[1] |
王静, 高建中. 林地地块特征对农户林业生产效率的影响[J]. 林业经济问题, 2021, 41(6):577-582.
|
|
WANG J, GAO J Z. The effects of the characteristics of forest land parcels on farmers’ forestry production efficiency[J]. News For Econ, 2021, 41(6):577-582. DOI: 10.16832/j.cnki.1005-9709.20210072.
|
[2] |
DALPONTE M, ØRKA H O, GOBAKKEN T, et al. Tree species classification in boreal forests with hyperspectral data[J]. IEEE Trans Geosci Remote Sens, 2013, 51(5):2632-2645. DOI: 10.1109/TGRS.2012.2216272.
|
[3] |
BLANCO S R, HERAS D B, ARGÜELLO F. Texture extraction techniques for the classification of vegetation species in hyperspectral imagery: bag of words approach based on superpixels[J]. Remote Sens, 2020, 12(16):2633. DOI: 10.3390/rs12162633.
|
[4] |
THANH NOI P, KAPPAS M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using sentinel-2 imagery[J]. Sensors, 2017, 18(1):18. DOI: 10.3390/s18010018.
|
[5] |
YUAN Y, HU X Y. Random forest and objected-based classification for forest pest extraction from UAV aerial imagery[J]. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2016, XLI-B1:1093-1098. DOI: 10.5194/isprs-archives-xli-b1-1093-2016.
|
[6] |
赵庆展, 江萍, 王学文, 等. 基于无人机高光谱遥感影像的防护林树种分类[J]. 农业机械学报, 2021, 52(11):190-199.
|
|
ZHAO Q Z, JIANG P, WANG X W, et al. Classification of protection forest tree species based on UAV hyperspectral data[J]. Trans Chin Soc Agric Mach, 2021, 52(11):190-199. DOI: 10.6041/j.issn.1000-1298.2021.11.020.
|
[7] |
戴鹏钦, 丁丽霞, 刘丽娟, 等. 基于FCN的无人机可见光影像树种分类[J]. 激光与光电子学进展, 2020, 57(10):36-45.
|
|
DAI P Q, DING L X, LIU L J, et al. Tree species identification based on FCN using the visible images obtained from an unmanned aerial vehicle[J]. Laser Optoelectron Prog, 2020, 57(10):36-45. DOI: 10.3788/LOP57.101001.
|
[8] |
张军国, 冯文钊, 胡春鹤, 等. 无人机航拍林业虫害图像分割复合梯度分水岭算法[J]. 农业工程学报, 2017, 33(14):93-99.
|
|
ZHANG J G, FENG W Z, HU C H, et al. Image segmentation method for forestry unmanned aerial vehicle pest monitoring based on composite gradient watershed algorithm[J]. Trans Chin Soc Agric Eng, 2017, 33(14):93-99. DOI: 10.11975/j.issn.1002-6819.2017.14.013.
|
[9] |
张增, 王兵, 伍小洁, 等. 无人机森林火灾监测中火情检测方法研究[J]. 遥感信息, 2015, 30(1):107-110, 124.
|
|
ZHANG Z, WANG B, WU X J, et al. An algorithm of forest fire detection based on UAV remote sensing[J]. Remote Sens Inf, 2015, 30(1):107-110, 124. DOI: 10.3969/j.issn.1000-3177.2015.01.018.
|
[10] |
刘文萍, 仲亭玉, 宋以宁. 基于无人机图像分析的树木胸径预测[J]. 农业工程学报, 2017, 33(21):99-104.
|
|
LIU W P, ZHONG T Y, SONG Y N. Prediction of trees diameter at breast height based on unmanned aerial vehicle image analysis[J]. Trans Chin Soc Agric Eng, 2017, 33(21):99-104. DOI: 10.11975/j.issn.1002-6819.2017.21.012.
|
[11] |
MARTINS J, JUNIOR J M, MENEZES G, et al. Image segmentation and classification with SLIC superpixel and convolutional neural network in forest context[C]// IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE, 2019:6543-6546. DOI: 10.1109/IGARSS.2019.8898969.
|
[12] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE, 2015:3431-3440. DOI: 10.1109/CVPR.2015.7298965.
|
[13] |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015:234-241. DOI: 10.1007/978-3-319-24574-4_28.
|
[14] |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017:6230-6239. DOI: 10.1109/CVPR.2017.660.
|
[15] |
LIN G S, MILAN A, SHEN C H, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017:5168-5177. DOI: 10.1109/CVPR.2017.549.
|
[16] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[DB/OL]. (2014-09-14)[2022-05-25]. https://arXiv.org/abs/1412.7062. DOI: 10.48550/arXiv.1412.7062.
|
[17] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Trans Pattern Anal Mach Intell, 2018, 40(4):834-848. DOI: 10.1109/TPAMI.2017.2699184.
|
[18] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[DB/OL]. (2017-07-19)[2022-05-05]. https://arXiv.org/abs/1706.05587. DOI: 10.48550/arXiv.1706.05587.
|
[19] |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// European Conference on Computer Vision. Cham: Springer, 2018:833-851. DOI: 10.1007/978-3-030-01234-2_49.
|
[20] |
韩蕊, 慕涛阳, 赵伟, 等. 基于无人机多光谱影像的柑橘树冠分割方法研究[J]. 林业工程学报, 2021, 6(5):147-153.
|
|
HAN R, MU T Y, ZHAO W, et al. Research on citrus canopy segmentation method based on UAV multispectral image[J]. Journal of Forestry Engineering, 2021, 6(5):147-153. DOI: 10.13360/j.issn.2096-1359.202011021.
|
[21] |
刘文定, 田洪宝, 谢将剑, 等. 基于全卷积神经网络的林区航拍图像虫害区域识别方法[J]. 农业机械学报, 2019, 50(3):179-185.
|
|
LIU W D, TIAN H B, XIE J J, et al. Identification methods for forest pest areas of UAV aerial photography based on fully convolutional networks[J]. Trans Chin Soc Agric Mach, 2019, 50(3):179-185. DOI: 10.6041/j.issn.1000-1298.2019.03.019.
|
[22] |
徐辉, 祝玉华, 甄彤, 等. 深度神经网络图像语义分割方法综述[J]. 计算机科学与探索, 2021, 15(1):47-59.
|
|
XU H, ZHU Y H, ZHEN T, et al. Survey of image semantic segmentation methods based on deep neural network[J]. J Front Comput Sci Technol, 2021, 15(1):47-59. DOI: 10.3778/j.issn.1673-9418.2004039.
|
[23] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018:7132-7141. DOI: 10.1109/CVPR.2018.00745.
|
[24] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018:3-19. DOI: 10.1007/978-3-030-01234-2_1.
|
[25] |
WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle, WA, USA: IEEE, 2020:11531-11539. DOI: 10.1109/CVPR42600.2020.01155.
|
[26] |
ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). New Orleans, LA, USA: IEEE, 2022:2735-2745. DOI: 10.1109/CVPRW56347.2022.00309.
|
[27] |
CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017:1800-1807. DOI: 10.1109/CVPR.2017.195.
|
[28] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016:770-778. DOI: 10.1109/CVPR.2016.90.
|
[29] |
YANG M K, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018:3684-3692. DOI: 10.1109/CVPR.2018.00388.
|
[30] |
李丹, 张俊杰, 赵梦溪. 基于FCM和分水岭算法的无人机影像中林分因子提取[J]. 林业科学, 2019, 55(5):180-187.
|
|
LI D, ZHANG J J, ZHAO M X. Extraction of stand factors in UAV image based on FCM and watershed algorithm[J]. Sci Silvae Sin, 2019, 55(5):180-187. DOI: 10.11707/j.1001-7488.20190520.
|
[31] |
刘旭光, 肖啸, 兰玉彬, 等. 应用可见光遥感影像的林区植被分割方法[J]. 东北林业大学学报, 2023, 51(4):62-67.
|
|
LIU X G, XIAO X, LAN Y B, et al. Forest vegetation segmentation method with UAV visible light remote sensing images[J]. Journal of Northeast Foresrty University, 2023, 51(4):62-67. DOI: 10.13759/j.cnki.dlxb.2023.04.008.
|