安徽省土地利用/覆被时空变化及其驱动因素分析

李长爱, 刘玲, 邱冰, 聂存明, 宁丽丽, 李亚亮, 王慧, 刘星宇, 杨素慧

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (5) : 213-223.

PDF(2821 KB)
PDF(2821 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (5) : 213-223. DOI: 10.12302/j.issn.1000-2006.202210017
研究论文

安徽省土地利用/覆被时空变化及其驱动因素分析

作者信息 +

Spatial-temporal change and driving factors of land use/cover in Anhui Province

Author information +
文章历史 +

摘要

【目的】 研究安徽省土地利用/覆被变化(LUCC)及其驱动因素,为安徽省国土资源利用与管理提供理论参考。【方法】 基于安徽省1995—2020年6期30 m分辨率的Landsat系列遥感影像土地利用/覆被分类数据,利用土地利用/覆被类型结构与空间分布、转移矩阵、动态变化及土地利用程度综合指数和其聚类,分析安徽省土地利用/覆被类型时空变化特征;选取13个影响LUCC的驱动因子,采用主成分分析法(PCA)进行定量分析。【结果】 1995—2020年安徽省土地利用/覆被类型面积耕地排首位,其次是林地、建设用地;25年间耕地、林地、草地分别减少了3 826.6、164.7和78.5 km2,建设用地、水域、未利用地分别增加了3 895.9、160.9、16.2 km2,耕地与建设用地相互转移面积最大。2005—2015年耕地、林地、草地减少与建设用地增加的趋势最明显,2015—2020年建设用地转移为耕地的面积大增。从土地利用程度综合指数变化率可知,25年间经济发展较快的合肥市土地利用综合指数变化率(2.18%)、芜湖市(1.60%)及矿业城市铜陵市(3.83%)、淮北市(1.60%)等高于以山区、丘陵地形为主的黄山市(0.42%)、六安市(0.66%)等。2020年各市土地利用程度综合指数聚类结果分为3类:亳州市、阜阳市等土地开发利用程度最高,为第1类;滁州市、马鞍山市等中等,为第2类;池州市、黄山市等最低,为第3类。单一与综合LUCC动态度显示的趋势为2005年前较小,2005—2015年较大,2015年后又变小。除城镇化速度、经济发展、人民生活水平提高外,2015年以后的政策因素也是安徽省LUCC的主要驱动力。【结论】 随着安徽省经济、社会的发展,LUCC急剧增大,2005—2015年间有2 926.1 km2耕地被建设用地侵占。2015年后,得益于相关土地利用与生态政策的推行,LUCC综合动态度减小至0.05%,但仍存在耕地减少、建设用地增加的情况。因此,今后应根据安徽省LUCC特征及经济、社会、自然资源具体情况,深入实施基本农田保护及耕地占补平衡等合理利用开发土地资源的政策,促进安徽省可持续发展。

Abstract

【Objective】The study aims to determine land-use/cover changes (LUCC) and their driving factors in Anhui Province, and provide theoretical reference data for the use and management of land and resources in Anhui Province. 【Method】Based on the classification data of Landsat series remote sensing images with a resolution of 30 m in Anhui Province, the spatial and temporal changes of land use/cover types in Anhui Province in a 25 year period from 1995 to 2020 were analyzed using the structure, spatial distribution, transfer matrix, dynamic change of land use/cover types, and comprehensive index of land use degrees, as well as its cluster analysis. The principal component analysis(PCA) was used to analyze the 13 factors that affect LUCC. 【Result】The cultivated land ranked first, followed by forest land and construction land in Anhui Province from 1995 to 2020. Cultivated land, forest land and grassland decreased by 3 826.6, 164.7 and 78.5 km2, respectively, while the construction land, water area and unutilized land increased by 3 895.9, 160.9 and 16.2 km2, respectively. The transfer area between the cultivated and constructed land was the largest. From 2005 to 2015, the decrease in the cultivated land, forest land and grassland and the increase in construction land showed the most obvious trends. From 2015 to 2020, the area of construction land converted to the cultivated land increased significantly. The change rates of the comprehensive index of land use degrees over 25 years in Hefei (2.18%) and Wuhu (1.60%), and the mining cities of Tongling (3.83%) and Huaibei (1.60%) were higher than those in Huangshan (0.42%) and Lu’an (0.66%), which feature mainly mountainous and hilly terrains. The results of the comprehensive index clustering analysis of the degree of land use in each city in 2020 were divided into three categories. The first category was Bozhou and Fuyang, which had the highest degrees of land development and utilization. The second category was Chuzhou, Ma’anshan, and other medium. The third category was Chizhou, Huangshan, and so on, which was the lowest. The dynamic attitude of the single and comprehensive LUCC was small before 2005, large from 2005 to 2015, and then decreased again after 2015. The results showed that the urbanization speed, economic development, and improvement in living standards and policy factors after 2015 were also the main driving forces of the LUCC in Anhui Province. 【Conclusion】With the economic and social development of Anhui Province from 2005 to 2015, LUCC increased sharply, and 2 926.1 km2 of the cultivated land was occupied by the construction land. After 2015, the implementation of relevant land use and ecological policies resulted in the reduction of the integrated dynamic degree of the LUCC to 0.05%. However, there was still a decrease in the cultivated land and an increase in the construction land. Therefore, in the future, according to the LUCC characteristics and the specific situation of the economy, society, and natural resources of Anhui Province, policies for the rational utilization and development of land resources, such as the basic farmland protection and the balance of farmland occupation and compensation, should be implemented to promote the sustainable development of Anhui Province.

关键词

土地利用/覆被变化 / 转移矩阵 / 驱动因素 / 安徽省

Key words

land use/cover change (LUCC) / transfer matrix / driving factor / Anhui Province

引用本文

导出引用
李长爱, 刘玲, 邱冰, . 安徽省土地利用/覆被时空变化及其驱动因素分析[J]. 南京林业大学学报(自然科学版). 2023, 47(5): 213-223 https://doi.org/10.12302/j.issn.1000-2006.202210017
LI Changai, LIU Ling, QIU Bing, et al. Spatial-temporal change and driving factors of land use/cover in Anhui Province[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(5): 213-223 https://doi.org/10.12302/j.issn.1000-2006.202210017
中图分类号: X171;S731   

参考文献

[1]
徐光来, 杨先成, 徐晓华, 等. 气候变暖背景下安徽省月NDVI动态变化研究[J]. 长江流域资源与环境, 2021, 30(2):397-406.
XU G L, YANG X C, XU X H, et al. Dynamic changes of monthly NDVI in Anhui Province under background of climate warming[J]. Resour Environ Yangtze Basin, 2021, 30(2):397-406.DOI: 10.11870/cjlyzyyhj202102014.
[2]
ALKAMA R, CESCATTI A. Biophysical climate impacts of recent changes in global forest cover[J]. Science, 2016, 351(6273):600-604.DOI: 10.1126/science.aac8083.
Changes in forest cover affect the local climate by modulating the land-atmosphere fluxes of energy and water. The magnitude of this biophysical effect is still debated in the scientific community and currently ignored in climate treaties. Here we present an observation-driven assessment of the climate impacts of recent forest losses and gains, based on Earth observations of global forest cover and land surface temperatures. Our results show that forest losses amplify the diurnal temperature variation and increase the mean and maximum air temperature, with the largest signal in arid zones, followed by temperate, tropical, and boreal zones. In the decade 2003-2012, variations of forest cover generated a mean biophysical warming on land corresponding to about 18% of the global biogeochemical signal due to CO2 emission from land-use change. Copyright © 2016, American Association for the Advancement of Science.
[3]
潘雯, 刘云慧, 武泽浩, 等. 不同发展情景下青海省土地利用布局及生物多样性变化模拟[J]. 生物多样性, 2022, 30(4):103-116.
PAN W, LIU Y H, WU Z H, et al. Simulation of changes in land use distribution and biodiversity under different development scenarios in Qinghai Province[J]. Biodivers Sci, 2022, 30(4):103-116.DOI: 10.17520/biods.2021425.
[4]
CARDINALE B J, DUFFY J E, GONZALEZ A, et al. Biodiversity loss and its impact on humanity[J]. Nature, 2012, 486(7401):59-67.DOI: 10.1038/nature11148.
[5]
周旺明, 王金达, 刘景双, 等. 三江平原不同土地利用方式对区域气候的影响[J]. 水土保持学报, 2005, 19(5):155-158.
ZHOU W M, WANG J D, LIU J S, et al. Influence of different land-use to regional climate in Sanjiang Plain[J]. J Soil Water Conserv, 2005, 19(5):155-158.DOI: 10.13870/j.cnki.stbcxb.2005.05.039.
[6]
BOYSEN L R, BROVKIN V, ARORA V K, et al. Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle[J]. Earth Syst Dynam, 2014, 5(2):309-319.DOI: 10.5194/esd-5-309-2014.
. Biogeophysical (BGP) and biogeochemical (BGC) effects of land-use and land cover change (LULCC) are separated at the global and regional scales in new interactive CO2 simulations for the 21st century. Results from four earth system models (ESMs) are analyzed for the future RCP8.5 scenario from simulations with and without land-use and land cover change (LULCC), contributing to the Land-Use and Climate, IDentification of robust impacts (LUCID) project. Over the period 2006–2100, LULCC causes the atmospheric CO2 concentration to increase by 12, 22, and 66 ppm in CanESM2, MIROC-ESM, and MPI-ESM-LR, respectively. Statistically significant changes in global near-surface temperature are found in three models with a BGC-induced global mean annual warming between 0.07 and 0.23 K. BGP-induced responses are simulated by three models in areas of intense LULCC of varying sign and magnitude (between −0.47 and 0.10 K). Modifications of the land carbon pool by LULCC are disentangled in accordance with processes that can lead to increases and decreases in this carbon pool. Global land carbon losses due to LULCC are simulated by all models: 218, 57, 35 and 34 Gt C by MPI-ESM-LR, MIROC-ESM, IPSL-CM5A-LR and CanESM2, respectively. On the contrary, the CO2-fertilization effect caused by elevated atmospheric CO2 concentrations due to LULCC leads to a land carbon gain of 39 Gt C in MPI-ESM-LR and is almost negligible in the other models. A substantial part of the spread in models' responses to LULCC is attributed to the differences in implementation of LULCC (e.g., whether pastures or crops are simulated explicitly) and the simulation of specific processes. Simple idealized experiments with clear protocols for implementing LULCC in ESMs are needed to increase the understanding of model responses and the statistical significance of results, especially when analyzing the regional-scale impacts of LULCC.\n
[7]
ARNETH A, SITCH S, PONGRATZ J, et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed[J]. Nat Geosci, 2017, 10(2):79-84.DOI: 10.1038/ngeo2882.
[8]
HE J J, ZHANG P Y. Evaluation of carbon emissions associated with land use and cover change in Zhengzhou City of China[J]. Reg Sustain, 2022, 3(1):1-11.DOI: 10.1016/j.regsus.2022.03.002.
[9]
VERBURG P H, CROSSMAN N, ELLIS E C, et al. Land system science and sustainable development of the earth system:a global land project perspective[J]. Anthropocene, 2015, 12:29-41.DOI: 10.1016/j.ancene.2015.09.004.
[10]
林坚, 周琳, 张叶笑, 等. 土地利用规划学30年发展综述[J]. 中国土地科学, 2017, 31(9):24-33.
LIN J, ZHOU L, ZHANG Y X, et al. Review on the development of land use planning science in recent three decades[J]. China Land Sci, 2017, 31(9):24-33.DOI: 10.11994/zgtdkx.20171027.145754.
[11]
邹大伟, 李孝玲, 康瑞存, 等. 基于Google Earth Engine的土地覆盖分类方法研究[J]. 测绘与空间地理信息, 2021, 44(S1):100-102,105,109.
ZOU D W, LI X L, KANG R C, et al. Research on land cover classification method based on google earth engine[J]. Geomat Spatial Inf Technol, 2021, 44(S1):100-102,105,109.
[12]
张德军, 颜玮, 陈志军, 等. 基于GF-1数据复杂地区地物类型提取探究[J]. 西南大学学报(自然科学版), 2021, 43(11):172-185.
ZHANG D J, YAN W, CHEN Z J, et al. GF-1 data-based extraction of land cover of complex areas[J]. J Southwest Univ (Nat Sci Ed), 2021, 43(11):172-185.DOI: 10.13718/j.cnki.xdzk.2021.11.020.
[13]
王臣立, 徐丹, 林文鹏. 红河哈尼梯田世界文化景观遗产的遥感监测与土地覆盖变化[J]. 生态环境学报, 2021, 30(2):233-241.
摘要
可下载PDF全文。
WANG C L, XU D, LIN W P. Remote sensing monitoring and land cover change of the world cultural landscape heritage in Honghe Hani Terrace,China[J]. Ecol Environ Sci, 2021, 30(2):233-241.DOI: 10.16258/j.cnki.1674-5906.2021.02.002.
[14]
马海云, 张林林, 魏学琼, 等. 2000—2015年西南地区土地利用与植被覆盖的时空变化[J]. 应用生态学报, 2021, 32(2):618-628.
摘要
西南地区是我国重要的生态资源区和生态脆弱区,在国家“绿水青山”战略发展中具有重要地位。本研究基于1 km空间分辨率的土地利用数据集,结合土地利用转移矩阵,定量分析2000—2015年间西南地区土地利用变化特征及其驱动力。并基于MODIS遥感植被指数,利用像元二分模型计算西南地区植被覆盖度,分析归一化植被指数(NDVI)和植被覆盖度的变化规律。结果表明: 研究期间,西南地区的主要地类是林地、农田和草地。建设用地面积增加5874 km<sup>2</sup>,增长率为55.8%;农田面积减少最多,下降6211 km<sup>2</sup>,其次是草地,减少2099 km<sup>2</sup>。2000—2015年间,西南地区建设用地的转入面积最多,主要由农田(贡献率68.2%)、林地(贡献率19.2%)和草地(贡献率13.1%)转化而来,转化的区域多靠近城区。农田的转出面积和转出率分别为7079 km<sup>2</sup>和2.2%,占所有转出类型面积的46.0%。林地多由草地(贡献率61.8%)转化而来,转化区域多分布在贵州中南部和云南西部等地。全区NDVI和植被覆盖度均呈显著增加趋势,说明研究区整体呈变绿趋势。其中,自然植被和农田的NDVI均显著增长,建设用地扩张地区的NDVI下降,说明自然植被和农田主导了该地区植被变化。通过残差分析发现,气候变化和人类活动对研究区变绿趋势的贡献显著。
MA H Y, ZHANG L L, WEI X Q, et al. Spatial and temporal variations of land use and vegetation cover in southwest China from 2000 to 2015[J]. Chin J Appl Ecol, 2021, 32(2):618-628.DOI: 10.13287/j.1001-9332.202102.017.
[15]
王奕璇, 张志斌, 王仁慈. 基于地理国情监测的兰州新区土地利用时空演变分析[J]. 甘肃农业大学学报, 2021, 56(1):149-159.
WANG Y X, ZHANG Z B, WANG R C. Analysis on the spatio-temporal evolution of land use in Lanzhou New District based on the national geographical monitoring data[J]. J Gansu Agric Univ, 2021, 56(1):149-159.DOI: 10.13432/j.cnki.jgsau.2021.01.020.
[16]
梁明, 聂拼, 陆胤昊, 等. 淮南市土地利用程度变化过程的时空演化特征[J]. 农业工程学报, 2019, 35(22):99-106.
LIANG M, NIE P, LU Y H, et al. Spatiotemporal evolution characteristics of land use intensity change process of Huainan[J]. Trans Chin Soc Agric Eng, 2019, 35(22):99-106.DOI: 10.11975/j.issn.1002-6819.2019.22.011.
[17]
艾敏, 景慧, 田禹东, 等. 近20年哈尔滨市呼兰区土地利用覆盖变化及驱动分析[J]. 测绘通报, 2022(7):124-128.
摘要
本文基于哈尔滨市呼兰区1998—2018年Landsat TM影像数据和社会经济数据,通过ENVI、ArcMap等软件,采用监督分类、土地利用变化模型、典型相关分析法等方法,科学系统地分析了1998—2010、2010—2018、1998—2018年3个不同时段的土地利用覆盖变化特征,并对土地利用覆盖变化驱动因素进行了分析。结果表明,哈尔滨市呼兰区20年间呈居民地和水域面积增加、耕地变化不大、林草不断减少的土地利用覆盖变化格局,且前8年的变化速度和幅度大于后12年。该区土地利用覆盖变化的影响因素包括自然环境因素、社会经济因素及人口因素。
AI M, JING H, TIAN Y D, et al. Analysis of land use and coverage change and driving force in Hulan District of Harbin City in recent 20 Years[J]. Bull Surv Mapp, 2022(7):124-128.DOI: 10.13474/j.cnki.11-2246.2022.0215.
[18]
李玉, 牛路, 赵泉华. 抚顺矿区1989—2019年土地利用/覆盖变化分析[J]. 测绘科学, 2021, 46(8):96-104,140.
LI Y, NIU L, ZHAO Q H. Analysis of land use/cover change in Fushun mining area from 1989 to 2019[J]. Sci Surv Mapp, 2021, 46(8):96-104,140.DOI: 10.16251/j.cnki.1009-2307.2021.08.014.
[19]
DU X Z, ZHAO X A, LIANG S L, et al. Quantitatively assessing and attributing land use and land cover changes on China’s loess plateau[J]. Remote Sens, 2020, 12(3):353.DOI: 10.3390/rs12030353.
The global land surface cover is undergoing extensive changes in the context of global change, especially in the Loess Plateau, where ecological restoration policies have been vigorously implemented since 2000. Evaluating the impact of these policies on land cover is of great significance for regional sustainable development. Nonetheless, there are few quantitative assessment studies of the impact of ecological restoration policies on land use and land cover change (LULCC). In this study, a relative contribution conceptual model (RCCM) was used to explore the contribution of the policies to LULCC under the influence of natural background change, which was based on the Markov chain and the future land use simulation (FLUS) model. The results show that LULCC is influenced by ecological restoration policies and the natural environment, of which the policies contribute about 72.37% and natural change contribute about 27.63%. Ecological restoration policies have a profound impact on LULCC, changing the original direction of LULCC greatly. Additionally, these policies regulate the pattern of LULCC by controlling the amount of cropland as a rebalanced leverage. These findings provide useful information for facilitating sustainable ecological development in the Loess Plateau and theoretically supporting environmental decision-making.
[20]
国务院关于《淮河生态经济带发展规划》的批复国函〔2018〕126号. [2018-10-18]. https://www.gov.cn/zhengce/content/2018-10/18/content_5332105.htm
[21]
中共中央国务院印发《长江三角洲区域一体化发展规划纲要》. [2019-12-01]. https://www.gov.cn/zhengce/2019-12/01/content_5457442.htm
[22]
季军民, 刘庆广, 王爱. 合肥市土地利用变化及其生态系统响应研究[J]. 生态科学, 2018, 37(3):91-95.
JI J M, LIU Q G, WANG A. Study on land use change and its ecosystem response in Hefei[J]. Ecol Sci, 2018, 37(3):91-95.DOI: 10.14108/j.cnki.1008-8873.2018.03.012.
[23]
GUAN J, YU P. Does coal mining have effects on land use changes in a coal resource-based city?evidence from Huaibei City on the north China plain[J]. Int J Environ Res Public Health, 2021, 18(21):11616.DOI: 10.3390/ijerph182111616.
Continuous coal mining results in dramatic regional land use change, and significantly influences the sustainable development of coal resource-based cities. Present studies pay little attention to the characteristics and regularities of land use change in coal resource-based cities, caused by underground coal mining in high groundwater areas. Based on the Landsat remote sensing images of 1999, 2000, 2010, and 2018 of Huaibei City, a typical coal resource-based city of a high ground water area on the North China Plain, this paper applies the dynamic degree and transition matrix of land use to analyze the land use change characteristics, and identify the regularity between land use type and coal mining production in this coal resource-based city. Results show that the land use change in the research area presents an overall characteristic of a constant increase in water area, urban construction land, and rural settlement land, and a continuous decrease in cultivated land. Cultivated land is converted into a water area, urban construction land, and rural settlement land, and rural settlement land and cultivated land are converted bidirectionally. The land use change in this coal resource-based city demonstrates significant reliance on coal resources, and coal mining is significantly related to the area of cultivated land, water area, and rural settlement land, which demonstrates that continuous large-scale coal mining results in damage to cultivated land, a decrease in rural settlement land, and an increase in water area. The research result contributes to the sustainable land use of coal resource-based cities.
[24]
WANG X T, HAN J Z, LIN J. Response of land use and net primary productivity to coal mining:a case study of Huainan City and its mining areas[J]. Land, 2022, 11(7):973.DOI: 10.3390/land11070973.
The terrestrial ecosystem carbon cycle is essential to the global carbon cycle. Mining activities have seriously damaged the terrestrial ecosystem and destroyed the carbon sequestration ability of vegetation, which is of great significance to studying the effect of coal mining on land structure change and carbon sink function in cities and mining areas. However, the existing research lacks the targeted analysis of the carbon sink level of the mining area combined with the mining data. Based on the coal-mining information, land-use data, and MODIS NPP data, this study analyzed the spatio-temporal change characteristics of land use and NPP in Huainan City and its mining areas from 2001 to 2020. The results showed that: (1) 22.5% of the land types in the mining area have changed, much higher than 3.2% in Huainan; 40.08 km2 of the cropland in the mining area has been transformed into waterbodies, seriously affecting regional food security. (2) NPP fluctuates with rainfall, has a weak correlation with temperature, and is restricted by coal-mining factors. The average NPP of most coal mines is significantly lower than that of non-mining areas. The NPP of Huainan City showed an overall growth trend of 2.20 g/(m2 × a), which was much higher than the average value of 0.43 g/(m2 × a) in the mining area. Especially in the Guqiao mine, the difference in NPPslope before and after mining was as high as 16.92 g/(m2 × a). (3) The probability integral method was used to estimate that 195.16 km2 of land in Huainan would be damaged by mining in 2020. The distribution of damage degree was negatively correlated with NPPslope, which meant the more serious the damage was, the less NPPslope was. This study revealed the characteristics of land-use change and NPP spatio-temporal response in resource-based cities and mining-disturbed areas. It quantitatively estimated the impact of mining activities on regional carbon sink function. It can provide theory and data support for mining areas to carry out ecological protection and restoration, improve the environmental service function of resource-based cities, and formulate sustainable development strategies.
[25]
彭建, 吴见, 徐飞雄, 等. 基于价值评估的黄山市生境质量时空演变特征分析[J]. 生态学报, 2021, 41(2):665-679.
PENG J, WU J, XU F X, et al. Spatio-temporal evolution characteristics of habitat quality in typical tourism cities based on value evaluation:a case study of Huangshan[J]. Acta Ecol Sin, 2021, 41(2):665-679.DOI: 10.5846/stxb201904020639.
[26]
吴见, 侯功兰, 刘民士, 等. 安徽省土地利用十年动态变化遥感监测[J]. 南京林业大学学报(自然科学版), 2014, 38(2):147-150.
WU J, HOU G L, LIU M S, et al. Land use dynamic monitoring for ten years by remote sensing of Anhui Province[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(2):147-150.DOI: 10.3969/j.issn.1000-2006.2014.02.028.
[27]
吴楠, 陈红枫, 冯朝阳, 等. 基于土地覆被变化的安徽省生境质量时空演变特征[J]. 长江流域资源与环境, 2020, 29(5):1119-1127.
WU N, CHEN H F, FENG C Y, et al. Spatio-temporal evolution characteristics of habitat quality based on land cover change in Anhui Province[J]. Resour Environ Yangtze Basin, 2020, 29(5):1119-1127.DOI: 10.11870/cjlyzyyhj202005007.
[28]
黄安东, 赵明松, 郜敏, 等. 1980—2020年安徽省土地利用时空演化特征[J]. 科学技术与工程, 2022, 22(11):4627-4635.
HUANG A D, ZHAO M S, GAO M, et al. Characteristics of spatio-temporal evolution of land use in Anhui Province from 1980 to 2020[J]. Sci Technol Eng, 2022, 22(11):4627-4635.DOI: 10.3969/j.issn.1671-1815.2022.11.046.
[29]
赵冰雪, 王雷, 程东亚. 安徽省气象数据空间插值方法比较与分布特征[J]. 水土保持研究, 2017, 24(3):141-145.
ZHAO B X, WANG L, CHENG D Y. Comparison of spatial interpolation method for meteorological data and distribution characteristic in Anhui Province[J]. Res Soil Water Conserv, 2017, 24(3):141-145.DOI: 10.13869/j.cnki.rswc.2017.03.026.
[30]
阮新民, 陈曦, 岳伟, 等. 气候变化对安徽省两熟制粮食作物物候期及周年气候资源分配与利用的影响[J]. 中国生态农业学报, 2021, 29(2):355-365.
RUAN X M, CHEN X, YUE W, et al. Effects of climate change on phenophases and annual climate resources distribution and utilization of major food crops under a double-cropping system in Anhui Province[J]. Chin J Eco Agric, 2021, 29(2):355-365.DOI: 10.13930/j.cnki.cjea.200459.
[31]
柴立夫, 田莉, 奥勇, 等. 人类活动干扰对青藏高原植被覆盖变化的影响[J]. 水土保持研究, 2021, 28(6):382-388.
CHAI L F, TIAN L, AO Y, et al. Influence of human disturbance on the change of vegetation cover in the Tibetan Plateau[J]. Res Soil Water Conserv, 2021, 28(6):382-388.DOI: 10.13869/j.cnki.rswc.20210527.001.
[32]
胡悦琴, 马燕飞, 张伟科. 中国陆地区土地利用/覆被时空格局变化及驱动力分析[J]. 农学学报, 2020, 10(4):26-35.
摘要
为了揭示21世纪初的10年,中国陆地区域土地利用格局的时空变化,基于全球30 m地表覆盖遥感数据产品(GlobeLand30),采用定性分析与定量分析相结合的方法,在中国陆地区域和流域尺度上,对10年间的土地利用转移矩阵与土地利用动态度进行实证研究。结果表明:研究区内土地利用类型主要以草地、森林和耕地为主,其中草地、耕地和湿地面积不断减少,分别减少了140413、20480、692 km <sup>2</sup>,裸地和人造地表的面积增长的比较明显,增长了99645、26302 km <sup>2</sup>;草地—裸地、草地—森林之间的转化较为剧烈,灌木地和人造地表的变化速率最大,达1.80%。各子流域内,土地利用类型时空格局变化不同,大部分流域以草地、耕地和森林为主。区域内草地、裸地和人造地表类型的变化明显,人为因素对土地利用格局的影响较大且活跃,自然因素的影响较为持久和稳定。
HU Y Q, MA Y F, ZHANG W K. Land use/cover in China’s land areas:spatio-temporal pattern change and driving forces analysis[J]. J Agric, 2020, 10(4):26-35.
[33]
邢颖, 高礼安, 张杭杭. 基于主成分分析的都匀市土地利用动态变化及驱动力分析[J]. 中国资源综合利用, 2018, 36(12):67-72.
XING Y, GAO L A, ZHANG H H. Dynamic change and driving force analysis of land use in Duyun City based on principal component analysis[J]. China Resour Compr Util, 2018, 36(12):67-72.DOI: 10.3969/j.issn.1008-9500.2018.12.021.
[34]
乔伟峰, 盛业华, 方斌, 等. 基于转移矩阵的高度城市化区域土地利用演变信息挖掘:以江苏省苏州市为例[J]. 地理研究, 2013, 32(8):1497-1507.
摘要
深入分析土地利用转移矩阵和地类转移概率矩阵,提出利用连续分时段土地利用转移矩阵求算总时段转移矩阵的方法,进而改进地类变化量和地类动态度计算模型,提出了地类转移无序度的概念、含义并构造计算模型。以苏州市为例进行实证分析,结果显示:1999-2008 年苏州市耕地的总变化量最大,其次是其它农用地和独立工矿用地;其中耕地和独立工矿用地的主导变化是净变化,而其它农用地以交换变化为主;10 年间位列各地类动态度前三位的依次为独立工矿用地、其它农用地和建制镇用地,综合动态度在2004 年和2002 年最大,1999-2001 年较低;地类转移无序度的前二位是其它农用地和交通运输用地,其它地类该值均不高,说明苏州市10 年间的土地利用演化较为有序。研究表明,基于转移矩阵的相关模型的改进和构造深入挖掘了土地利用演变信息,有利于对土地利用变化进行深入研究。
QIAO W F, SHENG Y H, FANG B, et al. Land use change information mining in highly urbanized area based on transfer matrix:a case study of Suzhou,Jiangsu Province[J]. Geogr Res, 2013, 32(8):1497-1507.
[35]
庄大方, 刘纪远. 中国土地利用程度的区域分异模型研究[J]. 自然资源学报, 1997, 12(2):105-111.
ZHUANG D F, LIU J Y. Study on the model of regional differentiation of land use degree in China[J]. J Nat Resour, 1997, 12(2):105-111.
[36]
于明雪, 孙建国, 杨维涛, 等. 基于贝叶斯层次时空模型的甘肃省土地利用程度演变分析[J]. 地理科学, 2022, 42(5):918-925.
摘要
以甘肃省为例,在基于Google Earth Engine (GEE)平台实现1995年、2000年、2005年、2010年、2015年和2020年土地变化监测的基础上,利用贝叶斯层次时空模型(BHM)分析土地利用程度的时空变化特征。结果表明:① 研究期间内甘肃省土地利用程度呈增长趋势,其中1995―2000年和2010―2015年增长速度较明显;② 土地利用程度空间格局“东高西低”,热点区域主要分布在陇中、陇东和陇南地区;③ 土地利用程度局部变化呈现明显区域差异,整体表现为“东弱西强”,局部变化热点区域主要分布在河西地区;④ 影响土地利用程度变化的主要因素是经济规模和产业结构,其中经济因素影响程度最高。
YU M X, SUN J G, YANG W T, et al. Evolution of land use degree in Gansu Province based on Bayesian hierarchical spatio-temporal model[J]. Sci Geogr Sin, 2022, 42(5):918-925.DOI: 10.13249/j.cnki.sgs.2022.05.017.

Land use change has always been an important content of global change research. An in-depth understanding of the temporal and spatial characteristics of land use change can not only provide a direct decision-making basis for the optimal allocation of land resources, but also provide important data support for regulating ecosystem management and improving human social well-being. However, previous studies on land use change lack the analysis of the spatio-temporal coupling process. Taking Gansu Province as an example, based on the Google Earth Engine (GEE) platform to achieve land change monitoring in 1995, 2000, 2005, 2010, 2015 and 2020, and uses Bayesian hierarchical spatio?temporal model (BHM) to analyze the characteristics of temporal and spatial changes of land use degree. The results show that: 1) During the study period, the land use degree of Gansu Province showed an increasing trend, among which the growth rate was obvious from 1995 to 2000 and 2010 to 2015; 2) The spatial pattern of land use degree is “high in the east and low in the west”, hot spots mainly distributed in Longzhong, Longdong and Longnan regions; 3) The local changes of land use degree show obvious regional differences, and the overall performance is “weak in the east and strong in the west”. The hot spots of local changes are mainly distributed in the Hexi region; 4) The main factors affecting changes of land use degree are economic scale and industrial structure, among which economic factors have the highest degree of influence.

[37]
钟凯文, 孙彩歌, 解靓. 基于GIS的广州市土地利用遥感动态监测与变化分析[J]. 地球信息科学学报, 2009, 11(1):111-116.
摘要
以1997、2003年广州市的Landsat TM影像为基本数据源,在遥感和地理信息系统处理软件的支持下,经过几何纠正、图像裁剪和图像增强处理后,采用最大似然比法结合人工目视解译对影像进行了识别分类,获得了广州市两个时相的土地利用分类数据,并进行了分类精度评价.然后建立了土地利用转移矩阵,并利用数值统计的方法,从不同角度分析了1997~2003年广州市土地利用变化的过程,包括土地利用变化的数量、速度、空间转移及其区域差异等.另外,经济发展、人口的增长、城市化建设等因素是广州市土地利用变化的主要驱动力. &nbsp;
ZHONG K W, SUN C G, XIE L. The dynamic monitoring of land use change in Guangzhou based on RS and GIS[J]. J Geo Inf Sci, 2009, 11(1):111-116. DOI:10.3969/j.issn.1560-8999.2009.01.017.
[38]
陈亚军, 付保红, 邱玥. 基于RS-GIS的昆明市土地利用变化及驱动力分析[J]. 云南地理环境研究, 2018, 30(6):65-71.
CHEN Y J, FU B H, QIU Y. Analysis of land use change and driving forces in Kunming based on RS-GIS[J]. Yunnan Geogr Environ Res, 2018, 30(6):65-71.DOI: 10.3969/j.issn.1001-7852.2018.06.009.
[39]
赵慧, 汪云甲. 影响ETM影像土地利用/覆盖分类精度因素的研究[J]. 遥感技术与应用, 2012, 27(4):600-608.
ZHAO H, WANG Y J. Research on the factors affecting the classification accuracy of ETM remote sensing image land cover/use[J]. Remote Sens Technol Appl, 2012, 27(4):600-608.

基金

国家自然科学基金面上项目(31971721)
安徽省高校重点研究项目(2022AH051544)
安徽省高校重点研究项目(SK2021A0571)

编辑: 郑琰燚
PDF(2821 KB)

Accesses

Citation

Detail

段落导航
相关文章

/