模拟氮沉降对杨树人工林土壤跳虫群落的影响

王梓萌, 阮宏华, 吴小巧, 杨艳, 谢友超, 沈彩芹, 丁学农, 曹国华

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4) : 243-253.

PDF(1883 KB)
PDF(1883 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4) : 243-253. DOI: 10.12302/j.issn.1000-2006.202209066
研究论文

模拟氮沉降对杨树人工林土壤跳虫群落的影响

作者信息 +

Effects of nitrogen addition on soil springtail(Collembolan) community in a poplar plantation

Author information +
文章历史 +

摘要

【目的】土壤跳虫(弹尾纲物种)在调节土壤生态系统功能方面发挥着重要作用。本研究旨在了解添加氮对杨树人工林土壤跳虫群落结构的影响,为进一步明晰人工林生态系统土壤动物群落对未来大气氮沉降的响应与适应机制提供理论参考。【方法】在江苏省东台林场的杨树人工林中建立样地,通过人工林施氮肥的方式模拟大气氮沉降,设置N0(对照,不施氮肥)和3个模拟氮沉降处理,施氮水平分别为N5[5 g/(m2·a)]、N15[15 g/(m2·a)]、N30[30 g/(m2·a)],每个施氮水平设置4个重复,共16块样地。于2021—2022年的春季(4月)、夏季(7月)、秋季(10月)和冬季(1月),用取样框采集凋落物层土壤跳虫,后采用不同直径的土钻分3层,即采集[0,10)、[10,25)、[25,40) cm土壤层跳虫和土壤样品。样品带回实验室后用干漏斗法(Tullgren法)收集跳虫并分析土壤理化性质,最后用SPSS 26和Canoco 5.0进行统计分析。【结果】研究共捕获跳虫1 446只,隶属于4目7科18属,优势种群分属等节跳属(Isotoma)、鳞跳属(Toocerus)、长跳属(Entomobrya)和小等跳属(Isotomiella),4属共占总个体数的66.87%。土壤跳虫的个体数在N15处理时显著增加,N30处理时则减少;不同层次中,凋落物层的跳虫个体数显著高于土壤层;在不同季节,跳虫的个体数总体从大到小呈现为秋>夏>春>冬。土壤跳虫Shannon-Wiener多样性指数在N15处理最高,Pielou均匀度指数基本在N30处理最高。RDA分析表明,土壤pH、硝态氮含量和碳氮比是影响土壤跳虫分布的主要环境因子。【结论】氮沉降会显著影响土壤跳虫的群落组成结构,并表现出一定的季节差异;适度的氮添加能增加跳虫的个体数和多样性,而过量的氮添加则导致跳虫个体数减少。

Abstract

【Objective】Springtail(Collembolan species), as a kind of microarthropods widely distributed in soils, plays an important role in regulating the functions of soil ecosystems. However, the effects of nitrogen deposition on springtail communities in soils are poorly understood. This study aimed to elucidate the effects of nitrogen addition on springtail communities in soils by simulating nitrogen deposition for 10 years in a poplar plantation in Dongtai Forest Farm, Jiangsu Province.【Method】Four experimental treatments with different concentrations of nitrogen addition, i.e., the control (N0,No nitrogen addition), N5[5 g/(m2·a)], N15[15 g/(m2·a)], and N30[30 g/(m2·a)], were established in May 2012, respectively. A total of four replicate plots were prepared for each treatment, thus accounting for a total of 16 sample plots. The springtail communities in the litter and soil layers were analyzed in July 2021, October 2021, January 2022, and April 2022. The springtails in the litter layer were collected using a collection frame. Springtail samples were collected using soil drills with different diameters from the three soil layer at depths of 0 (floormas), 10 and 25 cm, respectively. Following transportation to the laboratory, the springtails were collected according to the Tullgren method, and the physical and chemical properties of the soil were analyzed. Statistical analysis was performed using SPSS 26 and Canoco 5.0.【Result】A total of 1 446 springtails, belonging to 4 Orders, 7 Families, and 18 Genera, were collected in this study. Of these, the Isoma, Toocerus, Entomobrya and Folsomia genera were the most abundant and accounted for 66.87% of the total number of individuals. The number of springtails in the soil increased significantly at a nitrogen concentration of 15 g/(m2·a), but decreased at a concentration of 30 g/(m2·a). The number of springtails in litter layer was significantly higher than that in the soil layer. The number of individuals varied across the seasons, in the following order: October (autumn) > July (summer) > April (spring) > January (winter). The Shannon-Wiener diversity index and Simpson dominance index were highest in the 15 g/(m2·a) treatment group, whereas the Pielou evenness index was highest for the 30 g/(m2·a) treatment group. The results of RDA analysis demonstrated that the pH, nitrate nitrogen content, and the C/N were the primary environmental factors that affected the distribution of springtails in the soil, and that different springtail populations responded differently to the environmental factors.【Conclusion】The results demonstrated that nitrogen deposition affected the composition of the springtail community in the soil. The findings further revealed that the application of nitrogen within a moderate concentration might increase the number and diversity of springtails; however, the excessive addition of nitrogen may reduce the number of springtails, thus indicating a threshold effect.

关键词

杨树 / 人工林 / 氮添加 / 土壤动物 / 弹尾纲 / 群落结构 / 群落多样性

Key words

poplar / plantation / nitrogen addition / soil fauna / Collembola / community structure / community diversity

引用本文

导出引用
王梓萌, 阮宏华, 吴小巧, . 模拟氮沉降对杨树人工林土壤跳虫群落的影响[J]. 南京林业大学学报(自然科学版). 2024, 48(4): 243-253 https://doi.org/10.12302/j.issn.1000-2006.202209066
WANG Zimeng, RUAN Honghua, WU Xiaoqiao, et al. Effects of nitrogen addition on soil springtail(Collembolan) community in a poplar plantation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(4): 243-253 https://doi.org/10.12302/j.issn.1000-2006.202209066
中图分类号: S718.5   

参考文献

[1]
STEVENS C J. How long do ecosystems take to recover from atmospheric nitrogen deposition?[J]. Biol Conserv, 2016, 200:160-167.DOI: 10.1016/j.biocon.2016.06.005.
[2]
GALLOWAY J N. The global nitrogen cycle:past,present and future[J]. Sci China Ser C-Life Sci, 2005, 48(2):669-678.DOI: 10.1007/BF03187108.
[3]
GALLOWAY J N, COWLING E B. Reactive nitrogen and the world:200 years of change[J]. Ambio, 2002, 31(2):64-71.DOI: 10.1579/0044-7447-31.2.64.
[4]
于美佳, 叶彦辉, 韩艳英, 等. 添加氮对森林生态系统影响的研究进展[J]. 安徽农业科学, 2021, 49(3):19-24,27.
YU M J, YE Y H, HAN Y Y, et al. Research progress on the effects of nitrogen deposition on forest ecosystem[J]. J Anhui Agric Sci, 2021, 49(3):19-24,27.DOI: 10.3969/j.issn.0517-6611.2021.03.005.
[5]
LIU X J, SONG L, HE C N, et al. Nitrogen deposition as an important nutrient from the environment and its impact on ecosystems in China[J]. Null, 2010, 2(2):137-143.DOI: 10.3724/sp.j.1227.2010.00137.
[6]
徐国良, 莫江明, 周国逸. 模拟添加氮增加对南亚热带主要森林土壤动物的早期影响[J]. 应用生态学报, 2005, 16(7):1235-1240.
XU G L, MO J M, ZHOU G Y. Early responses of soil fauna in three typical forests of south subtropical China to simulated N deposition addition[J]. Chin J Appl Ecol, 2005, 16(7):1235-1240.
[7]
GEISSEN V, KAMPICHLER C. Limits to the bioindication potential of Collembola in environmental impact analysis:a case study of forest soil-Liming and fertilization[J]. Biol Fertil Soils, 2004, 39(6):383-390.DOI: 10.1007/s00374-003-0714-2.
[8]
孙元, 兰晓萍, 邵红涛. 土栖弹尾虫环境指示作用研究进展[J]. 中国农学通报, 2014, 30(13):6-9.
SUN Y, LAN X P, SHAO H T. Advances of researches on soil-dwelling springtails as bioindicators[J]. Chin Agric Sci Bull, 2014, 30(13):6-9.
[9]
FENN M E, BARON J S, ALLEN E B, et al. Ecological effects of nitrogen deposition in the western United States[J]. BioScience, 2003, 53(4):404.DOI: 10.1641/0006-3568(2003)053[0404:eeondi]2.0.co;2.
[10]
RUSEK J. Air-pollution-mediated changes in alpine ecosystems and ecotones[J]. Ecol Appl, 1993, 3(3):409-416.DOI: 10.2307/1941910.
[11]
CHAUVAT M, ZAITSEV A S, WOLTERS V. Successional changes of Collembola and soil microbiota during forest rotation[J]. Oecologia, 2003, 137(2):269-276.DOI: 10.1007/s00442-003-1310-8.
[12]
YANG X D, WARREN M, ZOU X M. Fertilization responses of soil litter fauna and litter quantity,quality,and turnover in low and high elevation forests of Puerto Rico[J]. Appl Soil Ecol, 2007, 37(1/2):63-71.DOI: 10.1016/j.apsoil.2007.03.012.
[13]
MCGLYNN T P, SALINAS D J, DUNN R R, et al. Phosphorus limits tropical rain forest litter fauna[J]. Biotropica, 2007, 39(1):50-53.DOI: 10.1111/j.1744-7429.2006.00241.x.
[14]
KELLY J M, HENDERSON G S. Effects of nitrogen and phosphorus additions on deciduous litter decomposition[J]. Soil Sci Soc Am J, 1978, 42(6):972-976.DOI: 10.2136/sssaj1978.03615995004200060030x.030x.
[15]
崔海鸥, 刘珉. 我国第九次森林资源清查中的资源动态研究[J]. 西部林业科学, 2020, 49(5):90-95.
CUI H O, LIU M. Analysis on the results of the 9th national forest inventory[J]. J West China For Sci, 2020, 49(5):90-95.DOI: 10.16473/j.cnki.xblykx1972.2020.05.014.
[16]
赵文芹, 席本野, 刘金强, 等. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4):370-382.
ZHAO W Q, XI B Y, LIU J Q, et al. Transpiration process and environmental response of poplar plantation under different irrigation conditions[J]. Chin J Plant Ecol, 2021, 45(4):370-382.DOI: 10.17521/cjpe.2020.0343.
[17]
彭赛, 张雅坤, 葛之葳, 等. 添加氮对微生物分解森林地上凋落物过程的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(1):1-7.
PENG S, ZHANG Y K, GE Z W, et al. Effects of nitrogen deposition on litter decomposition by microorganisms in forests[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(1):1-7.DOI: 10.3969/j.issn.1000-2006.2016.01.001.
[18]
段娜, 李清河, 多普增, 等. 植物响应大气添加氮研究进展[J]. 世界林业研究, 2019, 32(4):6-11.
DUAN N, LI Q H, DUO P Z, et al. Plant response to atmospheric nitrogen deposition:a research review[J]. World For Res, 2019, 32(4):6-11.DOI: 10.13348/j.cnki.sjlyyj.2019.0029.y.
[19]
李德军, 莫江明, 方运霆, 等. 添加氮对森林植物的影响[J]. 生态学报, 2003, 23(9):1891-1900.
LI D J, MO J M, FANG Y T, et al. Impact of nitrogen deposition on forest plants[J]. Acta Ecol Sin, 2003, 23(9):1891-1900.DOI: 10.3321/j.issn:1000-0933.2003.09.022.
[20]
尹文英. 中国土壤动物检索图鉴[M]. 北京: 科学出版社, 1998.
YIN W Y. Pictorical keys to soil animals of China[M]. Beijing: Science Press, 1998.
[21]
DROLC A, VRTOVšEK J. Nitrate and nitrite nitrogen determination in waste water using on-line UV spectrometric method[J]. Bioresour Technol, 2010, 101(11):4228-4233.DOI: 10.1016/j.biortech.2010.01.015.
[22]
HALL A. Application of the indophenol blue method to the determination of ammonium in silicate rocks and minerals[J]. Applied Geochemistry, 1993, 8(1):101-105. DOI: 10.1016/0883-2927(93)90059-P.
[23]
张珂, 左鑫钰, 胡娅丽, 等. 塞罕坝不同植被类型地表土壤动物群落特征[J]. 林业与生态科学, 2022, 37(3):223-237.
ZHANG K, ZUO X Y, HU Y L, et al. Community structure of soil fauna of different vegetation types in Saihanba[J]. For Ecol Sci, 2022, 37(3):223-237.DOI: 10.13320/j.cnki.hjfor.2022.0033.
[24]
XU G L, SCHLEPPI P, LI M H, et al. Negative responses of Collembola in a forest soil (Alptal,Switzerland) under experimentally increased N deposition[J]. Environ Pollut, 2009, 157(7):2030-2036.DOI: 10.1016/j.envpol.2009.02.026.
[25]
宋敏. 增加降水及施氮对弃耕草地土壤线虫和小型节肢动物的影响[J]. 生态学杂志, 2017, 36(3):631-639.
SONG M. Effects of water and nitrogen addition on soil nematodes and small arthropods in an oldfield grassland of north China[J]. Chin J Ecol, 2017, 36(3):631-639.DOI: 10.13292/j.1000-4890.201703.001.
[26]
李曾燕, 邱细容, 陈冠陶, 等. 多年模拟添加氮对华西雨屏区苦竹人工林土壤节肢动物的影响[J]. 生态学杂志, 2019, 38(5):1419-1425.
LI Z Y, QIU X R, CHEN G T, et al. Effects of long-term simulated nitrogen deposition on soil arthropods in a Pleioblastus amarus plantation in rainy area of western China[J]. Chin J Ecol, 2019, 38(5):1419-1425.DOI: 10.13292/j.1000-4890.201905.037.
[27]
焦亚青. 土壤无机氮(铵态氮、硝态氮)时空变化研究现状[J]. 现代盐化工, 2022, 49(1):20-22.
JIAO Y Q. Research status of spatial and temporal changes of soil inorganic nitrogen (ammonium nitrogen,nitrate nitrogen)[J]. Mod Salt Chem Ind, 2022, 49(1):20-22.DOI: 10.19465/j.cnki.2095-9710.2022.01.055.2.01.055.
[28]
CURTIN D, CAMPBELL C A, JALIL A. Effects of acidity on mineralization:pH-dependence of organic matter mineralization in weakly acidic soils[J]. Soil Biol Biochem, 1998, 30(1):57-64.DOI: 10.1016/S0038-0717(97)00094-1.
[29]
薛璟花, 莫江明, 李炯, 等. 土壤微生物数量对模拟添加氮增加的早期响应[J]. 广西植物, 2007, 27(2):174-179,202.
XUE J H, MO J M, LI J, et al. The short-term response of soil microorganism number to simulated nitrogen deposition[J]. Guihaia, 2007, 27(2):174-179,202.DOI: 10.3969/j.issn.1000-3142.2007.02.008.
[30]
费裕翀, 叶义全, 郑宏, 等. 外源氮素调控C/N比对杉木林凋落叶细菌群落结构的影响[J]. 生态学报, 2021, 41(5):2011-2023.
FEI Y C, YE Y Q, ZHENG H, et al. Effects of C/N ratio under the control of exogenous nitrogen on the bacterial community structure in litters of Cunninghamia lanceolata plantation under different undergrowth vegetation management measures[J]. Acta Ecol Sin, 2021, 41(5):2011-2023.DOI: 10.5846/stxb202005081149.
[31]
张春华, 王宗明, 居为民, 等. 松嫩平原玉米带土壤碳氮比的时空变异特征[J]. 环境科学, 2011, 32(5):1407-1414.
ZHANG C H, WANG Z M, JU W M, et al. Spatial and temporal variability of soil C/N ratio in Songnen plain maize belt[J]. Environ Sci, 2011, 32(5):1407-1414.DOI: 10.13227/j.hjkx.2011.05.014.014.
[32]
林英华, 黄庆海, 刘骅, 等. 长期耕作与长期定位施肥对农田土壤动物群落多样性的影响[J]. 中国农业科学, 2010, 43(11):2261-2269.
LIN Y H, HUANG Q H, LIU H, et al. Effect of long-term cultivation and fertilization on community diversity of cropland soil animals[J]. Sci Agric Sin, 2010, 43(11):2261-2269.DOI: 10.3864/j.issn.0578-1752.2010.11.009.
[33]
孙元, 邵红涛, 薛春梅, 等. 添加氮对我国森林生态系统生物多样性的影响研究进展[J]. 黑龙江大学工程学报, 2013, 4(2):33-37.
SUN Y, SHAO H T, XUE C M, et al. Advance of nitrogen deposition on biodiversity in forest ecosystem in China[J]. J Eng Heilongjiang Univ, 2013, 4(2):33-37.DOI: 10.13524/j.2095-008x.2013.02.003.
[34]
张燕, 张阿娟, 罗如熠, 等. 土壤跳虫对氮磷养分响应的研究进展[J]. 应用生态学报, 2022, 33(9):2585-2592.
ZHANG Y, ZHANG A J, LUO R Y, et al. Response of soil Collembola to nitrogen and phosphorus deposition:a review[J]. Chin J Appl Ecol, 2022, 33(9):2585-2592.DOI: 10.13287/j.1001-9332.202209.034.
[35]
肖辉林. 大气添加氮对森林土壤酸化的影响[J]. 林业科学, 2001, 37(4):111-116.
XIAO H L. Effects of atmospheric nitrogen deposition on forest soil acidification[J]. Sci Silvae Sin, 2001, 37(4):111-116.DOI: 10.3321/j.issn:1001-7488.2001.04.018.
[36]
RUSEK J. Biodiversity of Collembola and their functional role in the ecosystem[J]. Biodiversity and Conservation, 1998, 7(9):1207-1219.DOI: 10.1023/A:1008887817883.
[37]
JAEGER G, EISENBEIS G. pH-dependent absorption of solutions by the ventral tube of Tomocerus flavescens (Tullberg,1871) (Insecta,Collembola)[J]. Rev Ecol Biol, 1984(21):519-531.
[38]
薛璟花, 莫江明, 李炯, 等. 添加氮增加对土壤微生物的影响[J]. 生态环境, 2005, 14(5):777-782.
XUE J H, MO J M, LI J, et al. Effects of nitrogen deposition on soil microorganism[J]. Ecol Environ Sci, 2005, 14(5):777-782.DOI: 10.16258/j.cnki.1674-5906.2005.05.032.
[39]
郭超, 王霖娇. 添加氮对森林生态系统土壤微生物、酶活性以及细根生产与周转的影响研究进展[J]. 生态学杂志, 2021, 40(11):3730-3741.
GUO C, WANG L J. Effects of nitrogen deposition on soil microbes,enzyme activities,fine root production and turnover in forest ecosystems:a review[J]. Chin J Ecol, 2021, 40(11):3730-3741.DOI: 10.13292/j.1000-4890.202111.010.
[40]
MEBES K H, FILSER J. Does the species composition of Collembola affect nitrogen turnover?[J]. Appl Soil Ecol, 1998, 9(1/2/3):241-247.DOI: 10.1016/s0929-1393(97)00051-6.
[41]
BERG M P, VERHOEF H A. Ecological characteristics of a nitrogen-saturated coniferous forest in The Netherlands[J]. Biol Fertil Soils, 1998, 26(4):258-267.DOI: 10.1007/s003740050377.
[42]
WALLENDA T, KOTTKE I. Nitrogen deposition and ectomycorrhizas[J]. New Phytol, 1998, 139(1):169-187.DOI: 10.1046/j.1469-8137.1998.00176.x.
[43]
LILLESKOV E A, FAHEY T J, LOVETT G M. Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient[J]. Ecol Appl, 2001, 11(2):397-410.DOI: 10.1890/1051-0761(2001)011[0397:efacco]2.0.co;2.
[44]
李鹏, 李玉浸, 杨殿林, 等. 不同施氮处理对菠菜土壤硝态氮累积的影响[C]// 第十届中国科协年会论文集(二).郑州, 2008:1181-1186.
[45]
鲁显楷, 莫江明, 张炜, 等. 模拟大气添加氮对中国森林生态系统影响的研究进展[J]. 热带亚热带植物学报, 2019, 27(5):500-522.
LU X K, MO J M, ZHANG W, et al. Effects of simulated atmospheric nitrogen deposition on forest ecosystems in China:an overview[J]. J Trop Subtrop Bot, 2019, 27(5):500-522.DOI: 10.11926/jtsb.4113.
[46]
GUNDERSEN P, EMMETT B A, KJØNAAS O J, et al. Impact of nitrogen deposition on nitrogen cycling in forests:a synthesis of NITREX data[J]. For Ecol Manag, 1998, 101(1/2/3):37-55.DOI: 10.1016/S0378-1127(97)00124-2.
[47]
徐国良, 莫江明, 周国逸. N沉降下土壤动物群落的响应:1年研究结果总述[J]. 北京林业大学学报, 2006, 28(3):1-7.
XU G L, MO J M, ZHOU G Y. Effects of N deposition on soil fauna:a summary for one year[J]. J Beijing For Univ, 2006, 28(3):1-7.DOI: 10.3321/j.issn:1000-1522.2006.03.001.
[48]
谢致敬, 常亮, STEFAN S, 等. 长白山森林生态系统凋落物层和土壤层跳虫物种多样性和功能多样性对海拔梯度的响应[J]. 生态学报, 2022, 42(9):3471-3481.
XIE Z J, CHANG L, STEFAN S, et al. Taxonomic and functional diversity of Collembola in litter and soil along an altitudinal gradient at Changbai Mountain,China[J]. Acta Ecol Sin, 2022, 42(9):3471-3481.DOI: 10.5846/stxb202104221060.
[49]
林青战. 牡丹区土壤动物多样性研究及弹尾目等节跳科昆虫系统分类[D]. 哈尔滨: 东北农业大学, 2016.
LIN Q Z. Diversity research of soil animals and the systematics of Collembola:isotomadea in Mudan district[D]. Harbin: Northeast Agricultural University 2016.

基金

国家自然科学基金项目(32071594)
国家重点研发计划(2021YFD2200403)
江苏省林业局揭榜挂帅项目(LYKJ【2022】01)
江苏省林业局造林专项项目(【2021-2022】)

编辑: 王国栋
PDF(1883 KB)

Accesses

Citation

Detail

段落导航
相关文章

/