[1] |
郑万钧. 中国树木志: 2卷[M]. 北京: 中国林业出版社, 1985.
|
[2] |
WANG F, ZHANG L, ZHANG Q, et al. Neolignan and phenylpropanoid compounds from the resin of Styrax tonkinensis[J]. Journal of Asian Natural Products Research, 2021, 23(6): 527-535. DOI:10.1080/10286020.2021.1910240.
|
[3] |
徐丽萍, 喻方圆. 东京野茉莉花芽发育过程中的生理特性[J]. 江苏农业科学, 2018, 46(5): 120-123.
|
|
XU L P, YU F Y. Physiological changes during flower bud development of Styrax tonkinensis[J]. Jiangsu Agricultural Sciences, 2018, 46(5): 120-123. DOI:10.15889/j.issn.1002-1302.2018.05.032.
|
[4] |
刘光斌, 黄长干, 刘苑秋, 等. 东京野茉莉油的提取及其制备生物柴油的初步研究[J]. 江西农业大学学报, 2007(4): 685-689.
|
|
LIU G B, HUANG C G, LIU Y Q, et al. Extraction of fruit oil from Styrax tonkinensis and preparation of bio-diesel[J]. Acta Agricultura Universitatis Jiangxiensis, 2007(4): 685-689. DOI: 10.16473/j.cnki.xblykx1972.2010.01.012
|
[5] |
彭欢, 吴亚丽, 张子晗, 等. 东京野茉莉种子营养成分分析[J]. 林业科技开发, 2015, 29(3):56-58.
|
|
PENG H, WU Y L, ZHANG Z H, et al. Analysis of nutrient composition of Styrax tonkinesis seed[J]. China Forestry Science and Technology, 2015, 29(3): 56-58. DOI:10.13360/j.issn.1000-8101.2015.03.013.
|
[6] |
XIE Q, MA R, GUO X, et al. Benzoinum from Styrax tonkinensis (Pierre) Craib ex Hart exerts a NVU protective effect by inhibiting cell apoptosis in cerebral ischaemia rats[J]. Journal of Ethnopharmacology, 2021, 265: 113355. DOI:10.1016/j.jep.2020.113355.
|
[7] |
曹媛媛, 贾斐斐, 吴岐奎, 等. 野茉莉属6个树种不同时期花香成分分析[J]. 南京林业大学学报(自然科学版), 2019, 43(4): 48-56.
|
|
CAO Y Y, JIA F F, WU Q K, et al. Analysis of volatile components in different flowering stages in six species of Styrax spp.[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2019, 43(4): 48-56. DOI:10.3969/j.issn.1000-2006.201809002.
|
[8] |
吴岐奎, 张子晗, 徐宗大, 等. 野茉莉属植物资源研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 240-246.
|
|
WU Q K, ZHANG Z H, XU Z D, et al. Advances in the studies and applications of Styrax species[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2022, 46(5): 240-246. DOI:10.12302/j.issn.1000-2006.202012014.
|
[9] |
TRONCOSO-PONCE M A, KILARU A, CAO X, et al. Comparative deep transcriptional profiling of four developing oilseeds[J]. The Plant Journal, 2011, 68(6): 1014-1027. DOI:10.1111/j.1365-313X.2011.04751.x.
|
[10] |
孙远, 刘文彬, 周铁柱, 等. Fe3+对小球藻的生长及油脂含量的影响[J]. 生物技术通报, 2014, 30(4):181-186.
|
|
SUN Y, LIU W B, ZHOU T Z, et al. Effects of Fe3+ on the growth and oil content of chlorella vulgaris for biodiesel[J]. Biotechnology Bulletin, 2014, 30(4): 181-186. DOI:10.13560/j.cnki.biotech.bull.1985.2014.04.029.
|
[11] |
ELBOROUGH K M, WINZ R, DEKA R K, et al. Biotin carboxyl carrier protein and carboxyltransferase subunits of the multi-subunit form of acetyl-CoA carboxylase from Brassica napus: cloning and analysis of expression during oilseed rape embryogenesis[J]. Biochemical Journal, 1996, 315(1): 103-112. DOI:10.1042/bj3150103.
|
[12] |
TURNHAM E, NORTHCOTE D H. The use of acetyl-CoA carboxylase activity and changes in wall composition as measures of embryogenesis in tissue cultures of oil palm (Elaeis guineensisv).[J]. Biochemical Journal, 1982, 208(2):323-332. DOI:10.1042/bj2080323.
|
[13] |
SILOTO R M P, TRUKSA M, BROWNFIELD D, et al. Directed evolution of acyl-CoA:diacylglycerol acyltransferase: development and characterization of Brassica napus DGATI mutagenized libraries[J]. Plant Physiology and Biochemistry, 2009, 47(6):456-461. DOI: 10.1016/j.plaphy.2008.12.019.
|
[14] |
HIRAYAMA T, SHINOZAKI K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA[J]. Trends in Plant Science, 2007, 12(8): 343-351. DOI:10.1016/j.tplants.2007.06.013.
|
[15] |
WU Q, CAO Y, CHEN C, et al. Transcriptome analysis of metabolic pathways associated with oil accumulation in developing seed kernels of Styrax tonkinensis, a woody biodiesel species[J]. BMC Plant Biology, 2020, 20(1): 121. DOI:10.1186/s12870-020-2327-4.
|
[16] |
HUANG X Q, HE R Q, LIAO X Y, et al. Effect of exogenous gibberellin on reserve accumulation during the seed filling stage of oilseed rape[J]. Genetics and Molecular Research, 2014, 13(2): 2827-2839. DOI:10.4238/2014.January.22.7.
|
[17] |
崔力勃. 脱落酸(ABA)对十字花科油籽油分积累的影响与作用机制[D]. 杭州: 浙江大学, 2017.
|
|
CUI L B. The mechanism of abscisic acid (ABA) on seed oil accumulation in Cruciferous oilseeds[D]. Hangzhou: Zhejiang University, 2017.
|
[18] |
胡博. 外源激素和低温对红花脂肪酸及其生物合成部分关键酶基因表达的影响[D]. 雅安: 四川农业大学, 2015.
|
|
HU B. A dissertation presented to partial fulfillment of the requirement for the degree of master of agronomy[D]. Ya’an: Sichuan Agricultural University, 2015.
|
[19] |
黄星群. 油菜种子贮藏物质合成及外源激素调控的生化分析[D]. 长沙: 湖南大学, 2015.
|
|
HUANG X Q. Biochemical analysis of storage substances biosynthesis and the regulation of exogenous hormones in Brassica napus L[D]. Changsha: Hunan University, 2015.
|
[20] |
CHAPARRO-GARCIA A, WILKINSON R C, GIMENEZ-IBANEZ S, et al. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana[J]. PLoS ONE, 2011, 6(1): e16608. DOI:10.1371/journal.pone.0016608.
|
[21] |
WANG X G, ZHAO X H, JIANG C J, et al. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.)[J]. Journal of Integrative Agriculture, 2015, 14(5): 856-863. DOI:10.1016/S2095-3119(14)60848-0.
|
[22] |
曹云英, 许锦彪, 赵华. 油菜素内酯生理效应的研究进展[J]. 种子, 2006(8): 39-42.
|
|
CAO Y Y, XU J B, ZHAO H. Research progress on physiological effects of brassinosteroids[J]. Seed, 2006(8): 39-42. DOI:10.16590/j.cnki.1001-4705.2006.08.055.
|
[23] |
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
|
[24] |
刘丽, 王玉美, 赵彦朋, 等. 棉花脂肪酸合成酶基因GhKAR和GhENR表达载体构建及其功能初探[J]. 棉花学报, 2016, 28(6): 527-537.
|
|
LIU L, WANG Y M, ZHAO Y P, et al. Construction of expression vectors and a preliminarily functional analysis of fatty acid synthetase genes of GhKAR and GhENR in upland cotton[J]. Cotton Science, 2016, 28(6): 527-537.
|
[25] |
BOURGIS F, KILARU A, CAO X, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences, 2011, 108(30): 12527-12532. DOI:10.1073/pnas.1106502108.
|
[26] |
刘丽. 棉纤维次生壁加厚期的基因表达谱分析及GhKAR、GhHAD、GhENR的功能研究[D]. 北京: 中国农业大学, 2015.
|
|
LIU L. Gene expression profiling during fiber secondary cell wall development and functional verification of GhKAR, GhHAD and GhENR in cotton[D]. Beijing: China Agricultural University, 2015.
|
[27] |
BAUD S, GUYON V, KRONENBERGER J, et al. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis[J]. The Plant journal, 2003, 33(1): 75-86. DOI: 10.1046/j.1365-313X.2003.016010.x.
|
[28] |
FERIA B A B, VALOT B, GUILLOT A, et al. Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit[J]. Proceedings of the National Academy of Sciences, 2010, 107(1): 502-507. DOI:10.1073/pnas.0910097107.
|
[29] |
ROESLER K, SHINTANI D, SAVAGE L, et al. Targeting of the arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds[J]. Plant Physiology, 1997, 113(1): 75-81. DOI:10.1104/pp.113.1.75.
|
[30] |
MADOKA Y, TOMIZAWA K, MIZOI J, et al. Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco[J]. Plant & Cell Physiology, 2002, 43(12): 1518-1525. DOI: 10.1093/pcp/pcf172.
|
[31] |
邹雨婷, 朱铭玮, 李永荣, 等. ‘凤丹’种子发育及其营养物质含量和相关酶活性的动态变化[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 62-70.
|
|
ZOU Y T, ZHU M W, LI Y R, et al. Dynamic changes in nutrients content and related enzymes activity during Paeonia ostii ‘Feng Dan’ seeds development[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2021, 45(5): 62-70. DOI: 10.12302/j.issn.1000-2006.202012039.
|
[32] |
GENGENBACH B G, SOMERS D A, WYSE D L, et al. Methods and an acetyl CoA carboxylase gene for conferring herbicide tolerance and an alteration in oil content of plants: U.S. Patent 6,069,298[P]. 2000-5-30.
|
[33] |
ICHIHARA K, TAKAHASHI T, FUJII S. Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1988, 958(1): 125-129. DOI:10.1016/0005-2760(88)90253-6.
|
[34] |
TAYLOR D C, ZHANG Y, KUMAR A, et al. Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions[J]. Botany, 2009, 87(6): 533-543. DOI:10.1139/B08-101.
|
[35] |
LI R, HATANAKA T, YU K, et al. Soybean oil biosynthesis: role of diacylglycerol acyltransferases[J]. Functional & Integrative Genomics, 2013, 13(1): 99-113. DOI:10.1007/s10142-012-0306-z.
|
[36] |
XU J, FRANCIS T, MIETKIEWSKA E, et al. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT 1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content[J]. Plant Biotechnology Journal, 2008, 6(8): 799-818. DOI:10.1111/j.1467-7652.2008.00358.x.
|
[37] |
LI-BEISSON Y, SHORROSH B, BEISSON F, et al. Acyl-Lipid metabolism[J]. The Arabidopsis Book, 2013, 11: e0161. DOI:10.1199/tab.0161.
|
[38] |
LARDIZABAL K, EFFERTZ R, LEVERING C, et al. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean[J]. Plant Physiology, 2008, 148(1): 89-96. DOI:10.1104/pp.108.123042.
|