[1] |
SPERRY J S, MEINZER F C, MCCULLOH K A. Safety and efficiency conflicts in hydraulic architecture:scaling from tissues to trees[J]. Plant Cell Environ, 2008, 31(5): 633-645. DOI: 10.1111/j.1365-3040.2007.01765.x.
|
[2] |
ZHANG S B, WEN G J, QU Y Y, et al. Trade-offs between xylem hydraulic efficiency and mechanical strength in Chinese evergreen and deciduous savanna species[J]. Tree Physiol, 2022, 42(7): 1337-1349. DOI: 10.1093/treephys/tpac017.
|
[3] |
荆烁, 孙慧珍. 东北东部山区主要树种枝条及其组分水力特征[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 159-166.
|
|
JING S, SUN H Z. The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4): 159-166. DOI: 10.12302/j.issn.1000-2006.202003027.
|
[4] |
GLEASON S M, WESTOBY M, JANSEN S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species[J]. New Phytol, 2016, 209(1): 123-136. DOI: 10.1111/nph.13646.
|
[5] |
CHAVE J, COOMES D, JANSEN S, et al. Towards a worldwide wood economics spectrum[J]. Ecol Lett, 2009, 12(4): 351-366. DOI: 10.1111/j.1461-0248.2009.01285.x.
|
[6] |
TRUEBA S, DELZON S, ISNARD S, et al. Similar hydraulic efficiency and safety across vesselless angiosperms and vessel-bearing species with scalariform perforation plates[J]. J Exp Bot, 2019, 70(12): 3227-3240. DOI: 10.1093/jxb/erz133.
|
[7] |
徐茜, 陈亚宁. 胡杨茎木质部解剖结构与水力特性对干旱胁迫处理的响应[J]. 中国生态农业学报, 2012, 20(8): 1059-1065.
|
|
XU Q, CHEN Y N. Response of anatomy and hydraulic characteristics of xylem stem of Populus euphratica Oliv. to drought stress[J]. Chin J Eco Agric, 2012, 20(8): 1059-1065. DOI: 10.3724/SP.J.1011.2012.01059.
|
[8] |
MCCULLOH K, SPERRY J S, LACHENBRUCH B, et al. Moving water well: comparing hydraulic efficiency in twigs and trunks of coniferous, ring-porous, and diffuse-porous saplings from temperate and tropical forests[J]. New Phytol, 2010, 186(2): 439-450. DOI: 10.1111/j.1469-8137.2010.03181.x.
|
[9] |
李吉跃, 翟洪波. 木本植物水力结构与抗旱性[J]. 应用生态学报, 2000, 11(2): 301-305.
|
|
LI J Y, ZHAI H B. Hydraulic architecture and drought resistance of woody plants[J]. Chin J Appl Ecol, 2000, 11(2): 301-305. DOI: 10.13287/j.1001-9332.2000.0079.
|
[10] |
BUSH S E, PATAKI D E, HULTINE K R, et al. Wood anatomy constrains stomatal responses to atmospheric vapor pressure deficit in irrigated, urban trees[J]. Oecologia, 2008, 156(1): 13-20. DOI: 10.1007/s00442-008-0966-5.
|
[11] |
MCCULLOH K A, AUGUSTINE S P, GOKE A, et al. At least it’s a dry cold:the global distribution of freeze-thaw and drought stress and the traits that may impart poly-tolerance in conifers[J]. Tree Physiol, 2023, 43(1): 1-15. DOI: 10.1093/treephys/tpac102.
|
[12] |
PITTERMANN J, SPERRY J S. Analysis of freeze-thaw embolism in conifers: the interaction between cavitation pressure and tracheid size[J]. Plant Physiol, 2006a, 140(1): 374-382. DOI: 10.1104/pp.105.067900.
|
[13] |
SKELTON R P, ANDEREGG L D L, DIAZ J, et al. Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks[J]. Proc Natl Acad Sci USA, 2021, 118(10): e2008987118. DOI: 10.1073/pnas.2008987118.
|
[14] |
YIN J J, BAUERLE T L. A global analysis of plant recovery performance from water stress[J]. Oikos, 2017, 126(10): 1377-1388. DOI: 10.1111/oik.04534.
|
[15] |
SANTIAGO L S, GOLDSTEIN G, MEINZER F C, et al. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees[J]. Oecologia, 2004, 140(4): 543-550. DOI: 10.1007/s00442-004-1624-1.
|
[16] |
SWENSON N G, ENQUIST B J. Ecological and evolutionary determinants of a key plant functional trait:wood density and its community-wide variation across latitude and elevation[J]. Am J Bot, 2007, 94(3): 451-459. DOI: 10.3732/ajb.94.3.451.
|
[17] |
ZHU L W, ZHAO P. Climate-driven sapwood-specific hydraulic conductivity and the huber value but not leaf-specific hydraulic conductivity on a global scale[J]. Sci Total Environ, 2022, 857(1): 159334. DOI: 10.1016/j.scitotenv.2022.159334.
|
[18] |
MENCUCCINI M, ROSAS T, ROWLAND L, et al. Leaf economics and plant hydraulics drive leaf:wood area ratios[J]. New Phytol, 2019, 224(4): 1544-1556. DOI: 10.1111/nph.15998.
|
[19] |
WANG C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. For Ecol Manag, 2006, 222(1/2/3): 9-16. DOI: 10.1016/j.foreco.2005.10.074.
|
[20] |
李媛媛. 东北主要树种关键物候期木质部水力结构变化特征[D]. 哈尔滨: 东北林业大学, 2019.
|
|
LI Y Y. The xylem hydraulic architecture characteristics of key phenology for the major tree species of northeast China[D]. Harbin: Northeast Forestry University, 2019. DOI: 10.27009/d.cnki.gdblu.2019.000675.
|
[21] |
JIN Y, WANG C K, ZHOU Z H, et al. Contrasting responses of hydraulic traits between leaf and branch to 16-year nitrogen addition in a larch plantation[J]. For Ecol Manag, 2020, 475: 118461. DOI: 10.1016/j.foreco.2020.118461.
|
[22] |
SCHOLZ A, KLEPSCH M, KARIMI Z, et al. How to quantify conduits in wood?[J]. Front Plant Sci, 2013, 4: 56. DOI: 10.3389/fpls.2013.00056.
|
[23] |
POORTER L, MCDONALD I, ALARCÓN A, et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species[J]. New Phytol, 2010, 185(2): 481-492. DOI: 10.1111/j.1469-8137.2009.03092.x.
|
[24] |
HACKE U G, SPERRY J S. Functional and ecological xylem anatomy[J]. Perspect Plant Ecol Evol Syst, 2001, 4(2): 97-115. DOI: 10.1078/1433-8319-00017.
|
[25] |
CHEN Z C, ZHANG Y T, YUAN W J, et al. Coordinated variation in stem and leaf functional traits of temperate broadleaf tree species in the isohydric-anisohydric spectrum[J]. Tree Physiol, 2021, 41(9): 1601-1610. DOI: 10.1093/treephys/tpab028.
|
[26] |
ZHANG Q W, ZHU S D, JANSEN S, et al. Topography strongly affects drought stress and xylem embolism resistance in woody plants from a Karst forest in southwest China[J]. Funct Ecol, 2020, 35(3): 566-577. DOI: 10.1111/1365-2435.13731.
|
[27] |
NIU C Y, MEINZER F C, HAO G Y, et al. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species:the role of positive xylem pressure, wood type and tree stature[J]. Funct Ecol, 2017, 31(8): 1550-1560. DOI: 10.1111/1365-2435.12868.
|
[28] |
殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异[J]. 应用生态学报, 2018, 29(2): 352-360.
|
|
YIN X H, HAO G Y. Divergence between ring and diffuse-porous wood types in broadleaf trees of Changbai Mountains results in substantial differences in hydraulic traits[J]. Chin J Appl Ecol, 2018, 29(2): 352-360. DOI: 10.13287/j.1001-9332.201802.035.
|
[29] |
STEPPE K, LEMEUR R. Effects of ring-porous and diffuse-porous stem wood anatomy on the hydraulic parameters used in a water flow and storage model[J]. Tree Physiol, 2007, 27(1): 43-52. DOI: 10.1093/treephys/27.1.43.
|
[30] |
PITTERMANN J, SPERRY J S, HACKE U G, et al. Inter tracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection[J]. Am J Bot, 2006b, 93(9): 1265-1273. DOI: 10.3732/ajb.93.9.1265.
|
[31] |
HACKE U G, SPERRY J S, POCKMAN W T, et al. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure[J]. Oecologia, 2001, 126(4): 457-461. DOI: 10.1007/s004420100628.
|
[32] |
PITTERMANN J, CHOAT B, JANSEN S, et al. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae:the evolution of pit membrane form and function[J]. Plant Physiol, 2010, 153(4): 1919-1931. DOI: 10.1104/pp.110.158824.
|
[33] |
SONG Y, POORTER L, HORSTING A, et al. Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species[J]. J Exp Bot, 2022, 73(3): 1033-1048. DOI: 10.1093/jxb/erab449.
|
[34] |
黄恺翔, 俞重阳, 钱海蓉, 等. 鸡公山国家级自然保护区散孔材、环孔材树种木质部结构和功能的关系[J]. 浙江农林大学学报, 2022, 39(2): 244-251.
|
|
HUANG K X, YU C Y, QIAN H R, et al. Relationship between xylem structure and function of diffuse-porous and ring-porous wood species in Jigongshan Nature Reserve[J]. J Zhejiang A&F Univ, 2022, 39(2): 244-251. DOI: 10.11833/j.issn.2095-0756.20210628.
|
[35] |
SANTIAGO L S, GUZMAN M E D, BARALOTO C, et al. Coordination and trade-offs among hydraulic safety, efficiency and drought avoidance traits in Amazonian rainforest canopy tree species[J]. New Phytol, 2018, 218(3): 1015-1024. DOI: 10.1111/nph.15058.
|
[36] |
ZANNE A E, WESTOBY M, FALSTER D S, et al. Angiosperm wood structure:global patterns in vessel anatomy and their relation to wood density and potential conductivity[J]. Am J Bot, 2010, 97(2): 207-215. DOI: 10.3732/ajb.0900178.
|
[37] |
ZIEMINSKA K, BUTLER D W, GLEASON S M, et al. Fiber wall and lumen fractions drive wood density variation across 24 Australian angiosperms[J]. AoB Plants, 2013, 5. DOI: 10.1093/aobpla/plt046.
|
[38] |
ZIEMINSKA K, ROSA E, GLEASON S M, et al. Wood day capacitance is related to water content, wood density, and anatomy across 30 temperate tree species[J]. Plant Cell Environ, 2020, 43(12): 3048-3067. DOI: 10.1111/pce.13891.
|
[39] |
赵乐文, 陈梓熠, 邹滢, 等. 九种维管植物水力性状的演化趋势[J]. 植物生态学报, 2018, 42(2): 220-228.
|
|
ZHAO L W, CHEN Z Y, ZOU Y, et al. Changes in hydraulic traits of nine vascular plants from different evolutionary lineages[J]. Chin J Plant Ecol, 2018, 42(2): 220-228. DOI: 10.17521/cjpe.2017.0258.
|
[40] |
李泽东. 山东低山丘陵区不同类型树种木质部与叶片解剖特征及水力特性分析[D]. 泰安: 山东农业大学, 2020.
|
|
LI Z D. Analysis of xylem and leaf anatomical characteristics and hydraulics characteristics of different tree species in low mountains and hilly region of Shandong Province[D]. Taian: Shandong Agricultural University, 2020. DOI: 10.27277/d.cnki.gsdnu.2020.000503.
|
[41] |
OYANOGHAFO O O, BRIEN C O, CHOAT B, et al. Vulnerability to xylem cavitation of Hakea species (Proteaceae) from a range of biomes and life histories predicted by climatic niche[J]. Ann Bot, 2021, 127(7): 909-918. DOI: 10.1093/aob/mcab020.
|