南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6): 96-104.doi: 10.12302/j.issn.1000-2006.202209010
所属专题: 南京林业大学120周年校庆特刊
收稿日期:
2022-09-05
修回日期:
2022-09-29
出版日期:
2022-11-30
发布日期:
2022-11-24
通讯作者:
李孝刚
基金资助:
LIAO Yangwenke(), ZHANG Peiyao, ZHANG Qingyue, LI Xiaogang()
Received:
2022-09-05
Revised:
2022-09-29
Online:
2022-11-30
Published:
2022-11-24
Contact:
LI Xiaogang
摘要:
盐碱地是人工造林的重要潜在资源,而土壤盐胁迫危害是制约林木健康生长的突出问题。揭示林木盐胁迫调控机制,开发盐碱地综合利用技术是实现盐碱地资源化和生态保护的关键。笔者从林木生长发育、光合效率、生理代谢调控及矿质营养等角度,论述了制约盐碱地人工林生产力低下、土壤资源利用效率不足的盐胁迫主要过程。利用林木逆境下进化出的一套以自身生化调控和菌群互作消减为核心的综合耐盐机制,是研发盐碱地造林关键技术的方向,有助于我国盐碱地区人工林高效培育和多目标经营。
中图分类号:
廖杨文科,张佩瑶,张清越,等. 盐碱地林木耐盐机制及造林技术研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 96-104.
LIAO Yangwenke, ZHANG Peiyao, ZHANG Qingyue, LI Xiaogang. Advances in salt-tolerant mechanisms of trees and forestation techniques on saline-alkali land[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 96-104.DOI: 10.12302/j.issn.1000-2006.202209010.
表1
部分转入/沉默林木中的基因及耐盐表型"
转入植物 plant receptor | 操作基因 manipulated gene | 基因类型 gene type | 遗传转化植株耐盐表型 salt-tolerant phenotype of transgenic plant | 参考文献 reference |
---|---|---|---|---|
火炬松 Pinus taeda | 转入MtlD/GutD | 渗透调节物质合成基因 | 甘露醇和山梨醇含量增加,在NaCl质量分数0.5%~0.7%的培养基中具有较高存活率 | [ |
日本柿树 Diospyros kaki | 转入CodA | 渗透调节物质合成基因 | 甜菜碱合成量增加,光系统Ⅱ活性和耐盐能力增强 | [ |
四倍体刺槐 Robinia pseudoacacia | 转入BADH | 渗透调节物质合成基因 | 70%的转基因株系在盐胁迫下正常生长,叶片无黄化现象 | [ |
秦美猕猴桃 Actinidia chinensis ‘Qinmei’ | 转入MtlD/GutD | 渗透调节物质合成基因 | 1/3的阳性株系在高盐条件下存活率高于50% | [ |
欧美杨107 Populus × euramericana ‘74/76’ | 转入SeCMO | 渗透调节物质合成基因 | 甜菜碱含量是野生型植株的1.2~1.5倍,盐处理后叶绿素含量和过氧化物酶(POD)活性显著高于野生型 | [ |
刚毛柽柳 Tamarix hispida | 转入ThNAC24 | 转录因子基因 | 抗氧化酶活性及膜结构稳定性提高 | [ |
毛白杨 Populus tomentosa | 转入AhDREB1 | 转录因子基因 | 高盐胁迫下存活率44%,低盐胁迫下存活率100% | [ |
山新杨 Populus davidiana × P. bolleana | 转入TaLEA | 胚胎发育晚期丰富蛋白基因 | 光系统Ⅱ电子传递效率、生物量以及老叶中Na+浓度较对照高,新叶中Na+浓度较低 | [ |
小黑杨 Populus × xiaohei | 转入TaLEA | 胚胎发育晚期丰富蛋白基因 | 盐胁迫下丙二醛(MDA)含量低于对照植株,叶绿素含量和光合速率显著高于对照植株 | [ |
山新杨 Populus davidiana× P. bolleana | 转入TaMnSOD | 抗氧化酶基因 | 盐处理后超氧化物歧化酶(SOD)活性增强,MDA含量和相对电导率下降,相对增重率急剧增加 | [ |
毛白杨 Populus tomentosa | 转入chlAPX | 抗氧化酶基因 | 盐处理后抗坏血酸过氧化物酶(APX)活性提高,Na+含量和K+/ Na+升高 | [ |
银腺杨(84K) Populus alba× P. glandulosa ‘84K’ | 转入OsNHX1 | Na+/H+逆向转运蛋白基因 | 高盐胁迫下能正常生长,且较野生型表现出较低的叶渗透势 | [ |
‘南林895’杨 Populus deltoides× P. euramericana ‘Nanlin 895’ | 转入GmNHX1 | Na+/H+逆向转运蛋白基因 | 高盐胁迫下具有较多的叶绿素和可溶性蛋白,以及较强的抗氧化酶活性和较低的MDA含量 | [ |
银腺杨 Populus alba× P. glandulosa | 沉默GIGANTEA | 开花调控基因 | 盐胁迫下营养生长和生物量提高,光系统Ⅱ最大光化学量子产量和叶绿素含量提高 | [ |
银腺杨 Populus alba× P. glandulosa | 沉默PagSAP11 | 胁迫相关基因 | 盐胁迫下存活率、光系统Ⅱ最大光化学量子产量及生物量增加;叶片中Na+吸收减少,K+和Ca2+吸收提高 | [ |
[1] | 张颖, 李晓格, 温亚利. 碳达峰碳中和背景下中国森林碳汇潜力分析研究[J]. 北京林业大学学报, 2022, 44(1):38-47. |
ZHANG Y, LI X G, WEN Y L. Forest carbon sequestration potential in China under the background of carbon emission peak and carbon neutralization[J]. J Beijing For Univ, 2022, 44(1):38-47.DOI:10.12171/j.1000-1522.20210143. | |
[2] | 中国林业产业封面报道组. 林业碳汇呼唤中国模式[J]. 中国林业产业, 2015(12):28-29. |
[3] | 梅隆, 刘自艰, 赵倩倩. 从“治理”到“适应”,重新认识盐碱地的价值[N]. 农民日报,2022-07-29. |
[4] | 崔士友, 张蛟, 翟彩娇. 江苏沿海滩涂快速改良与高效利用研究进展[J]. 农学学报, 2017, 7(3):42-46. |
CUI S Y, ZHANG J, ZHAI C J. Fast amelioration and efficient utilization of coastal beach in Jiangsu province[J]. J Agric, 2017, 7(3):42-46. | |
[5] | 赵秀婷, 王延双, 段劼, 等. 盐胁迫对红花玉兰嫁接苗生长和光合特性的影响[J]. 林业科学, 2021, 57(4):43-53. |
ZHAO X T, WANG Y S, DUAN J, et al. Effects of salt stress on growth and photosynthetic characteristics of Magnolia wufengensis grafted seedlings[J]. Sci Silvea Sin, 2021, 57(4):43-53.DOI:10.11707/j.1001-7488.20210405. | |
[6] | 齐振华. 盐胁迫下四倍体刺槐叶绿体的响应机制[D]. 哈尔滨: 东北林业大学, 2014. |
QI Z H. The response mechanism of chloroplasts in tetraploid black locust under salt stress[D]. Harbin:Northeast Forestry University, 2014. | |
[7] | VAN ZELM E, ZHANG Y X, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annu Rev Plant Biol, 2020, 71:403-433.DOI:10.1146/annurev-arplant-050718-100005. |
[8] | 周鹏, 张敏. 盐胁迫对灌木柳体内离子分布的影响[J]. 中南林业科技大学学报, 2017, 37(1):7-11,26. |
ZHOU P, ZHANG M. Effects of salt stress on ionic distribution of shrub willow[J]. J Central South Univ For Tech, 2017, 37(1):7-11,26.DOI:10.14067/j.cnki.1673-923x.2017.01.002. | |
[9] | LIAO Y W K, CUI R R, YUAN T T, et al. Cysteine and methionine contribute differentially to regulate alternative oxidase in leaves of poplar (Populus deltoides × Populus euramericana ‘Nanlin 895’) seedlings exposed to different salinity[J]. J Plant Physiol, 2019, 240:153017.DOI:10.1016/j.jplph.2019.153017. |
[10] | 刘昊华, 虞毅, 丁国栋, 等. 4种滨海造林树种耐盐性评价[J]. 东北林业大学学报, 2011, 39(7):8-11,34. |
LIU H H, YU Y, DING G D, et al. Evaluation on salt-tolerance of four coastal tree species[J]. J Northeast For Univ, 2011, 39(7):8-11,34.DOI:10.13759/j.cnki.dlxb.2011.07.031. | |
[11] | 王琳琳. 天津滨海盐土隔盐修复、有机改良及造林效果评估[D]. 北京: 北京林业大学, 2014. |
WANG L L. Application of salt-isolation measures and organic amendments to a coastal saline soil in Tianjin, China:effects on soil physical and chemical properties and afforestation[D]. Beijing: Beijing Forestry University, 2014. | |
[12] | 张济世, 于波涛, 张金凤, 等. 不同改良剂对滨海盐渍土土壤理化性质和小麦生长的影响[J]. 植物营养与肥料学报, 2017, 23(3):704-711. |
ZHANG J S, YU B T, ZHANG J F, et al. Effects of different amendments on soil physical and chemical properties and wheat growth in a coastal saline soil[J]. J Plant Nutr Fert sci, 2017, 23(3):704-711.DOI:10.11674/zwyf.16415. | |
[13] | 张晓东, 李兵, 刘广明, 等. 复合改良物料对滨海盐土的改土降盐效果与综合评价[J]. 中国生态农业学报, 2019, 27(11):1744-1754. |
ZHANG X D, LI B, LIU G M, et al. Effect of composite soil improvement agents on soil amendment and salt reduction in coastal saline soil[J]. Chin J Eco Agric, 2019, 27(11):1744-1754.DOI:10.13930/j.cnki.cjea.190001. | |
[14] | 李新, 焦燕, 杨铭德. 用磷脂脂肪酸(PLFA)谱图技术分析内蒙古河套灌区不同盐碱程度土壤微生物群落多样性[J]. 生态科学, 2014, 33(3):488-494. |
LI X, JIAO Y, YANG M D. Microbial diversity of different saline-alkaline soil analyzing by PLFA in the Hetao area of Inner Mongolia[J]. Ecol Sci, 2014, 33(3):488-494.DOI:10.3969/j.issn.1008-8873.2014.03.014. | |
[15] | 汪顺义, 冯浩杰, 王克英, 等. 盐碱地土壤微生物生态特性研究进展[J]. 土壤通报, 2019, 50(1):233-239. |
WANG S Y, FENG H J, WANG K Y, et al. Advances of soil microbial ecological characteristics in saline-alkali soil[J]. Chin J Soil Sci, 2019, 50(1):233-239.DOI:10.19336/j.cnki.trtb.2019.01.35. | |
[16] | HARTMANN F P, TINTURIER E, JULIEN J L, et al. Between stress and response:function and localization of mechanosensitive Ca2+ channels in herbaceous and perennial plants[J]. Int J Mol Sci, 2021, 22(20):11043.DOI:10.3390/ijms222011043. |
[17] | JIANG Z H, ZHOU X P, TAO M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx[J]. Nature, 2019, 572(7769):341-346.DOI:10.1038/s41586-019-1449-z. |
[18] | QUINTERO F J, OHTA M, SHI H Z, et al. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis[J]. Proc Natl Acad Sci USA, 2002, 99(13):9061-9066.DOI:10.1073/pnas.132092099. |
[19] | SUN J, WANG M J, DING M Q, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells[J]. Plant Cell Environ, 2010, 33(6):943-958.DOI:10.1111/j.1365-3040.2010.02118.x. |
[20] | WU F H, CHI Y, JIANG Z H, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis[J]. Nature, 2020, 578(7796):577-581.DOI:10.1038/s41586-020-2032-3. |
[21] | MEHLMER N, WURZINGER B, STAEL S, et al. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis[J]. Plant J, 2010, 63(3):484-498.DOI:10.1111/j.1365-313x.2010.04257.x. |
[22] | LI C N, NG C K Y, FAN L M. MYB transcription factors,active players in abiotic stress signaling[J]. Environ Exp Bot, 2015, 114:80-91.DOI:10.1016/j.envexpbot.2014.06.014. |
[23] | ZHAO K, CHENG Z H, GUO Q, et al. Characterization of the poplar R2R3-MYB gene family and over-expression of PsnMYB108 confers salt tolerance in transgenic tobacco[J]. Front Plant Sci, 2020, 11:571881.DOI:10.3389/fpls.2020.571881. |
[24] | SUN J W, PENG X J, FAN W H, et al. Functional analysis of BpDREB2 gene involved in salt and drought response from a woody plant Broussonetia papyrifera[J]. Gene, 2014, 535(2):140-149.DOI:10.1016/j.gene.2013.11.047. |
[25] | ZHOU M L, MA J T, ZHAO Y M, et al. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica[J]. Gene, 2012, 506(1):10-17.DOI:10.1016/j.gene.2012.06.089. |
[26] | OLSEN A N, ERNST H A, LEGGIO L L, et al. NAC transcription factors:structurally distinct,functionally diverse[J]. Trends Plant Sci, 2005, 10(2):79-87.DOI:10.1016/j.tplants.2004.12.010. |
[27] | WANG J Y, WANG J P, HE Y. A Populus euphratica NAC protein regulating Na+/K+ homeostasis improves salt tolerance in Arabidopsis thaliana[J]. Gene, 2013, 521(2):265-273.DOI:10.1016/j.gene.2013.03.068. |
[28] | WANG L Q, LI Z, LU M Z, et al. ThNAC13,a NAC transcription factor from Tamarix hispida,confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis[J]. Front Plant Sci, 2017, 8:635.DOI:10.3389/fpls.2017.00635. |
[29] | TOLEDO-ORTIZ G, HUQ E, QUAIL P H. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. Plant Cell, 2003, 15(8):1749-1770.DOI:10.1105/tpc.013839. |
[30] | DONG Y, WANG C P, HAN X, et al. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development,photosynthesis and growth in Arabidopsis[J]. Biochem Biophy Res Co, 2014, 450(1):453-458.DOI:10.1016/j.bbrc.2014.05.139. |
[31] | 张岩, 许兴, 朱永兴, 等. ABA响应植物盐胁迫的机制研究进展[J]. 中国农学通报, 2015, 31(24):143-148. |
ZHANG Y, XU X, ZHU Y X, et al. Progress of mechanisms of ABA response to plant salt stress[J]. Chin Agric Sci Bull, 2015, 31(24):143-148.DOI:10.11924/j.issn.1000-6850.casb15020046. | |
[32] | GANESAN G, SANKARARAMASUBRAMANIAN H M, HARIKRISHNAN M, et al. A MYB transcription factor from the grey mangrove is induced by stress and confers NaCl tolerance in tobacco[J]. J Exp Bot, 2012, 63(12):4549-4561.DOI:10.1093/jxb/ers135. |
[33] | 张昆, 李明娜, 曹世豪, 等. 植物盐胁迫下应激调控分子机制研究进展[J]. 草地学报, 2017, 25(2):226-235. |
ZHANG K, LI M N, CAO S H, et al. The research advances of molecular mechanisms of plant in responding to salt stress[J]. Acta Agrestia Sin, 2017, 25(2):226-235.DOI:10.11733/j.issn.1007-0435.2017.02.002. | |
[34] | YU Z P, DUAN X B, LUO L, et al. How plant hormones mediate salt stress responses[J]. Trends Plant Sci, 2020, 25(11):1117-1130.DOI:10.1016/j.tplants.2020.06.008. |
[35] | GAO Z Q, GAO S, LI P X, et al. Exogenous methyl jasmonate promotes salt stress-induced growth inhibition and prioritizes defense response of Nitraria tangutorum Bobr[J]. Physiol Plantarum, 2021, 172(1):162-175.DOI:10.1111/ppl.13314. |
[36] | FANG Q, JIANG T Z, XU L X, et al. A salt-stress-regulator from the poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis[J]. Plant Physiol Biochem, 2017, 114:100-110.DOI:10.1016/j.plaphy.2017.02.018. |
[37] | TANG W, PENG X X, NEWTON R J. Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes encoding mannitol-1-phosphate dehydrogenase and glucitol-6-phosphate dehydrogenase[J]. Plant Physiol Biochem, 2005, 43(2):139-146.DOI:10.1016/j.plaphy.2005.01.009. |
[38] | GAO M, SAKAMOTO A, MIURA K, et al. Transformation of Japanese persimmon (Diospyros kaki Thunb.) with a bacterial gene for choline oxidase[J]. Mol Breed, 2000, 6(5):501-510. |
[39] | 夏阳, 梁慧敏, 陈受宜, 等. 四倍体刺槐转甜菜碱醛脱氢酶基因的研究[J]. 中国农业科学, 2004, 37(8):1208-1211,1255. |
XIA Y, LIANG H M, CHEN S Y, et al. Betaine aldehyde dehydrogenase (BADH) gene transformation of tetraploid clone of black locust mediated by agrobacterium[J]. Sci Agric Sin, 2004, 37(8):1208-1211,1255.DOI:10.3969/j.issn.1002-2724.2003.03.001. | |
[40] | 樊军锋, 李嘉瑞, 韩一凡, 等. mtlD/gutD双价耐盐基因转化秦美猕猴桃的研究[J]. 西北农林科技大学学报(自然科学版), 2002, 30(3):53-58. |
FAN J F, LI J R, HAN Y F, et al. Studies on transformation of mtlD/gutD salt-resistant gene to kiwifruit(Qin mei)[J]. J Northwest Sci Tech Univ Agric For (Nat Sci Ed),2002, 30(3):53-58.DOI:10.13207/j.cnki.jnwafu.2002.03.014. | |
[41] | 胡艳梅. 转盐角草甜菜碱合成相关基因提高欧美杨107和烟草的耐盐性[D]. 大连: 大连理工大学, 2009. |
HU Y M. The transformation of genes related to glycine betaine biosynthesis from Salicornia europaea improves salt-tolerance of Populus × eurnmericana and tobacco[D]. Dalian: Dalian University of Technology, 2009. | |
[42] | 卢惠君, 李子义, 梁瀚予, 等. 刚毛柽柳NAC24基因的表达及抗逆功能分析[J]. 林业科学, 2019, 55(3):54-63. |
LU H J, LI Z Y, LIANG H Y, et al. Expression and stress tolerance analysis of NAC24 from Tamarix hispida[J]. Sci Silv Sin, 2019, 55(3):54-63.DOI:10.11707/j.1001-7488.20190306. | |
[43] | DU N X, LIU X, LI Y, et al. Genetic transformation of Populus tomentosa to improve salt tolerance[J]. Plant Cell Tiss Org Cult, 2012, 108(2):181-189.DOI:10.1007/s11240-011-0026-4. |
[44] | 孙延爽. 转TaLEA基因山新杨耐盐碱性分析[D]. 哈尔滨: 东北林业大学, 2014. |
SUN Y S. The analysis of salt and alkali stress resistance of transgenic Populus davidiana × P. Bolleana overexpressing TaLEA gene[D]. Harbin:Northeast Forestry University, 2014. | |
[45] | 白爽. 转Lea基因小黑杨花粉植株抗旱、耐盐性分析[D]. 哈尔滨: 东北林业大学, 2007. |
BAI S. The analysis of drought and salt stress resistance of transgenic Poplus simonii × P.nigra pollen plantlets overexpressing Lea gene[D]. Harbin:Northeast Forestry University, 2007. | |
[46] | WANG Y C, QU G Z, LI H Y, et al. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii[J]. Mol Biol Rep, 2010, 37(2):1119.DOI:10.1007/s11033-009-9884-9. |
[47] | 郎洪岩. 转chlAPX基因杨树对逆境胁迫的响应[D]. 济南: 山东师范大学, 2014. |
LANG H Y. Study on the response of chlAPX-overexpressed Populus tomenentosa to stress[D]. Jinan: Shandong Normal University, 2014. | |
[48] | WANG S Y, CHEN Q J, WANG W L, et al. Salt tolerance conferred by over-expression of OSNHX1 gene in Poplar 84K[J]. Chin Sci Bull, 2005, 50(3):224-228.DOI:10.1360/982004-236. |
[49] | 孙伟博, 邓大霞, 杨立恒, 等. 南林895杨树GmNHX1基因的转入及其耐盐性分析[J]. 福建农林大学学报(自然科学版), 2014, 43(1):34-38. |
SUN W B, DENG D X, YANG L H, et al. Expression of GmNHX1 gene in transgenic Populus deltoides × P.euramericana ‘Nanlin895’ and its salt tolerance analysis[J]. J Fujian Agric For Univ (Nat Sci Ed), 2014, 43(1):34-38.DOI:10.13323/j.cnki.j.fafu(nat.sci.).2014.01.014. | |
[50] | KE Q B, KIM H S, WANG Z, et al. Down-regulation of GIGANTEA-like genes increases plant growth and salt stress tolerance in poplar[J]. Plant Biotechnol J, 2017, 15(3):331-343.DOI:10.1111/pbi.12628. |
[51] | PARK S J, BAE E K, CHOI H, et al. Knockdown of PagSAP11 confers drought resistance and promotes lateral shoot growth in hybrid poplar (Populus alba × Populus tremula var.glandulosa)[J]. Front Plant Sci, 2022, 13:925744.DOI:10.3389/fpls.2022.925744. |
[52] | CONDE C, SILVA P, AGASSE A, et al. Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance[J]. Plant Cell Physiol, 2007, 48(1):42-53.DOI:10.1093/pcp/pcl035. |
[53] | ZHANG J, YANG N, LI Y Y, et al. Overexpression of PeMIPS1 confers tolerance to salt and copper stresses by scavenging reactive oxygen species in transgenic poplar[J]. Tree Physiol, 2018, 38(10):1566-1577.DOI:10.1093/treephys/tpy028. |
[54] | PLESA I, GONZÁLEZ-ORENGA S, AL HASSAN M, et al. Effects of drought and salinity on European larch (Larix decidua Mill.) seedlings[J]. Forests, 2018, 9(6):320.DOI:10.3390/f9060320. |
[55] | LLANES A, PALCHETTI M V, VILO C, et al. Molecular control to salt tolerance mechanisms of woody plants:recent achievements and perspectives[J]. Ann Forest Sci, 2021, 78(4):96.DOI:10.1007/s13595-021-01107-7. |
[56] | WEI Q J, MA Q L, NING S J, et al. Molecular characterization and functional analysis of a cation-chloride cotransporter gene from trifoliate orange (Poncirus trifoliata L.)[J]. Trees-Struct Funct, 2018, 32(1):165-173.DOI:10.1007/s00468-017-1621-8. |
[57] | 韩佩尧, 赵烨, 田彦挺, 等. 植物耐盐机制及耐盐基因在杨树育种中的应用[J]. 分子植物育种, 2021, 19(23) :7977-7983. |
HAN P Y, ZHAO Y, TIAN Y T, et al. Mechanism of plant salt tolerance and application of salt tolerance gene in poplar breeding[J]. Mol Plant Breed, 2021, 19(23) :7977-7983.DOI:10.13271/j.mpb.019.007977. | |
[58] | PALIYAVUTH C, CLOUGH B, PATANAPONPAIBOON P. Salt uptake and shoot water relations in mangroves[J]. Aquat Bot, 2004, 78(4):349-360.DOI:10.1016/j.aquabot.2004.01.002. |
[59] | 邓林. 胡杨与盐敏感杨树ATPase活性、离子区隔化及抗盐性比较研究[D]. 北京: 北京林业大学, 2005. |
DENG L. Comparative studies on activity of ATPase,ion compartmentation and salt resistance in Populus euphratica and salt-sensitive genotypes[D]. Beijing: Beijing Forestry University, 2005. | |
[60] | 韩佩尧. 毛白杨PtoMnSOD基因克隆及耐盐功能研究[D]. 北京: 北京林业大学, 2021. |
HAN P Y. Cloning of PtoMnSOD gene from Populus tomentosa and the study on the function of salt tolerance[D]. Beijing: Beijing Forestry University, 2021. | |
[61] | BARTOLI C G, GOMEZ F, GERGOFF G, et al. Up-regulation of the mitochondrial alternative oxidase pathway enhances photosynthetic electron transport under drought conditions[J]. J Exp Bot, 2005, 56(415):1269-1276.DOI:10.1093/jxb/eri111. |
[62] | 孙晶, 王庆成, 刘强, 等. NaHCO3胁迫下朝鲜接骨木和茶条槭苗木的生长及生理响应[J]. 林业科学, 2010, 46(8):71-77. |
SUN J, WANG Q C, LIU Q, et al. Growth and physiological responses of Sambucus coreana and Acer ginnala seedlings to NaHCO3 stress[J]. Sci Silv Sin, 2010, 46(8):71-77. | |
[63] | BASYUNI M, BABA S, KINJO Y, et al. Salinity increases the triterpenoid content of a salt secretor and a non-salt secretor mangrove[J]. Aquat Bot, 2012, 97(1):17-23.DOI:10.1016/j.aquabot.2011.10.005. |
[64] | RAO G D, LIU X X, ZHA W W, et al. Metabolomics reveals variation and correlation among different tissues of olive (Olea europaea L.)[J]. Biol Open, 2017, 6(9):1317-1323.DOI:10.1242/bio.025585. |
[65] | XU N T, LIU S A, LU Z G, et al. Gene expression profiles and flavonoid accumulation during salt stress in Ginkgo biloba seedlings[J]. Plants-Basel, 2020, 9(9):1162.DOI:10.3390/plants9091162. |
[66] | ZHANG L, ZHANG Z J, FANG S Z, et al. Integrative analysis of metabolome and transcriptome reveals molecular regulatory mechanism of flavonoid biosynthesis in Cyclocarya paliurus under salt stress[J]. Ind Crops Prod, 2021, 170:113823.DOI:10.1016/j.indcrop.2021.113823. |
[67] | FENG W, KITA D, PEAUCELLE A, et al. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling[J]. Curr Biol, 2018, 28(5):666-675.e5.DOI:10.1016/j.cub.2018.01.023. |
[68] | 杨蔚, 罗小燕, 王文强, 等. 细胞壁在植物抗盐胁迫中的作用[J]. 植物生理学报, 2022, 58(3):501-510. |
YANG W, LUO X Y, WANG W Q, et al. The role of plant cell wall in resistance to salt stress[J]. Plant Physiol J, 2022, 58(3):501-510.DOI:10.13592/j.cnki.ppj.2021.0163. | |
[69] | 王德龙. 盐胁迫下棉花细胞壁重塑相关基因GhEXLB1与GhGRP1功能研究[D]. 乌鲁木齐: 新疆农业大学, 2021. |
WANG D L. Study on the function of GhEXLB1 and GhGRP1 genes related to cell wall remodeling in cotton under salt stress[D]. Urumqi: Xinjiang Agricultural University, 2021. | |
[70] | QIN Y, DRUZHININA I S, PAN X Y, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnol Adv, 2016, 34(7):1245-1259.DOI:10.1016/j.biotechadv.2016.08.005. |
[71] | PANDEY S, GUPTA S. Diversity analysis of ACC deaminase producing bacteria associated with rhizosphere of coconut tree (Cocos nucifera L.) grown in Lakshadweep islands of India and their ability to promote plant growth under saline conditions[J]. J Biotechnol, 2020, 324:183-197.DOI:10.1016/j.jbiotec.2020.10.024. |
[72] | 胡华英, 曹升, 张虹, 等. 丛枝菌根真菌提高林木抗逆性机制研究进展[J]. 世界林业研究, 2019, 32(2):24-28. |
HU H Y, CAO S, ZHANG H, et al. Research advances in forest trees stress resistance improvement mechanisms by arbuscular mycorrhizal fungi[J]. World For Res, 2019, 32(2):24-28.DOI:10.13348/j.cnki.sjlyyj.2018.0077.y. | |
[73] | 贾国军, 赵凤舞, 申国霞, 等. 微生物改良剂对花椒经济林土壤修复和改良[J]. 林业科技通讯, 2020(4):67-69. |
JIA G J, ZHAO F W, SHEN G X, et al. Effects of microbial improver on soil remediation and improvement of Zanthoxylum bungeanum economic forest[J]. For Sci Technol, 2020(4):67-69.DOI:10.13456/j.cnki.lykt.2019.02.15.0001. | |
[74] | 王丹, 赵亚光, 马蕊, 等. 微生物菌肥对盐碱地枸杞土壤改良及细菌群落的影响[J]. 农业生物技术学报, 2020, 28(8):1499-1510. |
WANG D, ZHAO Y G, MA R, et al. Effects of microbial fertilizers on soil improvement and bacterial communities in saline-alkali soils of Lycium barbarum[J]. J Agric Biotechnol, 2020, 28(8):1499-1510. | |
[75] | LI H, LA S K, ZHANG X, et al. Salt-induced recruitment of specific root-associated bacterial consortium capable of enhancing plant adaptability to salt stress[J]. ISME J, 2021, 15(10):2865-2882.DOI:10.1038/s41396-021-00974-2. |
[76] | YU P, HE X M, BAER M, et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation[J]. Nat Plants, 2021, 7(4):481-499.DOI:10.1038/s41477-021-00897-y. |
[77] | PURAHONG W, SADUBSARN D, TANUNCHAI B, et al. First insights into the microbiome of a mangrove tree reveal significant differences in taxonomic and functional composition among plant and soil compartments[J]. Microorganisms, 2019, 7(12):585.DOI:10.3390/microorganisms7120585. |
[78] | VIVES-PERIS V, MOLINA L, SEGURA A, et al. Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria[J]. J Plant Physiol, 2018, 228:208-217.DOI:10.1016/j.jplph.2018.06.003. |
[79] | XIA Z C, HE Y, YU L, et al. Revealing interactions between root phenolic metabolomes and rhizosphere bacterial communities in Populus euphratica plantations[J]. Biol Fertil Soils, 2021, 57(3):421-434.DOI:10.1007/s00374-020-01527-z. |
[80] | HUANG D, WANG Q, ZHANG Z J, et al. Silencing MdGH3-2/12 in apple reduces drought resistance by regulating AM colonization[J]. Hortic Res, 2021, 8:84.DOI:10.1038/s41438-021-00524-z. |
[81] | 刘小京, 张秀梅, 孙焕荣, 等. 滨海重盐碱地园林绿化用柽柳良种‘海柽1号’[J]. 林业科学, 2014, 50(11):208. |
LIU X J, ZHANG X M, SUN H R, et al. An improved variety for heavy costal saline soil landscaping use:Tamarix chinensis ‘Haicheng 1’[J]. Sci Silv Sin, 2014, 50(11):208. | |
[82] | 王胜东, 彭儒胜. 杨树速生耐盐碱良种‘辽胡1号杨’[J]. 林业科学, 2015, 51(7):166. |
WANG S D, PENG R S. The fast-growing and salt-alkali tolerant poplar elite variety of Populus simonii × P.euphratica ‘Liaohu 1’[J]. Sci Silv Sin, 2015, 51(7):166. | |
[83] | 王胜东, 彭儒胜. 杨树速生耐盐碱良种‘辽胡2号杨’[J]. 林业科学, 2015, 51(10):156. |
WANG S D, PENG R S. The fast-growing and salt-alkali tolerant poplar elite variety of Populus simonii × P.euphratica ‘Liaohu 2’[J]. Sci Silv Sin, 2015, 51(10):156. | |
[84] | 陈赢男, 韦素云, 曲冠正, 等. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版): 2022, 46(6):1-9. |
CHEN Y N, WEI S Y, QU G Z, et al. The key and core technologies for accelerating the tree breeding process[J]. J Nanjing For Univ (Nat Sci Ed): 2022, 46(6):1-9.DOI:10.12302/j.issn.1000-2006.202206020. | |
[85] | 陈盼飞, 左力辉, 王桂英, 等. 盐胁迫下转复合多基因欧美杨107杨幼苗生长及生理响应[J]. 林业科学, 2017, 53(7):45-53. |
CHEN P F, ZUO L H, WANG G Y, et al. Growth and physiological responses of transgenic Populus × euramericana cv.‘74/76’ with multiple genes under salt stress[J]. Sci Silv Sin, 2017, 53(7):45-53.DOI:10.11707/j.1001-7488.20170705. | |
[86] | 鲁俊倩. 银腺杨(84K)组氨酸激酶基因PaHK3a和PaHK3b的功能研究[D]. 北京: 中国林业科学研究院, 2020. |
LU J Q. Investigation on the function of PaHK3a and PaHK3b gene in Populus alba × P.glandulosa (84K)[D]. Beijing: Chinese Academy of Forestry, 2020. | |
[87] | 朱建峰, 崔振荣, 吴春红, 等. 我国盐碱地绿化研究进展与展望[J]. 世界林业研究, 2018, 31(4):70-75. |
ZHU J F, CUI Z R, WU C H, et al. Research advances and prospect of saline and alkali land greening in China[J]. World For Res, 2018, 31(4):70-75.DOI:10.13348/j.cnki.sjlyyj.2018.0034.y. | |
[88] | 韩晓芳, 田晓明, 杨永利, 等. 2种土壤复合改良剂对滨海盐渍土的改良及肥力作用[J]. 中国农学通报, 2022, 38(5):54-59. |
HAN X F, TIAN X M, YANG Y L, et al. Two soil compound amendments:improvement and fertility effect on coastal saline soil[J]. Chin Agric Sci Bull, 2022, 38(5):54-59. | |
[89] | PAN X Y, QIN Y, YUAN Z L. Potential of a halophyte-associated endophytic fungus for sustaining Chinese white poplar growth under salinity[J]. Symbiosis, 2018, 76(2):109-116.DOI:10.1007/s13199-018-0541-8. |
[90] | 谈峰, 李玉娟, 王莹, 等.一种耐盐菌QM、 包含该耐盐菌QM的林木育苗基质及制备方法:CN109554312A[P]. 2019-04-02. |
[91] | 吴小芹, 吴天宇, 叶建仁, 等. 一种盐胁迫下促进金丝柳生长的方法:CN110731223A[P]. 2020-01-31. |
WU X Q, WU T Y, YE J R, et al. Method for promoting Salix × aureo-pendula growth under salt stress:CN110731223AA[P]. 2020-01-31. | |
[92] | 薛勇彪, 种康, 韩斌, 等. 开启中国设计育种新篇章:“分子模块设计育种创新体系”战略性先导科技专项进展[J]. 中国科学院院刊, 2015, 30(3):393-402,282. |
XUE Y B, CHONG K, HAN B, et al. New chapter of designer breeding in China:update on strategic program of molecular module-based designer breeding systems[J]. Bull Chin Acad Sci, 2015, 30(3):393-402,282.DOI:10.16418/j.issn.1000-3045.2015.03.014. | |
[93] | SCHMITZ L, YAN Z C, SCHNEIJDERBERG M, et al. Synthetic bacterial community derived from a desert rhizosphere confers salt stress resilience to tomato in the presence of a soil microbiome[J]. ISME J, 2022, 16(8):1907-1920.DOI:10.1038/s41396-022-01238-3. |
[1] | 刘兴婕, 吴琪祺, 李媛媛, 阮宏华, 丁学农, 曹国华, 沈彩芹. 林龄和季节交互对杨树人工林土壤节肢动物群落结构的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 224-230. |
[2] | 陈赢男, 韦素云, 曲冠正, 胡建军, 王军辉, 尹佟明, 潘惠新, 卢孟柱, 康向阳, 李来庚, 黄敏仁, 王明庥. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 1-9. |
[3] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[4] | 曹林, 周凯, 申鑫, 杨晓明, 曹福亮, 汪贵斌. 智慧林业发展现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 83-95. |
[5] | 赵凯歌, 周正虎, 金鹰, 王传宽. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 177-184. |
[6] | 张恒, 陈锐帆, 林嘉蓓, 邓小梅, 奚如春. 微量元素在林木中的应用研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 229-239. |
[7] | 夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. |
[8] | 赵爽, 王邵军, 杨波, 左倩倩, 曹乾斌, 王平, 张路路, 张昆凤, 樊宇翔. 西双版纳热带森林碳循环中土壤呼吸对次生演替的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 12-18. |
[9] | 孙操稳, 仲文雯, 洑香香, 尚旭岚, 方升佐. 青钱柳幼林地上部分生物量生长模型研究[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 138-144. |
[10] | 唐继新, 朱雪萍, 贾宏炎, 曾冀, 郭文福, 黄德卫. 西南桦红椎混交林的生长动态及林木形质分析[J]. 南京林业大学学报(自然科学版), 2022, 46(1): 97-105. |
[11] | 熊光康, 厉月桥, 熊有强, 段爱国, 曹德春, 孙建军, 聂林芽, 盛炜彤. 低密度造林对杉木生长、形质和材种结构的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 165-173. |
[12] | 田呈明, 王笑连, 余璐, 韩珠. 林木与病原菌分子互作机制研究进展[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 1-12. |
[13] | 王章荣. 我国林木良种繁育基地建设发展形势及可持续发展策略[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 1-8. |
[14] | 郭传阳, 林开敏, 郑鸣鸣, 任正标, 李茂, 郑宏, 游云飞, 陈志云. 间伐对杉木人工林土壤微生物生物量碳氮的短期影响[J]. 南京林业大学学报(自然科学版), 2020, 44(5): 125-131. |
[15] | 甘四明. 林木分子育种研究的基因组学信息资源述评[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 1-11. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||