南京林业大学学报(自然科学版) ›› 2022, Vol. 46 ›› Issue (6): 83-95.doi: 10.12302/j.issn.1000-2006.202209052
所属专题: 南京林业大学120周年校庆特刊
收稿日期:
2022-09-23
修回日期:
2022-10-18
出版日期:
2022-11-30
发布日期:
2022-11-24
通讯作者:
汪贵斌
基金资助:
CAO Lin(), ZHOU Kai, SHEN Xin, YANG Xiaoming, CAO Fuliang, WANG Guibin()
Received:
2022-09-23
Revised:
2022-10-18
Online:
2022-11-30
Published:
2022-11-24
Contact:
WANG Guibin
摘要:
信息技术是人类文明发展的重要推动力,也是当今世界发展最快、影响最大的高新技术之一。随着现代信息技术在林业领域的广泛应用,智慧林业成为了现代林业发展的必由之路。智慧林业是物联网、大数据、云计算、人工智能、移动互联网等新一代信息技术与3S技术、智能装备及林木育种、森林培育、森林经营、森林保护等林业生产和管理业务深入融合新模式。我国智慧林业的发展,在现代林业发展中具有重要的里程碑意义。笔者首先介绍了智慧林业产生的背景、内涵、特征、理论基础和研究方法,以及针对智慧林业发展所进行的顶层设计、项目部署实施、科研平台建设及人才培养概况;然后系统介绍了林业智能感知、空间信息技术、大数据及云计算、虚拟现实和智能装备技术等智慧林业关键核心技术的研究现状;进一步介绍了智慧林业在林木遗传育种、森林精准培育、森林资源监测与经营决策、林火监测预测及病虫害防治、野生动植物保护方向上的应用进展;最后,分析了未来智慧林业的发展目标,展望了智慧林业技术体系的主要发展方向。笔者认为,智慧林业的发展需要进一步推进智能算法及硬件的研发和应用,并加强智慧林业理论基础研究;同时,还需在精准多源数据获取的基础上,将现代数据挖掘、模型模拟、智能分析技术融入林业生产的业务流程中,服务林业生产的全产业链,引领林业高质量发展。
中图分类号:
曹林,周凯,申鑫,等. 智慧林业发展现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 83-95.
CAO Lin, ZHOU Kai, SHEN Xin, YANG Xiaoming, CAO Fuliang, WANG Guibin. The status and prospects of smart forestry[J].Journal of Nanjing Forestry University (Natural Science Edition), 2022, 46(6): 83-95.DOI: 10.12302/j.issn.1000-2006.202209052.
[1] | 褚君浩. 科技创新开拓智能时代[J]. 科技导报, 2019, 37(2):31-33. |
CHU J H. Science and innovation leading the intelligent age[J]. Sci & Technol Rev, 2019, 37(2):31-33. | |
[2] | 江泽慧. 论林业新科技革命[J]. 世界林业研究, 1999, 12(4):1-5. |
JIANG Z H. On the new forestry scientific and technological revolution[J]. World For Res, 1999, 12(4):1-5. | |
[3] | 李世东. 论第六次信息革命[J]. 中国新通信, 2014, 16(14):3-6. |
LI S D. On the sixth information revolution[J]. China New Telecommun, 2014, 16(14):3-6.DOI:10.3969/j.issn.1673-4866.2014.14.002. | |
[4] | 陈述彭. 数字地球:挑战与思考[J]. 遥感信息, 1999, 14(2):2-4. |
CHEN S P. Digital earth:challenges and thoughts[J]. Remote Sens Inf, 1999, 14(2):2-4. DOI:10.3969/j.issn.1000-3177.1999.02.001. | |
[5] | 冯仲科, 张晓勤. 发展我国的数字林业体系[J]. 北京林业大学学报, 2000, 22(5):102-103. |
FENG Z K, ZHANG X Q. Development of digital forestry system in China[J]. J Beijing For Univ, 2000, 22(5):102-103.DOI:10.13332/j.1000-1522.2000.05.024. | |
[6] | 陈述彭, 程维明. 世界森林的数字地球监测[J]. 遥感学报, 2001, 5(5):321-326,401. |
CHEN S P, CHENG W M. World forest watching by digital earth[J]. J Remote Sens, 2001, 5(5):321-326,401. | |
[7] | 李增元, 张怀清, 陆元昌. 数字林业建设与进展[J]. 中国农业科技导报, 2003, 5(2):7-9. |
LI Z Y, ZHANG H Q, LU Y C. Establishment and development of digital forestry[J]. Rev China Agric Sci Technol, 2003, 5(2):7-9.DOI:10.3969/j.issn.1008-0864.2003.02.002. | |
[8] | 李德仁. 展望大数据时代的地球空间信息学[J]. 测绘学报, 2016, 45(4):379-384. |
LI D R. Towards geo-spatial information science in big data era[J]. Acta Geod Cartogr Sin, 2016, 45(4):379-384.DOI:10.11947/j.AGCS.2016.20160057. | |
[9] | 李世东. 中国智慧林业路线图[J]. 林业经济, 2014, 36(10):54-57. |
LI S D. China’s forestry roadmap wisdom[J]. For Econ, 2014, 36(10):54-57.DOI:10.13843/j.cnki.lyjj.2014.10.012. | |
[10] | 徐国祯. 森林的系统观与林业系统工程[J]. 林业资源管理, 1988(4):16-22. |
XU G Z. System view of forest and forestry system engineering[J]. For Resour Manag, 1988(4):16-22.DOI:10.13466/j.cnki.lyzygl.1988.04.005. | |
[11] | RUSTAD L, CAMPBELL J L, RANDALL J, et al. Environmental sensor applications at USDA forest service experimental forests: the smart forest network[R]. Long Beach, CA: ASA, CSSA and SSSA, 2014. |
[12] | PAPPAS C, BÉLANGER N, BERGERON Y, et al. Smartforests Canada: a network of monitoring plots for forest management under environmental change[M]. //TOGNETTIR, SMITHM, PANZACCHIP. Climate-Smart Forestry in mountain regions. Switzerland: Springer, 2022. DOI:10.1007/978-3-030-80767-2_16. |
[13] | GABRYS J. Smart forests and data practices: from the internet of trees to planetary governance[J]. Big Data & Society, 2020, 7(1): 1-10. DOI: 10.1177/2053951720904871. |
[14] | SFI. SmartForest Bringing Industry 4.0 to the Norwegian forest sector annual report 2020[R]. HØGSKOLEVEIEN, Norway: SFI SmartForest, 2020. |
[15] | 恭映璧. 推进以智慧林业为主导的林业创新——战后日本林业发展及其启示(十二)[J]. 林业与生态, 2021(5):22-26. |
[16] | 中国林草年度盘点:改革创新,变局中开新局[N].2021-01-23(07). |
[17] | 李世东. 智慧林业几个基本问题的探讨[J]. 林草政策研究, 2021, 1(3):24-31. |
LI S D. Several basic issues of smart forestry[J]. J For Grassland Policy, 2021, 1(3):24-31.DOI:10.12344/lczcyj.2021.07.10.0001. | |
[18] | 吴振江, 李俊枝, 李顺龙. “互联网+”智慧林业的发展策略[J]. 东北林业大学学报, 2019, 47(5):105-107,117. |
WU Z J, LI J Z, LI S L. “Internet +” smart forestry in green development[J]. J Northeast For Univ, 2019, 47(5):105-107,117.DOI:10.13759/j.cnki.dlxb.2019.05.020. | |
[19] | 国家林业局. 关于加快中国林业大数据发展的指导意见[EB/OL].[2016-07-13](2022-09-20). http://www.forestry.gov.cn/. |
[20] | 国家林业和草原局. 国家林业和草原局关于促进林业和草原人工智能发展的指导意见[J]. 自然资源通讯, 2019(23):11-14. |
[21] | 杨秀好, 秦江林, 李有海, 等. 林业有害生物灾害监测预警与应急防控关键技术研究与应用[Z]. 南宁:广西壮族自治区林业有害生物防治检疫站, 2016. |
[22] | 贵阳市林业局. 林业+大数据!贵阳智慧林业云平台实现智能管理[N]. 潇湘晨报,2021-12-02(1). |
[23] | “5G+智慧林业”上线全力守护绿水青山[Z]. 广西移动, 2022-08-02. |
[24] | 教育部办公厅. 关于公布新农科研究与改革实践项目的通知[Z].(2020-09-08)[2022-09-04]. http://www.edu.gov.cn. |
[25] | 教育部. 关于公布2021年度普通高等学校本科专业备案和审批结果的通知[Z].(2021-12-10)[2022-09-04]. http://www.edu.gov.cn. |
[26] | MIRAZ M H, ALI M, EXCELL P S, et al. A review on Internet of Things (IoT),Internet of everything (IoE) and Internet of nano things (IoNT)[C]//2015 Internet Technologies and Applications (ITA).Wrexham,UK:IEEE, 2015:219-224.DOI:10.1109/ITechA.2015.7317398. |
[27] | ZHAO C, LI X S, CHEN J S. Study on the application of Internet of Things in the Logistics in forest industry[J]. Appl Mech Mater, 2011, 97/98:664-668.DOI:10.4028/www.scientific.net/amm.97-98.664. |
[28] | ZHANG Q, ZHOU C L, CHEN Z T, et al. Application of weighted cetroid location algorithm in forest fire monitring[C]// 2014 9th International Conference on Computer Science & Education.Vancouver BC,Canada:IEEE, 2014:986-988.DOI:10.1109/ICCSE.2014.6926610. |
[29] | SHIM K, BARCZAK A, REYES N, et al. Small mammals and bird detection using IoT devices[C]// 2021 36th International Conference on Image and Vision Computing New Zealand (IVCNZ).Tauranga, New Zealand: IEEE, 2021:1-6.DOI:10.1109/IVCNZ54163.2021.9653430. |
[30] | LUO K, SAEEDI S, BADGER J, et al. Using the internet of things to monitor human and animal uses of industrial linear features[C]// Lecture Notes in Computer Science. Switzerland AG: Springer, 2018:85-89. DOI:10.1007/978-3-319-90053-7_9. |
[31] | GHAZALI M A, OTHMAN K A, HAKIMIE MOHD ISA M A, et al. Wireless sensor development for Malaysian forest monitoring and tracking system[C]// 2017 21st International Computer Science and Engineering Conference (ICSEC). Bangkok Thailand: IEEE, 2017:1-5.DOI:10.1109/ICSEC.2017.8443938. |
[32] | ZHAO W, YI L. Research on the evolution of the innovation ecosystem of the Internet of Things:a case study of Xiaomi(China)[J]. Procedia Comput Sci, 2022, 199:56-62.DOI:10.1016/j.procs.2022.01.008. |
[33] | 高德民, 林海峰, 刘云飞, 等. 基于无线传感网的森林火灾FWI系统分析[J]. 林业科技开发, 2015, 29(1):105-109. |
GAO D M, LIN H F, LIU Y F, et al. Study on forest fire FWI system based on wireless sensor networks[J]. China For Sci Technol, 2015, 29(1):105-109.DOI:10.13360/j.issn.1000-8101.2015.01.030. | |
[34] | 刘海洋, 于新文, 张旭. 基于无线传感网的森林环境因子采集系统性能测试[J]. 林业科技通讯, 2016(1):68-70. |
LIU H Y, YU X W, ZHANG X. Performance test of forest environmental factor acquisition system based on wireless sensor network[J]. For Sci Technol, 2016(1):68-70.DOI:10.13456/j.cnki.lykt.2016.01.027. | |
[35] | 周成虎. 全空间地理信息系统展望[J]. 地理科学进展, 2015, 34(2):129-131. |
ZHOU C H. Prospects on pan-spatial information system[J]. Prog Geogr, 2015, 34(2):129-131. | |
[36] | 骆剑承, 周成虎, 梁怡, 等. 时空数据智能化处理与分析的理论和方法探讨[J]. 中国图象图形学报, 2001, 6(9):836-841. |
LUO J C, ZHOU C H, LIANG Y, et al. Theoretical and technical issues on intelligent processing and analyzing models for temporal and spatial data[J]. J Image Graph, 2001, 6(9):836-841. DOI:10.3969/j.issn.1006-8961.2001.09.004. | |
[37] | 庞丽峰, 黄水生, 李万里, 等. 全球卫星系统在我国林业中的应用[J]. 世界林业研究, 2019, 32(5):41-46. |
PANG L F, HUANG S S, LI W L, et al. Application of GNSS in forestry sector in China[J]. World For Res, 2019, 32(5):41-46.DOI:10.13348/j.cnki.sjlyyj.2019.0053.y. | |
[38] | 杨元喜, 汤静. 智慧城市与北斗卫星导航系统[J]. 卫星应用, 2014(2):7-10. |
YANG Y X, TANG J. Smart city and Beidou satellite navigation system[J]. Satell Appl, 2014(2):7-10. | |
[39] | 杨必胜, 陈驰, 董震. 面向智能化测绘的城市地物三维提取[J]. 测绘学报, 2022, 51(7):1476-1484. |
YANG B S, CHEN C, DONG Z. 3D geospatial information extraction of urban objects for smart surveying and mapping[J]. Acta Geod Cartogr Sin, 2022, 51(7):1476-1484. | |
[40] | 刘春, 贾守军, 吴杭彬, 等. 点云场景认知模式:泛化点云[J]. 测绘学报, 2022, 51(4):556-567. |
LIU C, JIA S J, WU H B, et al. Scene cognition pattern of point cloud-generalization point cloud[J]. Acta Geod Cartogr Sin, 2022, 51(4):556-567. | |
[41] | 黄华国. 林业定量遥感研究进展和展望[J]. 北京林业大学学报, 2019, 41(12):1-14. |
HUANG H G. Progress and perspective of quantitative remote sensing of forestry[J]. J Beijing For Univ, 2019, 41(12):1-14. | |
[42] | HOWE D, COSTANZO M, FEY P, et al. The future of biocuration[J]. Nature, 2008, 455(7209):47-50.DOI:10.1038/455047a. |
[43] | REICHMAN O J, JONES M B, SCHILDHAUER M P. Challenges and opportunities of open data in ecology[J]. Science, 2011, 331(6018):703-705.DOI:10.1126/science.1197962. |
[44] | CHEBBI I, BOULILA W, FARAH I R. Improvement of satellite image classification: approach based on Hadoop/MapReduce[C]// 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP).Monastir,Tunisia:IEEE, 2016:31-34.DOI:10.1109/ATSIP.2016.7523046. |
[45] | HASSABIS D. Artificial intelligence:chess match of the century[J]. Nature, 2017, 544(7651):413-414.DOI:10.1038/544413a. |
[46] | CRUZ A S, LINS H C, MEDEIROS R V A, et al. Artificial intelligence on the identification of risk groups for osteoporosis,a general review[J]. Biomed Eng Online, 2018, 17(1):12.DOI:10.1186/s12938-018-0436-1. |
[47] | MATTHEWS G, HANCOCK P A, LIN J C, et al. Evolution and revolution:personality research for the coming world of robots,artificial intelligence,and autonomous systems[J]. Pers Individ Differ, 2021, 169:109969.DOI:10.1016/j.paid.2020.109969. |
[48] | 吴保国, 温亮宝. 森林重大病虫害诊治专家咨询系统的研究[J]. 北京林业大学学报, 2006, 28(6):113-118. |
WU B G, WEN L B. Expert consulting system for the diagnosis,prevention and control of important forest diseases and insect pests[J]. J Beijing For Univ, 2006, 28(6):113-118.DOI:10.3321/j.issn:1000-1522.2006.06.020. | |
[49] | 张钹. 人工智能进入后深度学习时代[J]. 智能科学与技术学报, 2019, 1(1):4-6. |
ZHANG B. Artificial intelligence is entering the post deep-learning era[J]. Chin J Intell Sci Technol, 2019, 1(1):4-6. | |
[50] | BRANDT M, TUCKER C J, KARIRYAA A, et al. An unexpectedly large count of trees in the West African Sahara and Sahel[J]. Nature, 2020, 587(7832):78-82.DOI:10.1038/s41586-020-2824-5. |
[51] | 周焱, 刘文萍, 骆有庆, 等. 基于深度学习的小目标受灾树木检测方法[J]. 林业科学, 2021, 57(3):98-107. |
ZHOU Y, LIU W P, LUO Y Q, et al. Small object detection for infected trees based on the deep learning method[J]. Sci Silvae Sin, 2021, 57(3):98-107. | |
[52] | 余茂源. 智慧林业的关键技术及其应用策略研究[J]. 林业调查规划, 2017, 42(5):121-123,131. |
YU M Y. Research on key technology of intelligent forestry and its application strategy[J]. For Invent Plan, 2017, 42(5):121-123,131.DOI:10.3969/j.issn.1671-3168.2017.05.024. | |
[53] | ORLAND B. Smartforest:3-D interactive forest visualization and analysis[C]// Proceedings of Decision Support-2001,Resource Technology 94,Toronto Bethesda, Maryland: American Society for Photogrammetry and Remote Sensing, 1994: 181-190. |
[54] | 刘海, 张怀清, 林辉. 森林经营可视化管理系统设计与实现[J]. 科技资讯, 2010, 8(17):240-242. |
LIU H, ZHANG H Q, LIN H. Forest management visual management systems design and implementation[J]. Sci & Technol Inf, 2010, 8(17):240-242.DOI:10.16661/j.cnki.1672-3791.2010.17.127. | |
[55] | 王万富, 王琢, 刘佳鑫, 等. 基于Qt/Embedded的农林智能装备导航定位算法研究及软件设计[J]. 国外电子测量技术, 2022, 41(3):63-68. |
WANG W F, WANG Z, LIU J X, et al. Research on navigation and positioning algorithms and software design of agricultural and forestry intelligent equipment based on Qt/Embedded[J]. Foreign Electron Meas Technol, 2022, 41(3):63-68.DOI:10.19652/j.cnki.femt.2103457. | |
[56] | 刘延鹤, 傅万四, 张彬, 等. 林业机器人发展现状与未来趋势[J]. 世界林业研究, 2020, 33(1):38-43. |
LIU Y H, FU W S, ZHANG B, et al. Development state and future trend of forestry robot[J]. World For Res, 2020, 33(1):38-43.DOI:10.13348/j.cnki.sjlyyj.2019.0076.y. | |
[57] | 罗梅, 刘延鹤, 蒋鹏飞, 等. 我国林业装备的发展现状及未来趋势[J]. 林业机械与木工设备, 2021, 49(1):8-11,17. |
LUO M, LIU Y H, JIANG P F, et al. Development status and future trend of forestry machinery in China[J]. For Mach & Woodwork Equip, 2021, 49(1):8-11,17.DOI:10.13279/j.cnki.fmwe.2021.0002. | |
[58] | CHEN S, CHIU Y C, CHANG Y C. Development of a tubing-grafting robotic system for fruit-bearing vegetable seedlings[J]. Appl Eng Agric, 2010, 26(4):707-714.DOI:10.13031/2013.32055. |
[59] | SICILIANO B, KHATIB O. Introduction[M]//Springer Handbook of Robotics.Berlin, Heidelberg:Springer, 2008:1-4.DOI:10.1007/978-3-540-30301-5_1. |
[60] | LEE J, HWANGBO J, WELLHAUSEN L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Sci Robot, 2020, 5(47):eabc5986.DOI:10.1126/scirobotics.abc5986. |
[61] | RASHID H, AHMED I U, ULLAH A, et al. Multiple sensors based fire extinguisher robot based on DTMF,bluetooth and GSM technology with multiple mode of operation[C]//2016 International Workshop on Computational Intelligence (IWCI).Dhaka, Bangladesh:IEEE, 2016:41-46.DOI:10.1109/IWCI.2016.7860336. |
[62] | GERASIMOV Y, SOKOLOV A, SYUNEV V. Development trends and future prospects of cut-to-length machinery[J]. Adv Mater Res, 2013, 705:468-473.DOI:10.4028/www.scientific.net/amr.705.468. |
[63] | 蔡硕, 邢艳秋, 端木嘉龙. 背包式激光雷达滤除低强度点云提取林木胸径[J]. 森林工程, 2021, 37(5):12-19. |
CAI S, XING Y Q, DUANMU J L. Extraction of DBH from filtering out low intensity point cloud by backpack laser scanning[J]. For Eng, 2021, 37(5):12-19.DOI:10.16270/j.cnki.slgc.2021.05.012. | |
[64] | SU Y J, GUO Q H, JIN S C, et al. The development and evaluation of a backpack LiDAR system for accurate and efficient forest inventory[J]. IEEE Geosci Remote Sens Lett, 2021, 18(9):1660-1664.DOI:10.1109/LGRS.2020.3005166. |
[65] | 张慧颖. 现场环境智能巡检机器人设计[J]. 现代电子技术, 2016, 39(18):135-138. |
ZHANG H Y. Design of intelligent inspection robot for field environment[J]. Mod Electron Tech, 2016, 39(18):135-138.DOI:10.16652/j.issn.1004-373x.2016.18.034. | |
[66] | 姜树海, 张楠. 六足仿生森林消防机器人机构设计与分析[J]. 机械设计与制造, 2015(12):208-212. |
JIANG S H, ZHANG N. Analysis and design of forest fire-fighting hexapod bionic robot mechanism[J]. Mach Des & Manuf, 2015(12):208-212.DOI:10.19356/j.cnki.1001-3997.2015.12.059. | |
[67] | 魏占国, 刘晋浩. 轮式林木联合采伐机底盘的设计与研究[J]. 广西大学学报(自然科学版), 2010, 35(2):263-268. |
WEI Z G, LIU J H. Design of the chassis for a wheeled forest combined harvester[J]. J Guangxi Univ (Nat Sci Ed),2010, 35(2):263-268.DOI:10.13624/j.cnki.issn.1001-7445.2010.02.025. | |
[68] | RINCENT R, CHARPENTIER J P, FAIVRE-RAMPANT P, et al. Phenomic selection is a low-cost and high-throughput method based on indirect predictions:proof of concept on wheat and poplar[J]. G3 (Bethesda Md), 2018, 8(12):3961-3972.DOI:10.1534/g3.118.200760. |
[69] | AITKEN S N, BEMMELS J B. Time to get moving:assisted gene flow of forest trees[J]. Evol Appl, 2016, 9(1):271-290.DOI:10.1111/eva.12293. |
[70] | GRATTAPAGLIA D, SILVA-JUNIOR O B, RESENDE R T, et al. Quantitative genetics and genomics converge to accelerate forest tree breeding[J]. Front Plant Sci, 2018, 9:1693.DOI:10.3389/fpls.2018.01693. |
[71] | DUNGEY H S, DASH J P, PONT D, et al. Phenotyping whole forests will help to track genetic performance[J]. Trends Plant Sci, 2018, 23(10):854-864.DOI:10.1016/j.tplants.2018.08.005. |
[72] | BIAN L M, ZHANG H C, GE Y F, et al. Closing the gap between phenotyping and genotyping:review of advanced,image-based phenotyping technologies in forestry[J]. Ann For Sci, 2022, 79(1):22.DOI:10.1186/s13595-022-01143-x. |
[73] | 边黎明, 张慧春. 表型技术在林木育种和精确林业上的应用[J]. 林业科学, 2020, 56(6):113-126. |
BIAN L M, ZHANG H C. Application of phenotyping techniques in forest tree breeding and precision forestry[J]. Sci Silvae Sin, 2020, 56(6):113-126. | |
[74] | TARDIEU F, CABRERA-BOSQUET L, PRIDMORE T, et al. Plant phenomics,from sensors to knowledge[J]. Curr Biol, 2017, 27(15):R770-R783.DOI:10.1016/j.cub.2017.05.055. |
[75] | MILELLA A, MARANI R, PETITTI A, et al. In-field high throughput grapevine phenotyping with a consumer-grade depth camera[J]. Comput Electron Agric, 2019, 156:293-306.DOI:10.1016/j.compag.2018.11.026. |
[76] | SALVATORI E, FUSARO L, MANES F. Chlorophyll fluorescence for phenotyping drought-stressed trees in a mixed deciduous forest[J]. Ann Di Bot, 2016, 6:39-49. |
[77] | TSUCHIKAWA S. A review of recent near infrared research for wood and paper[J]. Appl Spectrosc Rev, 2007, 42(1):43-71.DOI:10.1080/05704920601036707. |
[78] | WATT M S, BUDDENBAUM H, LEONARDO E M C, et al. Using hyperspectral plant traits linked to photosynthetic efficiency to assess N and P partition[J]. ISPRS J Photogramm Remote Sens, 2020, 169:406-420.DOI:10.1016/j.isprsjprs.2020.09.006. |
[79] | COHEN Y, ALCHANATIS V, PRIGOJIN A, et al. Use of aerial thermal imaging to estimate water status of palm trees[J]. Precision Agric, 2012, 13(1):123-140.DOI:10.1007/s11119-011-9232-7. |
[80] | JIN S C, SUN X L, WU F F, et al. Lidar sheds new light on plant phenomics for plant breeding and management:recent advances and future prospects[J]. ISPRS J Photogramm Remote Sens, 2021, 171:202-223.DOI:10.1016/j.isprsjprs.2020.11.006. |
[81] | NEALE D B, MARTÍNEZ-GARCÍA P J, DE LA TORRE A R, et al. Novel insights into tree biology and genome evolution as revealed through genomics[J]. Annu Rev Plant Biol, 2017, 68:457-483.DOI:10.1146/annurev-arplant-042916-041049. |
[82] | FÉRET J B, BERGER K, DE BOISSIEU F, et al. PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents[J]. Remote Sens Environ, 2021, 252:112173.DOI:10.1016/j.rse.2020.112173. |
[83] | WANG Z H, WANG T J, DARVISHZADEH R, et al. Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest[J]. Remote Sens, 2016, 8(6):491.DOI:10.3390/rs8060491. |
[84] | 张峰, 周广胜. 植被含水量高光谱遥感监测研究进展[J]. 植物生态学报, 2018, 42(5):517-525. |
ZHANG F, ZHOU G S. Research progress on monitoring vegetation water content by using hyperspectral remote sensing[J]. Chin J Plant Ecol, 2018, 42(5):517-525.DOI:10.17521/cjpe.2017.0313. | |
[85] | CHENG T, RIAÑO D, USTIN S L. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis[J]. Remote Sens Environ, 2014, 143:39-53.DOI:10.1016/j.rse.2013.11.018. |
[86] | BUDDENBAUM H, ROCK G, HILL J, et al. Measuring stress reactions of beech seedlings with PRI,fluorescence,temperatures and emissivity from VNIR and thermal field imaging spectroscopy[J]. Eur J Remote Sens, 2015, 48(1):263-282.DOI:10.5721/EuJRS20154815. |
[87] | 师志刚, 刘群昌, 白美健, 等. 基于物联网的水肥一体化智能灌溉系统设计及效益分析[J]. 水资源与水工程学报, 2017, 28(3):221-227. |
SHI Z G, LIU Q C, BAI M J, et al. Water and fertilization integrated intelligent irrigation system design and benefit analysis based on the Internet of Things[J]. J Water Resour Water Eng, 2017, 28(3):221-227.DOI:10.11705/j.issn.1672-643X.2017.03.40. | |
[88] | 陈尔学, 刘健, 王晓慧. 重点防护林工程监测技术[M]. 北京: 中国林业出版社, 2012. |
CHEN E X, LIU J, WANG X H. Monitoring technology of the key shelter-forest project[M]. Beijing: China Forestry Publishing House, 2012. | |
[89] | 李硕明. 一种基于物联网技术的森林资源监测系统[J]. 物联网技术, 2016, 6(5):11-13,16. |
LI S M. Forest resource monitoring system based on Internet of Things technology[J]. Internet Things Technol, 2016, 6(5):11-13,16.DOI:10.16667/j.issn.2095-1302.2016.05.001. | |
[90] | 冷天熙, 钱发斌, 胡文萍. 基于人工智能深度学习的卫星影像分类研究[J]. 林业调查规划, 2021, 46(1):1-4. |
LENG T X, QIAN F B, HU W P. Satellite image classification based on artificial intelligence In-depth learning[J]. For Invent Plan, 2021, 46(1):1-4. | |
[91] | 尹丽丽. 黑龙江省森林资源监测遥感判读平台建设[J]. 林业勘查设计, 2021, 50(1):67-70. |
YIN L L. Construction of remote sensing interpretation platform for forest resources monitoring in Heilongjiang Province[J]. For Investig Des, 2021, 50(1):67-70. | |
[92] | 张民侠, 郑怀兵. 基于智慧感知、分析、处置方法的森林智慧防火[J]. 南京理工大学学报, 2016, 40(6):694-699. |
ZHANG M X, ZHENG H B. Intelligent forest fire prevention based on intelligent perception,analysis and disposal method[J]. J Nanjing Univ Sci Technol, 2016, 40(6):694-699. DOI:10.14177/j.cnki.32-1397n.2016.40.06.009. | |
[93] | BO W H, LIU J, FAN X J, et al. BASNet:Burned area segmentation network for real-time detection of damage maps in remote sensing images[J]. IEEE Trans Geosci Remote Sens, 2022, 60:1-13.DOI:10.1109/TGRS.2022.3197647. |
[94] | KOLTUNOV A, USTIN S L, QUAYLE B, et al. The development and first validation of the GOES Early Fire Detection (GOES-EFD) algorithm[J]. Remote Sens Environ, 2016, 184:436-453.DOI:10.1016/j.rse.2016.07.021. |
[95] | MUTKA A M, BART R S. Image-based phenotyping of plant disease symptoms[J]. Front Plant Sci, 2015, 5:734.DOI:10.3389/fpls.2014.00734. |
[96] | PÁDUA L, MARQUES P, MARTINS L, et al. Monitoring of chestnut trees using machine learning techniques applied to UAV-based multispectral data[J]. Remote Sens, 2020, 12(18):3032.DOI:10.3390/rs12183032. |
[97] | HORNERO A, ZARCO-TEJADA P J, QUERO J L, et al. Modelling hyperspectral-and thermal-based plant traits for the early detection of Phytophthora-induced symptoms in oak decline[J]. Remote Sens Environ, 2021, 263:112570.DOI:10.1016/j.rse.2021.112570. |
[98] | 张宇, 李丽, 吴巩胜, 等. 基于生境斑块的滇金丝猴景观连接度分析[J]. 生态学报, 2016, 36(1):51-58. |
ZHANG Y, LI L, WU G S, et al. Analysis of landscape connectivity of the Yunnan snub-nosed monkeys(Rhinopithecus bieti) based on habitat patches[J]. Acta Ecol Sin, 2016, 36(1):51-58 | |
[99] | 张超. 基于“3S”技术的大熊猫潜在栖息地研究:以平武县小河沟自然保护区为例[D]. 成都: 成都理工大学, 2016. |
ZHANG C. Study on the giant pandas’ potential habitat based on “3S” technology: taking xiaohegou nature reserve in Pingwu as an example[D]. Chengdu: Chengdu University of Technology, 2016. | |
[100] | 申凤伟. 基于物联网构架的野生动物监测信息管理系统研究[D]. 武汉: 武汉理工大学, 2012. |
SHEN F W. Research of monitoring IMS for wildlife preserve based on TIOT theory structure[D]. Wuhan: Wuhan University of Technology, 2012. | |
[101] | 宫一男, 谭孟雨, 王震, 等. 基于深度学习的红外相机动物影像人工智能识别:以东北虎豹国家公园为例[J]. 兽类学报, 2019, 39(4):458-465. |
GONG Y N, TAN M Y, WANG Z, et al. AI recognition of infrared camera image of wild animals based on deep learning:Northeast Tiger and Leopard National Park for example[J]. Acta Theriol Sin, 2019, 39(4):458-465.DOI:10.16829/j.slxb.150333. | |
[102] | 骆沙鸣. 应进一步提高我国森林质量和森林生态服务功能[J]. 中国产业, 2011(7):7. |
LUO S M. China’s forest quality and forest ecological service function should be further improved[J]. Ind China, 2011(7):7. |
[1] | 徐达,刘安兴,翁卫松,温小荣,谭莹. 基于AHP的县级森林综合效益最优目标规划[J]. 南京林业大学学报(自然科学版), 2013, 37(05): 70-74. |
[2] | 周顺翔. 寻找化学反应最佳路线的PROLOG程序OPS[J]. 南京林业大学学报(自然科学版), 1990, 14(02): 82-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||