[1] |
LIANG Q K, XIANG S, HU Y C, et al. PD2SE-Net: computer-assisted plant disease diagnosis and severity estimation network[J]. Comput Electron Agric, 2019, 157(C):518-529.DOI: 10.1016/j.compag.2019.01.034.
|
[2] |
MARTINELLI F, SCALENGHE R, DAVINO S, et al. Advanced methods of plant disease detection: a review[J]. Comput Electron Agric, 2018, 145:311-318.DOI: 10.1016/j.compag.2018.01.009.
|
[3] |
FERENTINOS K P. Deep learning models for plant disease detection and diagnosis[J]. Comput Electron Agric, 2018, 145:311-318.DOI: 10.1016/j.compag.2018.01.009.
|
[4] |
周宏威, 姜钦啸, 刘洋, 等. 树木病虫害缺陷精准检测方法的综述和展望[J]. 昆虫学报, 2020, 63(9): 1145-1152.
|
|
ZHOU H W, JIANG Q X, LIU Y, et al. Review and prospects of accurate detection methods for wood defects caused by diseases and pests[J]. Acta Entomol Sin, 2020, 63(9):1145-1152.DOI: 10.16380/j.kcxb.2020.09.012.
|
[5] |
肖志云, 刘洪. 小波域马铃薯典型虫害图像特征选择与识别[J]. 农业机械学报, 2017, 48(9): 24-31.
|
|
XIAO Z Y, LIU H. Features selection and recognition of potato typical insect pest images in wavelet domain[J]. Trans Chin Soc Agric Mach, 2017, 48(9):24-31.DOI: 10.6041/j.issn.1000-1298.2017.09.003.
|
[6] |
SCHOR N, BECHAR A, IGNAT T, et al. Robotic disease detection in greenhouses: combined detection of powdery mildew and tomato spotted wilt virus[J]. IEEE Robotics Autom Lett, 2016, 1(1):354-360.DOI: 10.1109/LRA.2016.2518214.
|
[7] |
党满意, 孟庆魁, 谷芳, 等. 基于机器视觉的马铃薯晚疫病快速识别[J]. 农业工程学报, 2020, 36(2): 193-200.
|
|
DANG M Y, MENG Q K, GU F, et al. Rapid recognition of potato late blight based on machine vision[J]. Trans Chin Soc Agric Eng, 2020, 36(2):193-200.DOI: 10.11975/j.issn.1002-6819.2020.02.023.
|
[8] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[G]// IEEE Comference on Computer Vision and Pattern Recognition, 2016: 770-778.DOI: 10.1109/CVPR.2016.90.
|
[9] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2022-02-01].http:arxiv.org/abs/1409.1556. DOI: 10.48550/arXiv.1409.1556.
|
[10] |
IOANNIDOU A, CHATZILARI E, NIKOLOPOULOS S, et al. Deep learning advances in computer vision with 3D data: a survey[J]. ACM Comput Surv, 2018, 50(2):1-38.DOI: 10.1145/3042064.
|
[11] |
FAN X J, LUO P, MU Y E, et al. Leaf image based plant disease identification using transfer learning and feature fusion[J]. Comput Electron Agric, 2022, 196:106892.DOI: 10.1016/j.compag.2022.106892.
|
[12] |
MOHANTY S P, HUGHES D P, SALATHÉ M. Using deep learning for image-based plant disease detection[J]. Front Plant Sci, 2016, 7:1419.DOI: 10.3389/fpls.2016.01419.
|
[13] |
李鑫然, 李书琴, 刘斌. 基于改进Faster R_CNN的苹果叶片病害检测模型[J]. 计算机工程, 2021, 47(11): 298-304.
|
|
LI X R, LI S Q, LIU B. Apple leaf diseases detection model based on improved faster R_CNN[J]. Comput Eng, 2021, 47(11):298-304.DOI: 10.19678/j.issn.1000-3428.0059290.
|
[14] |
刘延鑫, 王俊峰, 杜传印, 等. 基于 YOLOv3 的多类烟草叶部病害检测研究[J]. 中国烟草科学, 2022, 43(2): 94-100.
|
|
LIU Y X, WANG J F, DU C Y, et al. Study on detection of various tobacco leaf diseases based on YOLOv 3[J]. China Tobacco Science, 2022, 43(2):94-100. DOI:10.13496/j.issn.1007-5119.2022.02.015.
|
[15] |
WANG J, YU L Y, YANG J, et al. DBA_SSD: a novel end-to-end object detection algorithm applied to plant disease detection[J]. Information, 2021, 12(11):474.DOI: 10.3390/info12110474.
|
[16] |
WANG H Q, SHANG S Q, WANG D W, et al. Plant disease detection and classification method based on the optimized lightweight YOLOv5 model[J]. Agriculture, 2022, 12(7):931.DOI: 10.3390/agriculture12070931.
|
[17] |
SINGH D, JAIN N, JAIN P, et al. PlantDoc: a dataset for visual plant disease detection[R]// Association for Computing Machinery. Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. New York, USA, IEEE, 2019.DOI: 10.1145/3371158.3371196.
|
[18] |
WU X P, ZHAN C, LAI Y K, et al. Ip102: a large-scale benchmark dataset for insect pest recognition[R]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach,CA, USA: IEEE 2019.DOI: 10.1109/CVPR.2019.00899.
|
[19] |
ZHANG Q, LIU Y Q, GONG C Y, et al. Applications of deep learning for dense scenes analysis in agriculture: a review[J]. Sensors (Basel), 2020, 20(5):1520.DOI: 10.3390/s20051520.
|
[20] |
WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[M]// Computer Vision-ECCV 2018.Cham: Springer International Publishing, 2018:3-19.DOI: 10.1007/978-3-030-01234-2_1.
|
[21] |
REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2022-02-01].http:arxiv.org/abs/1804.02767. 2018. DOI: 10.48550/arXiv.180402767.
|
[22] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[EB/OL]. [2022-02-01]http:arxiv.org/abs/2004.10934. DOI: 10.48550/arXiv.2004.10934.
|
[23] |
GE Z, LIU S T, WANG F, et al. Yolox: exceeding yolo series in 2021[EB/OL]. [2022-02-01].http:arxiv.org/abs/2107.08430..DOI: 10.48550/arXiv.2107.08430.
|