BR对东京野茉莉种子中脂肪酸合成相关酶活性及油脂积累的影响

陈俊娜, 王晓宇, 陈晨, 彭辉武, 陈娟, 黄卫和, 喻方圆

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 35-41.

PDF(2052 KB)
PDF(2052 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (6) : 35-41. DOI: 10.12302/j.issn.1000-2006.202209026
专题报道Ⅰ:“攥紧中国种子”视域下的中国林草种业研究专题Ⅱ(执行主编 施季森 李维林)

BR对东京野茉莉种子中脂肪酸合成相关酶活性及油脂积累的影响

作者信息 +

Effects of BR on enzyme activities related to fatty acid synthesis and oil accumulation of Styrax tonkinensis seeds

Author information +
文章历史 +

摘要

【目的】探究油菜素内酯(BR)对越南安息香(东京野茉莉,Styrax tonkinensis)种子发育过程中脂肪酸合成相关酶活性及油脂积累的影响,为揭示外源油菜素内酯促进东京野茉莉种子脂肪酸合成和油脂积累的生理机制提供一定的理论和实践依据。【方法】以10年生东京野茉莉结实母树为研究对象,设置喷施4种浓度(1、5、10、20 μmol/L)油菜素内酯处理,记为BR1、BR5、BR10、BR20,以喷施蒸馏水为对照。分别于花后45、65、95和125 d实施喷施处理,于花后50、70、100和130 d取样,测定种实发育过程中的FAS(脂肪酸合成酶)、ACC(乙酰辅酶A羧化酶)、DGAT(二酰甘油酰基转移酶)活性,以及果实鲜质量和种子粗脂肪质量分数,分析不同浓度BR处理对东京野茉莉种实发育过程中脂肪酸合成相关酶活性及油脂积累的影响。【结果】BR处理对东京野茉莉种实发育过程中脂肪酸合成相关酶活性有显著影响。东京野茉莉种子FAS活性变化十分显著,在花后50 d,各处理间的FAS活性较低,随后上升,到花后100 d达到最大峰值,后缓慢下降。且在花后100 d,BR5和BR10处理的FAS活性同时达到最大值,都为对照组的1.8倍,活性分别为329.104和326.744 nmol/(min·mg)。东京野茉莉种子的ACC活性在发育期呈现“上升—下降—上升”的趋势。在花后70 d时,BR5处理的ACC活性值达到波峰位置,活性为20.50 nmol/mg,是对照组的5.9倍。在4个时期中不同处理的DGAT活性先上升后下降,在花后100 d达到最高峰,各BR处理明显高于对照组,其中BR5处理后的DGAT活性达到最大值,为6.03 nmol/mg,是对照组的1.2倍。BR处理对东京野茉莉种子FAS、ACC和DGAT活性总体上具有促进作用,以BR5处理效果最为显著。在4个时期中,均以中等浓度的BR处理促进东京野茉莉种子粗脂肪质量分数的效果最佳;在花后70 d,各处理下的种子粗脂肪质量分数存在显著性差异,BR5处理下的种子粗脂肪质量分数显著地高于其他处理。不同浓度的BR处理后,东京野茉莉果实鲜质量总体上有所增加。除花后100 d外,其他时期以BR5处理对果实鲜质量的增加效果最好。各处理的东京野茉莉种子脂肪酸合成相关酶活性与种子粗脂肪质量分数和果实鲜质量存在显著的正相关关系。【结论】FAS、ACC和DGAT活性动态变化表明,BR处理能够提高种子脂肪酸合成相关酶活性,促进种实发育过程中脂肪酸的合成。相关分析结果表明,东京野茉莉种子脂肪酸合成相关酶活性与果实鲜质量和种子粗脂肪质量分数存在显著正相关关系。

Abstract

【Objective】The study explored the effects of brassinolide (BR) on enzyme activities related to fatty acid synthesis and oil accumulation in seeds of Styrax tonkinensis. The aim was to provide theoretical and practical data for studies of the mechanism by which exogenous BR promotes fatty acid synthesis and oil accumulation in seeds of S. tonkinensis. 【Method】Ten-year-old seed trees of S. tonkinensis were sprayed with four different concentrations of brassinolide solution: 1(BR 1), 5(BR 5), 10(BR 10) and 20(BR 20) μmol/L, with distilled water sprayed as the control. The different BR concentrations were sprayed 45, 65, 95 and 125 d after flowering. Fruit samples were collected 50, 70, 100 and 130 d after flowering. The activities of fatty acid synthase (FAS), 1-aminocyclopropane-1-carboxylate (ACC) and diacylglycerol acyltransferase (DGAT) were measured during seed development. Fruit fresh weight and seed crude fat mass fraction were also determined. The effects of different concentrations of BR on enzyme activities related to fatty acid synthesis in S. tonkinensis seeds were analyzed. 【Result】BR treatment had significant effects on the activities of enzymes related to fatty acid synthesis during the seed development of S. tonkinensis. FAS activity was low at 50 d after flowering, increased, significantly and peaked at 100 d after flowering, and then decreased slowly. At 100 d after flowering, the activity of FAS in the BR5 and BR10 treatments reached the maximum value at the same time. The respective values of 329.104 and 326.744 nmol/(min·mg) exceeded the control value by 1.8 times. The ACC activity of S. tonkinensis seeds increased, then decreased, then increased again. At 70 d after flowering, the ACC activity in the BR5 treatment peaked 20.50 nmol/mg, which was 5.9 times that of the control group. The activity of DGAT in the different treatments first increased and then decreased, reaching a peak at 100 d after flowering. The activity of DGAT in each BR treatment group was significantly higher than that in the control group. DGAT activity in the BR5 treatment was highest at 6.03 nmol/mg, which was 1.2 times of that the control group. BR promoted the activities of FAS, ACC and DGAT in S. tonkinensis seeds, with the most significant effect with the BR5 treatment. During the four periods of time, the medium concentration of BR treatment improved the crude fat fraction of S. tonkinensis seeds. Seventy days after flowering, there were significant differences in the seed crude fat mass fraction under different treatments, and that of the BR5 treatment was significantly higher than that of the other treatments. The fresh weight of S. tonkinensis fruits increased after treatment with different concentrations of BR. The BR5 treatment had the greatest effect on fruit fresh weight, except at 100 d after flowering. There was a significant positive correlation between enzyme activities related to fatty acid synthesis and both seed crude fat mass fraction and fruit fresh weight. 【Conclusion】 The dynamic changes in FAS, ACC and DGAT activities showed that BR treatment increased the activities of enzymes related to fatty acid synthesis and promoted fatty acid synthesis during seed development. The BR5 treatment had the best effect. BR treatment also increased fruit fresh weight and seed crude fat fraction. Correlation analysis showed that the activities of enzymes related to fatty acid synthesis in the seeds of S. tonkinensis were positively correlated with fruit fresh weight and seed crude fat mass fraction.

关键词

油菜素内酯(BR) / 东京野茉莉 / 脂肪酸合成相关酶 / 油脂积累

Key words

brassinolide (BR) / Styrax tonkinensis / enzyme activities related to fatty acid synthesis / oil accumulation

引用本文

导出引用
陈俊娜, 王晓宇, 陈晨, . BR对东京野茉莉种子中脂肪酸合成相关酶活性及油脂积累的影响[J]. 南京林业大学学报(自然科学版). 2023, 47(6): 35-41 https://doi.org/10.12302/j.issn.1000-2006.202209026
CHEN Junna, WANG Xiaoyu, CHEN Chen, et al. Effects of BR on enzyme activities related to fatty acid synthesis and oil accumulation of Styrax tonkinensis seeds[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 35-41 https://doi.org/10.12302/j.issn.1000-2006.202209026
中图分类号: S722.1   

参考文献

[1]
郑万钧. 中国树木志: 2卷[M]. 北京: 中国林业出版社, 1985.
[2]
WANG F, ZHANG L, ZHANG Q, et al. Neolignan and phenylpropanoid compounds from the resin of Styrax tonkinensis[J]. Journal of Asian Natural Products Research, 2021, 23(6): 527-535. DOI:10.1080/10286020.2021.1910240.
[3]
徐丽萍, 喻方圆. 东京野茉莉花芽发育过程中的生理特性[J]. 江苏农业科学, 2018, 46(5): 120-123.
XU L P, YU F Y. Physiological changes during flower bud development of Styrax tonkinensis[J]. Jiangsu Agricultural Sciences, 2018, 46(5): 120-123. DOI:10.15889/j.issn.1002-1302.2018.05.032.
[4]
刘光斌, 黄长干, 刘苑秋, 等. 东京野茉莉油的提取及其制备生物柴油的初步研究[J]. 江西农业大学学报, 2007(4): 685-689.
LIU G B, HUANG C G, LIU Y Q, et al. Extraction of fruit oil from Styrax tonkinensis and preparation of bio-diesel[J]. Acta Agricultura Universitatis Jiangxiensis, 2007(4): 685-689. DOI: 10.16473/j.cnki.xblykx1972.2010.01.012
[5]
彭欢, 吴亚丽, 张子晗, 等. 东京野茉莉种子营养成分分析[J]. 林业科技开发, 2015, 29(3):56-58.
PENG H, WU Y L, ZHANG Z H, et al. Analysis of nutrient composition of Styrax tonkinesis seed[J]. China Forestry Science and Technology, 2015, 29(3): 56-58. DOI:10.13360/j.issn.1000-8101.2015.03.013.
[6]
XIE Q, MA R, GUO X, et al. Benzoinum from Styrax tonkinensis (Pierre) Craib ex Hart exerts a NVU protective effect by inhibiting cell apoptosis in cerebral ischaemia rats[J]. Journal of Ethnopharmacology, 2021, 265: 113355. DOI:10.1016/j.jep.2020.113355.
[7]
曹媛媛, 贾斐斐, 吴岐奎, 等. 野茉莉属6个树种不同时期花香成分分析[J]. 南京林业大学学报(自然科学版), 2019, 43(4): 48-56.
CAO Y Y, JIA F F, WU Q K, et al. Analysis of volatile components in different flowering stages in six species of Styrax spp.[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2019, 43(4): 48-56. DOI:10.3969/j.issn.1000-2006.201809002.
[8]
吴岐奎, 张子晗, 徐宗大, 等. 野茉莉属植物资源研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 240-246.
WU Q K, ZHANG Z H, XU Z D, et al. Advances in the studies and applications of Styrax species[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2022, 46(5): 240-246. DOI:10.12302/j.issn.1000-2006.202012014.
[9]
TRONCOSO-PONCE M A, KILARU A, CAO X, et al. Comparative deep transcriptional profiling of four developing oilseeds[J]. The Plant Journal, 2011, 68(6): 1014-1027. DOI:10.1111/j.1365-313X.2011.04751.x.
[10]
孙远, 刘文彬, 周铁柱, 等. Fe3+对小球藻的生长及油脂含量的影响[J]. 生物技术通报, 2014, 30(4):181-186.
SUN Y, LIU W B, ZHOU T Z, et al. Effects of Fe3+ on the growth and oil content of chlorella vulgaris for biodiesel[J]. Biotechnology Bulletin, 2014, 30(4): 181-186. DOI:10.13560/j.cnki.biotech.bull.1985.2014.04.029.
[11]
ELBOROUGH K M, WINZ R, DEKA R K, et al. Biotin carboxyl carrier protein and carboxyltransferase subunits of the multi-subunit form of acetyl-CoA carboxylase from Brassica napus: cloning and analysis of expression during oilseed rape embryogenesis[J]. Biochemical Journal, 1996, 315(1): 103-112. DOI:10.1042/bj3150103.
[12]
TURNHAM E, NORTHCOTE D H. The use of acetyl-CoA carboxylase activity and changes in wall composition as measures of embryogenesis in tissue cultures of oil palm (Elaeis guineensisv).[J]. Biochemical Journal, 1982, 208(2):323-332. DOI:10.1042/bj2080323.
[13]
SILOTO R M P, TRUKSA M, BROWNFIELD D, et al. Directed evolution of acyl-CoA:diacylglycerol acyltransferase: development and characterization of Brassica napus DGATI mutagenized libraries[J]. Plant Physiology and Biochemistry, 2009, 47(6):456-461. DOI: 10.1016/j.plaphy.2008.12.019.
[14]
HIRAYAMA T, SHINOZAKI K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA[J]. Trends in Plant Science, 2007, 12(8): 343-351. DOI:10.1016/j.tplants.2007.06.013.
[15]
WU Q, CAO Y, CHEN C, et al. Transcriptome analysis of metabolic pathways associated with oil accumulation in developing seed kernels of Styrax tonkinensis, a woody biodiesel species[J]. BMC Plant Biology, 2020, 20(1): 121. DOI:10.1186/s12870-020-2327-4.
[16]
HUANG X Q, HE R Q, LIAO X Y, et al. Effect of exogenous gibberellin on reserve accumulation during the seed filling stage of oilseed rape[J]. Genetics and Molecular Research, 2014, 13(2): 2827-2839. DOI:10.4238/2014.January.22.7.
[17]
崔力勃. 脱落酸(ABA)对十字花科油籽油分积累的影响与作用机制[D]. 杭州: 浙江大学, 2017.
CUI L B. The mechanism of abscisic acid (ABA) on seed oil accumulation in Cruciferous oilseeds[D]. Hangzhou: Zhejiang University, 2017.
[18]
胡博. 外源激素和低温对红花脂肪酸及其生物合成部分关键酶基因表达的影响[D]. 雅安: 四川农业大学, 2015.
HU B. A dissertation presented to partial fulfillment of the requirement for the degree of master of agronomy[D]. Ya’an: Sichuan Agricultural University, 2015.
[19]
黄星群. 油菜种子贮藏物质合成及外源激素调控的生化分析[D]. 长沙: 湖南大学, 2015.
HUANG X Q. Biochemical analysis of storage substances biosynthesis and the regulation of exogenous hormones in Brassica napus L[D]. Changsha: Hunan University, 2015.
[20]
CHAPARRO-GARCIA A, WILKINSON R C, GIMENEZ-IBANEZ S, et al. The receptor-like kinase SERK3/BAK1 is required for basal resistance against the late blight pathogen phytophthora infestans in Nicotiana benthamiana[J]. PLoS ONE, 2011, 6(1): e16608. DOI:10.1371/journal.pone.0016608.
[21]
WANG X G, ZHAO X H, JIANG C J, et al. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.)[J]. Journal of Integrative Agriculture, 2015, 14(5): 856-863. DOI:10.1016/S2095-3119(14)60848-0.
[22]
曹云英, 许锦彪, 赵华. 油菜素内酯生理效应的研究进展[J]. 种子, 2006(8): 39-42.
CAO Y Y, XU J B, ZHAO H. Research progress on physiological effects of brassinosteroids[J]. Seed, 2006(8): 39-42. DOI:10.16590/j.cnki.1001-4705.2006.08.055.
[23]
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
[24]
刘丽, 王玉美, 赵彦朋, 等. 棉花脂肪酸合成酶基因GhKARGhENR表达载体构建及其功能初探[J]. 棉花学报, 2016, 28(6): 527-537.
LIU L, WANG Y M, ZHAO Y P, et al. Construction of expression vectors and a preliminarily functional analysis of fatty acid synthetase genes of GhKAR and GhENR in upland cotton[J]. Cotton Science, 2016, 28(6): 527-537.
[25]
BOURGIS F, KILARU A, CAO X, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences, 2011, 108(30): 12527-12532. DOI:10.1073/pnas.1106502108.
[26]
刘丽. 棉纤维次生壁加厚期的基因表达谱分析及GhKARGhHADGhENR的功能研究[D]. 北京: 中国农业大学, 2015.
LIU L. Gene expression profiling during fiber secondary cell wall development and functional verification of GhKAR, GhHAD and GhENR in cotton[D]. Beijing: China Agricultural University, 2015.
[27]
BAUD S, GUYON V, KRONENBERGER J, et al. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis[J]. The Plant journal, 2003, 33(1): 75-86. DOI: 10.1046/j.1365-313X.2003.016010.x.
[28]
FERIA B A B, VALOT B, GUILLOT A, et al. Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit[J]. Proceedings of the National Academy of Sciences, 2010, 107(1): 502-507. DOI:10.1073/pnas.0910097107.
[29]
ROESLER K, SHINTANI D, SAVAGE L, et al. Targeting of the arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds[J]. Plant Physiology, 1997, 113(1): 75-81. DOI:10.1104/pp.113.1.75.
[30]
MADOKA Y, TOMIZAWA K, MIZOI J, et al. Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco[J]. Plant & Cell Physiology, 2002, 43(12): 1518-1525. DOI: 10.1093/pcp/pcf172.
[31]
邹雨婷, 朱铭玮, 李永荣, 等. ‘凤丹’种子发育及其营养物质含量和相关酶活性的动态变化[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 62-70.
ZOU Y T, ZHU M W, LI Y R, et al. Dynamic changes in nutrients content and related enzymes activity during Paeonia ostii ‘Feng Dan’ seeds development[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2021, 45(5): 62-70. DOI: 10.12302/j.issn.1000-2006.202012039.
[32]
GENGENBACH B G, SOMERS D A, WYSE D L, et al. Methods and an acetyl CoA carboxylase gene for conferring herbicide tolerance and an alteration in oil content of plants: U.S. Patent 6,069,298[P]. 2000-5-30.
[33]
ICHIHARA K, TAKAHASHI T, FUJII S. Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis[J]. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1988, 958(1): 125-129. DOI:10.1016/0005-2760(88)90253-6.
[34]
TAYLOR D C, ZHANG Y, KUMAR A, et al. Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions[J]. Botany, 2009, 87(6): 533-543. DOI:10.1139/B08-101.
[35]
LI R, HATANAKA T, YU K, et al. Soybean oil biosynthesis: role of diacylglycerol acyltransferases[J]. Functional & Integrative Genomics, 2013, 13(1): 99-113. DOI:10.1007/s10142-012-0306-z.
[36]
XU J, FRANCIS T, MIETKIEWSKA E, et al. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT 1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content[J]. Plant Biotechnology Journal, 2008, 6(8): 799-818. DOI:10.1111/j.1467-7652.2008.00358.x.
[37]
LI-BEISSON Y, SHORROSH B, BEISSON F, et al. Acyl-Lipid metabolism[J]. The Arabidopsis Book, 2013, 11: e0161. DOI:10.1199/tab.0161.
[38]
LARDIZABAL K, EFFERTZ R, LEVERING C, et al. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean[J]. Plant Physiology, 2008, 148(1): 89-96. DOI:10.1104/pp.108.123042.

脚注

基金

南京市产学研合作后补助项目(201722081)
江苏高校优势学科建设工程资助项目(PAPD)
江西省省级林业补助专项项目(2021)

编辑: 李燕文
PDF(2052 KB)

Accesses

Citation

Detail

段落导航
相关文章

/