j.issn.1000-2006.202010043 |
|
[23] | MANDALLAZ D. Sampling techniques for forest inventories[M]. Boca Raton FL: Chapman & Hall/CRC, 2008. |
[24] |
GRAUBARDAND B I, KORN E L. Inference for superpopulation parameters using sample surveys[J]. Statist Sci, 2002, 17(1):73-96.DOI: 10.1214/ss/1023798999.
doi: 10.1214/ss/1023798999 |
[25] |
MCROBERTS R E, WESTFALL J A. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates[J]. For Sci, 2014, 60(1):34-42.DOI: 10.5849/forsci.12-141.
doi: 10.5849/forsci.12-141 |
[26] | SÄRNDAL C E, SWENSSON B, WRETMAN J. Model assisted survey sampling[M]. New York: Springer, 1992. |
[27] |
STÅHL G, HOLM S, GREGOIRE T G, et al. Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County,Norway[J]. Can J For Res, 2011, 41(1):96-107.DOI: 10.1139/x10-161.
doi: 10.1139/x10-161 |
[28] |
CORONA P, FATTORINI L, FRANCESCHI S, et al. Estimation of standing wood volume in forest compartments by exploiting airborne laser scanning information:model-based,design-based,and hybrid perspectives[J]. Can J For Res, 2014, 44(11):1303-1311.DOI: 10.1139/cjfr-2014-0203.
doi: 10.1139/cjfr-2014-0203 |
[29] | CAJANUS W. A method for ocular estimation of the growing stock of forests[J]. Tapio, 1913, 6:77-79. |
[30] |
NEYMAN J. On the two different aspects of the representative method:the method of stratified sampling and the method of purposive selection[J]. J Royal Stat Soc, 1934, 97(4):558-606.DOI: 10.1111/j.2397-2335.1934.tb04184.x.
doi: 10.1111/j.2397-2335.1934.tb04184.x |
[31] |
LISTER A J, ANDERSEN H, FRESCINO T, et al. Use of remote sensing data to improve the efficiency of national forest inventories:a case study from the United States national forest inventory[J]. Forests, 2020, 11(12):1364.DOI: 10.3390/f11121364.
doi: 10.3390/f11121364 |
[32] |
MCROBERTS R E, TOMPPO E O. Remote sensing support for national forest inventories[J]. Remote Sens Environ, 2007, 110(4):412-419.DOI: 10.1016/j.rse.2006.09.034.
doi: 10.1016/j.rse.2006.09.034 |
[33] | COCHRAN W G. Sampling techniques[M]. 3rdEd. New York: John Wiley & Sons,1977. |
[34] |
MCROBERTS R E, GOBAKKEN T, NASSET E. Post-stratified estimation of forest area and growing stock volume using lidar-based stratifications[J]. Remote Sens Environ, 2012, 125:157-166.DOI: 10.1016/j.rse.2012.07.002.
doi: 10.1016/j.rse.2012.07.002 |
[35] | ALLEN B C. The sampling design used in the forest survey of the northeast[J]. J For, 1952, 50(4):290-293. |
[36] |
LAWRENCE P R, WALKER B B. Methods and results of forest assessment using random sampling units in photo-interpreted strata[J]. Aust For, 1954, 18(2):107-127.DOI: 10.1080/00049158.1954.10675319.
doi: 10.1080/00049158.1954.10675319 |
[37] |
POSO S, HÄME T, PAANANEN R. A method for estimating the stand characteristics of a forest compartment using satellite imagery[J]. Silva Fenn, 1984, 18(3):261-296.DOI: 10.14214/sf.a15398.
doi: 10.14214/sf.a15398 |
[38] | TOMPPO E, GSCHWANTNER T, LAWRENCE M, et al. National Forest Inventories:pathways for common reporting[M]. New York: Springer, 2010. |
[39] | HANSEN M H, WENDT D G. Using classified Landsat Thematic Mapper data for stratification in a statewide forest inventory[C]//MCROBERTS R E,REAMS G A,VAN DEUSEN P C. Proceedings of the First Annual Forest Inventory and Analysis SymPosium. San Antonio: Department of Agriculture,Forest Service,North Central Research Station Available, 2012:20-27. |
[40] |
KAMWI J M, KÄTSCH C. Using high-resolution satellite imagery and double sampling as a cost-effective means of collecting forest inventory data: the case of Hans Kanyinga Community Forest,Namibia[J]. South For a J For Sci, 2009, 71(1):49-58.DOI: 10.2989/sf.2009.71.1.7.744.
doi: 10.2989/sf.2009.71.1.7.744 |
[41] | DEO SINGH K. Remote sensing applications in forest inventory[C]//Capacity building for the planning,assessment and systematic observations of forests. Berlin, Heidelberg:Springer, 2013:115-130. |
[42] |
KANGAS A, ASTRUP R, BREIDENBACH J, et al. Remote sensing and forest inventories in Nordic countries-roadmap for the future[J]. Scand J For Res, 2018, 33(4):397-412.DOI: 10.1080/02827581.2017.1416666.
doi: 10.1080/02827581.2017.1416666 |
[43] | 蒲莹, 张煜星, 曾伟生, 等. 森林资源清查向森林生态系统监测转型技术[J]. 科技创新与品牌, 2021(5):76-79. |
PU Y, ZHANG Y X, ZENG W S, et al. Transformation technology from forest resources inventory to forest ecosystem monitoring[J]. Sci Tech Innov Brands, 2021(5):76-79.DOI: 10.3969/j.issn.1673-940X.2021.05.025.
doi: 10.3969/j.issn.1673-940X.2021.05.025 |
|
[44] | 罗仙仙, 亢新刚, 杨华. 我国森林资源综合监测抽样理论研究综述[J]. 西北林学院学报, 2008, 23(6):187-193. |
LUO X X, KANG X G, YANG H. A review on the sampling theory of forest resources comprehensive monitoring[J]. J Northwest For Univ, 2008, 23(6):187-193. | |
[45] | 史京京, 雷渊才, 赵天忠. 森林资源抽样调查技术方法研究进展[J]. 林业科学研究, 2009, 22(1):101-108. |
SHI J J, LEI Y C, ZHAO T Z. Progress in sampling technology and methodology in forest inventory[J]. For Res, 2009, 22(1):101-108.DOI: 10.3321/j.issn:1001-1498.2009.01.018.
doi: 10.3321/j.issn:1001-1498.2009.01.018 |
|
[46] | 张会儒, 雷相东, 李凤日. 中国森林经理学研究进展与展望[J]. 林业科学, 2020, 56(9):130-142. |
ZHANG H R, LEI X D, LI F R. Research progress and prospects of forest management science in China[J]. Sci Silvae Sin, 2020, 56(9):130-142.DOI: 10.11707/j.1001-7488.20200915.
doi: 10.11707/j.1001-7488.20200915 |
|
[47] | 李芝喜, 曹宁湘, 王维勤, 等. 利用遥感技术多阶不等概抽样清查森林资源[J]. 北京林学院学报, 1985, 7(2):70-75. |
LI Z X, CAO N X, WANG W Q, et al. Using remote sensing technology to check forest resources by multi-order unequal sampling[J]. J Beijing For Univ, 1985, 7(2):70-75. | |
[48] | 欧润贵. 对航天遥感资料应用于以县为总体的森林资源连续清查的建议[J]. 林业资源管理, 1991(1):48-50. |
OU R G. Suggestions on the application of space remote sensing data to continuous inventory of forest resources in counties as a whole[J]. For Resour Manag, 1991(1):48-50.DOI: 10.13466/j.cnki.lyzygl.1991.01.018.
doi: 10.13466/j.cnki.lyzygl.1991.01.018 |
|
[49] | 曾伟生. 遥感技术在森林资源清查中的应用问题探讨[J]. 中南林业调查规划, 2004, 23(1):47-49. |
ZENG W S. Discussion on application of remote sensing in forest inventories[J]. Contral South For Invent Plan, 2004, 23(1):47-49.DOI: 10.3969/j.issn.1003-6075.2004.01.014.
doi: 10.3969/j.issn.1003-6075.2004.01.014 |
|
[50] | 林辉, 熊育久, 孙华, 等. 湖南省森林资源连续清查遥感应用研究[J]. 中南林业科技大学学报, 2007, 27(4):33-38. |
LIN H, XIONG Y J, SUN H, et al. Application of remote sensing to continuous forest inventory research in Hunan Province[J]. J Central South Univ For & Technol, 2007, 27(4):33-38.DOI: 10.3969/j.issn.1673-923X.2007.04.006.
doi: 10.3969/j.issn.1673-923X.2007.04.006 |
|
[51] | 郑冬梅, 智长贵, 黄国胜, 等. 遥感大样地点面判读方法在森林资源宏观监测中的应用分析[J]. 林业资源管理, 2017(6):137-142,148. |
ZHENG D M, ZHI C G, HUANG G S, et al. Analysis of forest resources monitoring by zoning interpretation and point interpretation of remote sensing large plot[J]. For Resour Manag, 2017(6):137-142, 148.DOI: 10.13466/j.cnki.lyzygl.2017.06.024.
doi: 10.13466/j.cnki.lyzygl.2017.06.024 |
|
[52] | 程志楚, 夏朝宗, 王海滨, 等. 大样地调查方案在森林资源调查中的可行性分析[J]. 河北农业大学学报, 2015, 38(3):64-68. |
CHENG Z C, XIA C Z, WANG H B, et al. Feasibility analysis on a new scheme based on large plot in forest resources survey[J]. J Agric Univ Hebei, 2015, 38(3):64-68.DOI: 10.13320/j.cnki.jauh.2015.0061.
doi: 10.13320/j.cnki.jauh.2015.0061 |
|
[53] | 王雪军, 张煜星, 黄国胜, 等. 全国森林面积和森林蓄积年度出数方法探讨[J]. 江西农业大学学报, 2016, 38(1):9-18. |
WANG X J, ZHANG Y X, HUANG G S, et al. Discussion on methods for annual national producing estimates of forest area and forest stock in China[J]. Acta Agric Univ Jiangxiensis, 2016, 38(1):9-18.DOI: 10.13836/j.jjau.2016002.
doi: 10.13836/j.jjau.2016002 |
|
[54] | SÄRNDAL C E. The calibration approach in survey theory and practice[J]. Surv Methodol, 2007, 33(2):99-119. |
[55] |
BREIDT F J, CLAESKENS G, OPSOMER J D. Model-assisted estimation for complex surveys using penalised splines[J]. Biometrika, 2005, 92(4):831-846.DOI: 10.1093/biomet/92.4.831.
doi: 10.1093/biomet/92.4.831 |
[56] |
OPSOMER J D, BREIDT F J, MOISEN G G, et al. Model-assisted estimation of forest resources with generalized additive models[J]. J Am Stat Assoc, 2007, 102(478):400-409.DOI: 10.1198/016214506000001491.
doi: 10.1198/016214506000001491 |
[57] |
BOUDREAU J, NELSON R F, MARGOLIS H A, et al. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec[J]. Remote Sens Environ, 2008, 112(10):3876-3890.DOI: 10.1016/j.rse.2008.06.003.
doi: 10.1016/j.rse.2008.06.003 |
[58] | ANDERSEN H E, BARRETT T, WINTERBERGER K, et al. Estimating forest biomass on the western lowlands of the Kenai Peninsula of Alaska using airborne LiDAR and field plot data in a model-assisted sampling design[C]// Proceedings of the IUFRO Division 4 Conference:“Extending Forest Inventory and Monitoring over Space and Time”, 2009:19-22. |
[59] |
NÆSSET E, GOBAKKEN T, SOLBERG S, et al. Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data:a case study from a boreal forest area[J]. Remote Sens Environ, 2011, 115(12):3599-3614.DOI: 10.1016/j.rse.2011.08.021.
doi: 10.1016/j.rse.2011.08.021 |
[60] |
GREGOIRE T G, STÅHL G, NASSET E, et al. Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County,Norway[J]. Can J For Res, 2011, 41(1):83-95.DOI: 10.1139/x10-195.
doi: 10.1139/x10-195 |
[61] |
ENEL T, NASSET E, GOBAKKEN T, et al. A simulation approach for accuracy assessment of two-phase post-stratified estimation in large-area LiDAR biomass surveys[J]. Remote Sens Environ, 2013, 133:210-224.DOI: 10.1016/j.rse.2013.02.002.
doi: 10.1016/j.rse.2013.02.002 |
[62] |
GREGOIRE T G, NÆSSET E, MCROBERTS R E, et al. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass[J]. Remote Sens Environ, 2016, 173:98-108.DOI: 10.1016/j.rse.2015.11.012.
doi: 10.1016/j.rse.2015.11.012 |
[63] |
STEPHENS P R, KIMBERLEY M O, BEETS P N, et al. Airborne scanning LiDAR in a double sampling forest carbon inventory[J]. Remote Sens Environ, 2012, 117:348-357.DOI: 10.1016/j.rse.2011.10.009.
doi: 10.1016/j.rse.2011.10.009 |
[64] |
STRUNK J L, REUTEBUCH S E, ANDERSEN H E, et al. Model-assisted forest yield estimation with light detection and ranging[J]. West J Appl For, 2012, 27(2):53-59.DOI: 10.5849/wjaf.10-043.
doi: 10.5849/wjaf.10-043 |
[65] |
NELSON R, GOBAKKEN T, NÆSSET E, et al. Lidar sampling: using an airborne profiler to estimate forest biomass in Hedmark County,Norway[J]. Remote Sens Environ, 2012, 123:563-578.DOI: 10.1016/j.rse.2011.10.036.
doi: 10.1016/j.rse.2011.10.036 |
[66] |
GOBAKKEN T, NÆSSET E, NELSON R, et al. Estimating biomass in Hedmark County,Norway using national forest inventory field plots and airborne laser scanning[J]. Remote Sens Environ, 2012, 123:443-456.DOI: 10.1016/j.rse.2012.01.025.
doi: 10.1016/j.rse.2012.01.025 |
[67] |
NÆSSET E, GOBAKKEN T, BOLLANDSÅS O M, et al. Comparison of precision of biomass estimates in regional field sample surveys and airborne LiDAR-assisted surveys in Hedmark County,Norway[J]. Remote Sens Environ, 2013, 130:108-120.DOI: 10.1016/j.rse.2012.11.010.
doi: 10.1016/j.rse.2012.11.010 |
[68] |
MASSEY A, MANDALLAZ D, LANZ A. Integrating remote sensing and past inventory data under the new annual design of the Swiss National Forest Inventory using three-phase design-based regression estimation[J]. Can J For Res, 2014, 44(10):1177-1186.DOI:10.1139/CJFR-2014-0152.
doi: 10.1139/CJFR-2014-0152 |
[69] |
CHIRICI G, MCROBERTS R E, FATTORINI L, et al. Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework[J]. Remote Sens Environ, 2016, 174:1-9.DOI: 10.1016/j.rse.2015.11.010.
doi: 10.1016/j.rse.2015.11.010 |
[70] | 唐守正. 关于两相抽样面积蓄积统计的原则[J]. 林业资源管理, 1996(4):18-22. |
TANG S Z. On the principle of accumulation statistics of two-phase sampling area[J]. For Resour Manag, 1996(4):18-22. | |
[71] | 宋新民, 李金良. 抽样调查技术[M]. 2版. 北京: 中国林业出版社, 2007. |
SONG X M, LI J L. Sampling survey techniques[M]. 2nd ed. Beijing: China Forestry Publishing House, 2007. | |
[72] | 葛宏立, 周国模, 张国江, 等. 遥感、地面三相抽样及其在森林资源年度监测面积估计中的应用[J]. 林业科学, 2007, 43(6):77-82. |
GE H L, ZHOU G M, ZHANG G J, et al. RS-land three-phase sampling technique and its application to area estimation in annual forest inventory[J]. Sci Silvae Sin, 2007, 43(6):77-82.DOI: 10.3321/j.issn:1001-7488.2007.06.014.
doi: 10.3321/j.issn:1001-7488.2007.06.014 |
|
[73] | 张宗秀, 高天雷, 张文. 双重二阶抽样提高森林资源抽样精度的研究[J]. 四川林业科技, 2013, 34(5):8-12. |
ZHANG Z X, GAO T L, ZHANG W. Study on improving the sampling accuracy of forest resources by double sampling[J]. J Sichuan For Sci Technol, 2013, 34(5):8-12.DOI: 10.16779/j.cnki.1003-5508.2013.05.002.
doi: 10.16779/j.cnki.1003-5508.2013.05.002 |
|
[74] |
BACCINI A, LAPORTE N, GOETZ S J, et al. A first map of tropical Africa’s above-ground biomass derived from satellite imagery[J]. Environ Res Lett, 2008, 3(4):045011.DOI: 10.1088/1748-9326/3/4/045011.
doi: 10.1088/1748-9326/3/4/045011 |
[75] |
ARMSTON J D, DENHAM R J, DANAHER T J, et al. Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery[J]. J App Ren Sen, 2009, 3:33540.DOI: 10.1117/1.3216031.
doi: 10.1117/1.3216031 |
[76] |
ASNER G P, POWELL G V N, MASCARO J, et al. High-resolution forest carbon stocks and emissions in the Amazon[J]. Proc Natl Acad Sci USA, 2010, 107(38):16738-16742.DOI: 10.1073/pnas.1004875107.
doi: 10.1073/pnas.1004875107 pmid: 20823233 |
[77] |
HELMER E H, RUZYCKI T S, WUNDERLE J M J, et al. Mapping tropical dry forest height,foliage height profiles and disturbance type and age with a time series of cloud-cleared Landsat and ALI image mosaics to characterize avian habitat[J]. Remote Sens Environ, 2010, 114(11):2457-2473.DOI: 10.1016/j.rse.2010.05.021.
doi: 10.1016/j.rse.2010.05.021 |
[78] |
STRUNK J, TEMESGEN H, ANDERSEN H E, et al. Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables[J]. Can J Remote Sens, 2012, 38(5):644-654.DOI: 10.5589/m12-052.
doi: 10.5589/m12-052 |
[79] |
ZHANG R, ZHOU X H, OUYANG Z T, et al. Estimating aboveground biomass in subtropical forests of China by integrating multisource remote sensing and ground data[J]. Remote Sens Environ, 2019, 232:111341.DOI: 10.1016/j.rse.2019.111341.
doi: 10.1016/j.rse.2019.111341 |
[80] |
CHIRICI G, GIANNETTI F, MCROBERTS R E, et al. Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data[J]. Int J Appl Earth Obs Geoinformation, 2020, 84:101959.DOI: 10.1016/j.jag.2019.101959.
doi: 10.1016/j.jag.2019.101959 |
[81] |
MAGNUSSEN S, NÆSSET E, GOBAKKEN T. LiDAR-supported estimation of change in forest biomass with time-invariant regression models[J]. Can J For Res, 2015, 45(11):1514-1523.DOI: 10.1139/cjfr-2015-0084.
doi: 10.1139/cjfr-2015-0084 |
[82] |
GULDIN R W. A systematic review of small domain estimation research in forestry during the twenty-first century from outside the United States[J]. Front For Glob Change, 2021, 4:695929.DOI: 10.3389/ffgc.2021.695929.
doi: 10.3389/ffgc.2021.695929 |
[83] |
AKAIKE H. A new look at the statistical model identification[J]. IEEE Trans Autom Control, 1974, 19(6):716-723.DOI: 10.1109/TAC.1974.1100705.
doi: 10.1109/TAC.1974.1100705 |
[84] |
SITTER R R. Variance estimation for the regression estimator in two-phase sampling[J]. J Am Stat Assoc, 1997, 92(438):780-787.DOI: 10.1080/01621459.1997.10474031.
doi: 10.1080/01621459.1997.10474031 |
[85] |
SAARELA S, HOLM S, HEALEY S, et al. Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and landsat data[J]. Remote Sens, 2018, 10(11): 1832.DOI: 10.3390/rs10111832.
doi: 10.3390/rs10111832 |
[86] |
HANSEN M H, MADOW W G, TEPPING B J. An evaluation of model-dependent and probability-sampling inferences in sample surveys[J]. J Am Stat Assoc, 1983, 78(384):776-793.DOI: 10.1080/01621459.1983.10477018.
doi: 10.1080/01621459.1983.10477018 |
[87] |
VALLIANT R. Nonlinear prediction theory and the estimation of proportions in a finite population[J]. J Am Stat Assoc, 1985, 80(391):631-641.DOI: 10.1080/01621459.1985.10478163.
doi: 10.1080/01621459.1985.10478163 |
[88] | VALLIANT R, DORFMAN A H, ROYALL R M. Finite population sampling and inference:a prediction approach[M]. Chichester:Wiley, 2000. |
[89] |
MCROBERTS R E. A model-based approach to estimating forest area[J]. Remote Sens Environ, 2006, 103(1):56-66.DOI: 10.1016/j.rse.2006.03.005.
doi: 10.1016/j.rse.2006.03.005 |
[90] |
CHEN Q, VAGLIO L G, VALENTINI R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest:propagating errors from trees to plots to pixels[J]. Remote Sens Environ, 2015, 160:134-143.DOI: 10.1016/j.rse.2015.01.009.
doi: 10.1016/j.rse.2015.01.009 |
[91] |
CHEN Q, MCROBERTS R E, WANG C W, et al. Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference[J]. Remote Sens Environ, 2016, 184:350-360.DOI: 10.1016/j.rse.2016.07.023.
doi: 10.1016/j.rse.2016.07.023 |
[92] |
LEFSKY M A, COHEN W B, SPIES T A. An evaluation of alternate remote sensing products for forest inventory,monitoring,and mapping of Douglas-fir forests in western Oregon[J]. Can J For Res, 2001, 31(1):78-87.DOI:10.1139/cjfr-31-1-78.
doi: 10.1139/cjfr-31-1-78 |
[93] |
HYDE P, NELSON R, KIMES D, et al. Exploring LiDAR-RaDAR synergy: predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR,SAR and InSAR[J]. Remote Sens Environ, 2007, 106(1):28-38.DOI: 10.1016/j.rse.2006.07.017.
doi: 10.1016/j.rse.2006.07.017 |
[94] |
GONZALEZ P, ASNER G P, BATTLES J J, et al. Forest carbon densities and uncertainties from LiDAR,QuickBird,and field measurements in California[J]. Remote Sens Environ, 2010, 114(7):1561-1575.DOI: 10.1016/j.rse.2010.02.011.
doi: 10.1016/j.rse.2010.02.011 |
[95] |
SIMARD M, PINTO N, FISHER J B, et al. Mapping forest canopy height globally with spaceborne Lidar[J]. J Geophys Res Biogeosci, 2011, 116(G4):G04021.DOI: 10.1029/2011JG001708.
doi: 10.1029/2011JG001708 |
[96] |
POPESCU S C, ZHOU T, NELSON R, et al. Photon counting LiDAR:an adaptive ground and canopy height retrieval algorithm for ICESat-2 data[J]. Remote Sens Environ, 2018, 208:154-170.DOI: 10.1016/j.rse.2018.02.019.
doi: 10.1016/j.rse.2018.02.019 |
[97] |
DUBAYAH R, BLAIR J B, GOETZ S, et al. The global ecosystem dynamics investigation:high-resolution laser ranging of the Earth’s forests and topography[J]. Sci Remote Sens, 2020, 1:100002.DOI: 10.1016/j.srs.2020.100002.
doi: 10.1016/j.srs.2020.100002 |
[98] |
POTAPOV P, LI X Y, HERNANDEZ-SERNA A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sens Environ, 2021, 253:112165.DOI: 10.1016/j.rse.2020.112165.
doi: 10.1016/j.rse.2020.112165 |
[99] |
SAARELA S, HOLM S, GRAFSTRÖM A, et al. Hierarchical model-based inference for forest inventory utilizing three sources of information[J]. Ann For Sci, 2016, 73(4):895-910.DOI: 10.1007/s13595-016-0590-1.
doi: 10.1007/s13595-016-0590-1 |
[100] |
PULITI S, ENE L T, GOBAKKEN T, et al. Use of partial-coverage UAV data in sampling for large scale forest inventories[J]. Remote Sens Environ, 2017, 194:115-126.DOI: 10.1016/j.rse.2017.03.019.
doi: 10.1016/j.rse.2017.03.019 |
[101] |
PULITI S, SAARELA S, GOBAKKEN T, et al. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference[J]. Remote Sens Environ, 2018, 204:485-497.DOI: 10.1016/j.rse.2017.10.007.
doi: 10.1016/j.rse.2017.10.007 |
[102] |
SAARELA S, WÄSTLUND A, HOLMSTRÖM E, et al. Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data,accounting for tree-level allometric and LiDAR model errors[J]. For Ecosyst, 2020, 7:43.DOI: 10.1186/s40663-020-00245-0.
doi: 10.1186/s40663-020-00245-0 |
[103] |
ESTEBAN J, MCROBERTS R, FERNÁNDEZ-LANDA A, et al. Estimating forest volume and biomass and their changes using random forests and remotely sensed data[J]. Remote Sens, 2019, 11(16):1944.DOI: 10.3390/rs11161944.
doi: 10.3390/rs11161944 |
[104] |
SANDOVAL S, BUSTAMANTE-ORTEGA R. Estimation of uncertainty in airborne LiDAR inventories using approaches based on bootstrapping-pairs methods[J]. Forests, 2020, 11(12):1305.DOI: 10.3390/f11121305.
doi: 10.3390/f11121305 |
[105] | 李增元, 赵磊, 李堃, 等. 合成孔径雷达森林资源监测技术研究综述[J]. 南京信息工程大学学报(自然科学版), 2020, 12(2):150-158. |
LI Z Y,ZHAO L,LI K, et al.A survey of developments on forest resources monitoring technology of synthetic aperture radar[J]. J Nanjing Univ Inf Sci & Technol (Nat Sci Ed), 2020, 12(2):150-158.DOI: 10.13878/j.cnki.jnuist.2020.02.002.
doi: 10.13878/j.cnki.jnuist.2020.02.002 |
|
[106] | 庞勇, 李增元, 陈博伟, 等. 星载激光雷达森林探测进展及趋势[J]. 上海航天, 2019, 36(3):20-28. |
PANG Y, LI Z Y, CHEN B W, et al. Status and development of spaceborne lidar applications in forestry[J]. Aerosp Shanghai, 2019, 36(3):20-28.DOI: 10.19328/j.cnki.1006-1630.2019.03.003.
doi: 10.19328/j.cnki.1006-1630.2019.03.003 |
|
[107] | 黄华国. 林业定量遥感研究进展和展望[J]. 北京林业大学学报, 2019, 41(12):1-14. |
HUANG H G. Progress and perspective of quantitative remote sensing of forestry[J]. J Beijing For Univ, 2019, 41(12):1-14.DOI: 10.12171/j.1000-1522.20190326.
doi: 10.12171/j.1000-1522.20190326 |
|
[108] | 张王菲, 陈尔学, 李增元, 等. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6):983-997. |
ZHANG W F, CHEN E X, LI Z Y, et al. Development of forest height estimation using InSAR/PolInSAR technology[J]. Remote Sens Technol Appl, 2017, 32(6):983-997.DOI: 10.11873/j.issn.1004-0323.2017.6.0983.
doi: 10.11873/j.issn.1004-0323.2017.6.0983 |
|
[109] | 张煜星, 王雪军, 黄国胜, 等. 森林面积多阶遥感监测方法[J]. 林业科学, 2017, 53(7):94-104. |
ZHANG Y X, WANG X J, HUANG G S, et al. Forest area remote sensing monitoring using the multi-level sampling interpretation approach[J]. Sci Silvae Sin, 2017, 53(7):94-104.DOI: 10.11707/j.1001-7488.20170710.
doi: 10.11707/j.1001-7488.20170710 |
|
[110] |
ZHAO J P, ZHAO L, CHEN E, et al. An improved generalized hierarchical estimation framework with geo statistics for mapping forest parameters and its uncertainty:a case study of forest canopy height[J]. Remote Sens, 2022, 14(3):568.DOI:10.3390/rs14030568.
doi: 10.3390/rs14030568 |
[111] |
ANDERSENH E, STRUNK J, TEMESGEN H. Using airborne light detection and ranging as a sampling tool for estimating forest biomass resources in the upper Tanana valley of interior Alaska[J]. West J Appl for, 2011, 26(4):157-164.DOI: 10.1093/wjaf/26.4.157.
doi: 10.1093/wjaf/26.4.157 |
[112] |
HENRIK J P, KENNETH O, JOHAN H. Two-phase forest inventory using very-high-resolution laser scanning[J]. Remote Sens Environ, 2022, 271:112909.DOI:10.1016/j.rse.2022.112909.
doi: 10.1016/j.rse.2022.112909 |
[113] |
MAGNUSSEN S, NÆSSET E, GOBAKKEN T. An estimator of variance for two-stage ratio regression estimators[J]. For Sci, 2014, 60(4):663-676.DOI: 10.5849/forsci.12-163.
doi: 10.5849/forsci.12-163 |
[114] |
HEALEY S P, PATTERSON P L, SAATCHI S, et al. A sample design for globally consistent biomass estimation using lidar data from the geoscience laser altimeter system (GLAS)[J]. Carbon Balance Manag, 2012, 7(1):10.DOI: 10.1186/1750-0680-7-10.
doi: 10.1186/1750-0680-7-10 |
[115] |
MARGOLIS H A, NELSON R F, MONTESANO P M, et al. Combining satellite lidar,airborne lidar,and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of north America[J]. Can J For Res, 2015, 45(7):838-855.DOI: 10.1139/cjfr-2015-0006.
doi: 10.1139/cjfr-2015-0006 |
[116] | CONDÉS S, MCROBERTS R E. Updating national forest inventory estimates of growing stock volume using hybrid inference[J]. For Ecol Manag, 2017, 400:48-57.DOI: 10.1016/j.foreco.2017.04.046. |
[117] | 鲁赛尼·阿特马维扎扎, 劳可遒. 用航空照片双重抽样进行森林资源清查[J]. 中南林业调查规划, 1982, 1(1):53-55,43. |
LUSAINI A, LAO K Q. Inventory of forest resources by double sampling of aerial photographs[J]. Central South For Investory Plan, 1982, 1(1):53-55,43. | |
[118] | 陈振雄, 熊智平, 曾伟生, 等. 基于大样地双重抽样方法的广东省森林资源监测研究[J]. 中南林业调查规划, 2014, 33(3):28-33. |
CHEN Z X, XIONG Z P, ZENG W S, et al. Forest resources monitoring based on double sampling with large plot in Guangdong[J]. Central South For Invent Plan, 2014, 33(3):28-33.DOI: 10.16166/j.cnki.cn43-1095.2014.03.024.
doi: 10.16166/j.cnki.cn43-1095.2014.03.024 |
|
[119] | 曾伟生, 夏锐. 全国森林资源调查年度出数统计方法探讨[J]. 林业资源管理, 2021(2):29-35. |
ZENG W S, XIA R. Discussion on methodology for generating annual estimates in national forest inventory[J]. For Resour Manag, 2021(2):29-35.DOI: 10.13466/j.cnki.lyzygl.2021.02.005.
doi: 10.13466/j.cnki.lyzygl.2021.02.005 |
|
[120] | 曹林, 周凯, 申鑫, 等. 智慧林业发展现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6):83-95. |
CAO L, ZHOU K, SHEN X, et al. The status and prospects of smart forestry[J]. J Nanjing For Univ (Nat Sci Edi), 2022, 46(6): 83-95.DOI: 10.12302/j.issn.1000-2006.202209052.
doi: 10.12302/j.issn.1000-2006.202209052 |
|
[121] | 曾伟生. 森林资源调查监测中的数据耦合方法研究[J]. 林业资源管理, 2022(2):61-66. |
ZENG W S. A study on method of data coupling in forest inventory and monitoring[J]. For Resour Manag, 2022(2):61-66.DOI: 10.13466/j.cnki.lyzygl.2022.02.009.
doi: 10.13466/j.cnki.lyzygl.2022.02.009 |
[1] | 吴文跃, 姚顺彬, 徐志扬. 基于森林资源清查数据的江西省主要森林类型净生产力研究[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 193-198. |
[2] | 张静,王邵军,阮宏华*. 土壤动物对森林凋落物分解的影响[J]. 南京林业大学学报(自然科学版), 2008, 32(05): 140-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||