南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3): 45-55.doi: 10.12302/j.issn.1000-2006.202210031
所属专题: 牡丹培育与应用研究
• 专题报道:牡丹培育与应用研究(执行主编 李维林 张金池) • 上一篇 下一篇
郭丽丽1(), 张晨洁1, 王菲2, 沈佳佳1, 张凯月1, 何丽霞3, 郭琪1, 侯小改1,*()
收稿日期:
2022-10-24
修回日期:
2022-12-04
出版日期:
2023-05-30
发布日期:
2023-05-25
通讯作者:
侯小改
基金资助:
GUO Lili1(), ZHANG Chenjie1, WANG Fei2, SHEN Jiajia1, ZHANG Kaiyue1, HE Lixia3, GUO Qi1, HOU Xiaogai1,*()
Received:
2022-10-24
Revised:
2022-12-04
Online:
2023-05-30
Published:
2023-05-25
Contact:
HOU Xiaogai
摘要:
【目的】植物根际微生物群落由土壤环境和根系代谢活动共同作用产生,在植物生长发育过程中发挥重要功能。解析牡丹野生种在引种地根际土壤细菌群落特征,对有效利用微生物资源和保护野生植物种质资源具有重要的理论意义,为改良牡丹野生种的土壤环境、实现优质种质资源广谱性种植奠定基础。【方法】应用MiSeq高通量测序技术对大花黄牡丹(Paeonia ludlowii)、狭叶牡丹(P. potaninii)、紫牡丹(P. delavayi)、黄牡丹(P. lutea)、紫斑牡丹(P. rockii)、杨山牡丹(P. ostii)、四川牡丹(P. decomposita)、稷山牡丹(P. jishanensis)和卵叶牡丹(P. qiui)9个牡丹野生种根际土壤样品进行16S rRNA基因测序,并分析其与理化指标的相关性。【结果】高通量测序共获得606 536条序列和99个OTU聚类,隶属于24门、84纲、154目、280科和603属。Alpha多样性分析表明杨山牡丹根际微生物群落包含的物种数目最高,Beta分析发现四川牡丹、紫斑牡丹、黄牡丹、杨山牡丹、紫牡丹和大花黄牡丹根际土壤中细菌群落结构更为相似。细菌群落组成分析结果表明:根际土壤样本的核心优势细菌群落主要由变形菌门(Proteobatteria)、酸杆菌门(Acidobacteria)、放线菌门(Actinobacteria)和绿弯菌门(Chloroflexi)组成。酸杆菌门、绿弯菌门、硝化螺旋菌门(Nitrospirae)、芽单胞菌门(Gemmatimonadetes)、亚硝化螺菌属(Nitrosospira)和假单胞菌属(Pseudomonas)等有益菌种在不同野生种中存在显著差异。根际细菌群落功能预测多集中在代谢、遗传信息处理和环境信息处理方面。牡丹野生种根际细菌群落受土壤有机质和速效钾含量影响较大。【结论】不同野生种根际土壤细菌群落结构不同,细菌群落的形成与牡丹种类存在显著相关性,有益菌门/属的富集,对植株生长具有促进作用。今后可有效利用根际微生物资源以改良牡丹野生种的土壤环境,实现优质种质资源广谱性种植,为野生种质资源的保护奠定基础。
中图分类号:
郭丽丽,张晨洁,王菲,等. 牡丹野生种根际土壤细菌群落特征分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 45-55.
GUO Lili, ZHANG Chenjie, WANG Fei, SHEN Jiajia, ZHANG Kaiyue, HE Lixia, GUO Qi, HOU Xiaogai. Analysis of bacterial community characteristics in the rhizosphere soil of wild tree peony[J].Journal of Nanjing Forestry University (Natural Science Edition), 2023, 47(3): 45-55.DOI: 10.12302/j.issn.1000-2006.202210031.
表1
牡丹野生种根际土壤的理化性质"
种 species | pH | 有机质含量/ (g·kg-1) organic matter content | 全氮含量/ (g·kg-1) total nitrogen content | 速效磷含量/ (mg·kg-1) available phosphorus content | 速效钾含量/ (mg·kg-1) available potassium content |
---|---|---|---|---|---|
四川牡丹P. decomposita | 8.27±0.05 bc | 10.04±0.61 a | 0.52±0.06 a | 4.33±0.19 e | 115.09±4.05 cd |
紫斑牡丹P. rockii | 8.22±0.00 bc | 9.78±2.35 a | 0.29±0.01 c | 5.28±0.48 e | 121.20±1.81 c |
黄牡丹P. lutea | 8.16±0.02 c | 6.08±0.98 b | 0.49±0.06 a | 17.29±0.44 a | 149.12±4.95 b |
卵叶牡丹P. qiui | 8.16±0.03 c | 7.07±0.60 ab | 0.42±0.01 abc | 13.10±0.29 b | 88.73±5.29 e |
杨山牡丹P. ostii | 8.44±0.05 a | 7.48±0.78 ab | 0.40±0.05 abc | 12.51±0.25 b | 95.18±1.77 de |
狭叶牡丹P. potanini | 8.37±0.05 ab | 4.67±0.14 b | 0.29±0.03 c | 6.32±0.16 d | 75.22±6.39 e |
紫牡丹P. delavayi | 8.16±0.05 c | 6.83±1.02 ab | 0.32±0.04 bc | 2.36±0.18 f | 148.64±14.85 b |
稷山牡丹P. jishanensis | 8.29±0.04 bc | 4.87±0.67 b | 0.45±0.05 ab | 2.56±0.19 f | 120.72±5.27 c |
大花黄牡丹P. ludlowii | 8.21±0.04 bc | 6.98±0.18 ab | 0.38±0.03 abc | 8.35±0.62 c | 204.58±9.17 a |
表2
牡丹野生种根际土壤样品的Alpha多样性分析"
种 species | Chao1丰富度估计量 Chao1 richness estimator | 物种丰富度指数 species richness index | 香农多样性指数 Shannon diversity index | 辛普森多样性指数 Simpson diversity index | 测序深度指数 sequencing depth index |
---|---|---|---|---|---|
四川牡丹P. decomposita | 3 413.24±43.53 a | 2 105.67±68.39 ab | 9.89±0.08 a | 1.00±0.00 a | 0.88±0.00 bc |
紫斑牡丹P. rockii | 2 803.58±609.36 ab | 1 883.33±358.65 ab | 9.82±0.35 a | 1.00±0.00 a | 0.90±0.03 bc |
黄牡丹P. lutea | 2 566.72±835.08 ab | 1 627.33±443.25 ab | 9.21±0.52 a | 0.99±0.00 a | 0.91±0.04 bc |
卵叶牡丹P. qiui | 1 860.23±527.97 bc | 1 255.67±370.46 bc | 8.24±1.03 ab | 0.98±0.01 ab | 0.94±0.02 ab |
杨山牡丹P. ostii | 3 627.01±524.86 a | 2 208.00±204.96 a | 9.90±0.31 a | 1.00±0.00 a | 0.86±0.02 c |
狭叶牡丹P. potanini | 3 344.83±363.80 ab | 2 190.33±136.73 a | 9.90±0.35 a | 1.00±0.00 a | 0.88±0.01b c |
紫牡丹P. delavayi | 596.59±172.05 c | 505.00±140.52 c | 5.82±0.69 c | 0.90±0.04 c | 0.98±0.01 a |
稷山牡丹P. jishanensis | 834.93±298.09 c | 657.67±250.40 c | 6.45±1.37 bc | 0.93±0.04 bc | 0.98±0.01 a |
大花黄牡丹P. ludlowii | 2 595.47±163.57 ab | 1 845.00±55.30 ab | 9.87±0.03 a | 1.00±0.00 a | 0.91±0.01 bc |
表3
根际土壤细菌在门水平的相对丰度"
种 species | 变形菌门 Proteobacteria | 酸杆菌门 Acidobacteria | 放线菌门 Actinobacteria | 绿弯菌门 Chloroflexi | 细菌未分类 bacteria_ unclassified | 芽单孢菌门 Gemmati- monadetes | 拟杆菌门 Bacteroidetes | 厚壁菌门 Firmicutes | 硝化螺旋菌门 Nitrospirae | 蓝菌门 Cyanobacteria | 疣微菌门 Verrucomicrobia |
---|---|---|---|---|---|---|---|---|---|---|---|
四川牡丹 P. decomposita | 33.89±0.60 a | 35.61±1.42 a | 11.27±0.99 b | 3.52±0.04 c | 4.59±0.15 a | 4.36±0.28 a | 2.19±0.24 ab | 0.78±0.04 b | 1.76±0.15 abc | 0.03±0.01 a | 0.54±0.01 b |
紫斑牡丹 P. rockii | 32.00±1.64 a | 34.84±1.41 ab | 9.07±0.46 b | 4.10±0.41 bc | 6.19±0.92 a | 3.34±0.58 abc | 3.05±0.90 ab | 1.08±0.09 b | 2.28±0.11 ab | 0.06±0.05 a | 1.72±0.31 a |
黄牡丹 P. lutea | 34.20±7.16 a | 24.76±3.45 abc | 16.64±1.09 b | 3.12±0.28 c | 5.78±1.90 a | 2.94±0.44 abc | 5.12±1.39 ab | 0.83±0.24 b | 1.28±0.19 bcd | 2.19±1.94 a | 0.91±0.26 ab |
卵叶牡丹 P. qiui | 22.09±7.56 ab | 22.24±6.00 bc | 27.12±9.94 ab | 8.92±3.77 bc | 7.96±2.10 a | 2.77±1.07 abc | 1.37±0.66 b | 0.73±0.27 b | 1.03±0.34 cde | 1.95±1.89 a | 1.19±0.35 ab |
杨山牡丹 P. ostii | 33.11±1.72 a | 28.38±2.61 ab | 14.04±2.94 b | 4.37±1.02 bc | 5.47±0.50 a | 4.71±0.58 a | 2.74±1.10 ab | 1.43±0.08 b | 1.63±0.13 abc | 1.23±1.21 a | 0.93±0.13 ab |
狭叶牡丹 P. potanini | 32.35±0.72 a | 25.73±1.34 ab | 17.79±4.65 b | 4.12±0.3 bc | 4.73±0.45 a | 4.54±1.07 a | 3.98±1.02 ab | 1.03±0.06 b | 1.49±0.06 bcd | 1.04±0.63 a | 1.21±0.06 ab |
紫牡丹 P. delavayi | 9.35±3.32 b | 12.59±3.27 c | 42.13±8.63 a | 17.44±5.43 a | 6.40±1.56 a | 0.53±0.20 c | 1.08±0.66 b | 0.58±0.06 b | 0.28±0.10 e | 6.42±6.30 a | 0.72±0.24 ab |
稷山牡丹 P. jishanensis | 13.53±8.46 b | 12.80±7.54 c | 37.77±11.87 a | 12.83±4.50 ab | 5.67±1.86 a | 0.78±0.69 bc | 1.06±0.91 b | 12.83±9.64 a | 0.59±0.55 de | 0.05±0.04 a | 0.38±0.23 b |
大花黄牡丹 P. ludlowii | 33.79±1.01 a | 30.85±1.45 ab | 9.30±0.54 b | 3.89±0.15 bc | 5.70±0.39 a | 3.58±0.49 ab | 5.49±0.18 a | 0.96±0.12 b | 2.58±0.10 a | 0.16±0.08 a | 1.21±0.15 ab |
图6
环境因素对野生种牡丹根际土壤中细菌群落分布的影响 红色箭头表示环境因子,蓝色箭头表示门水平上根际土壤细菌(top 4),长短代表其在排序空间内的变化量,箭头所处象限代表其与排序轴之间相关性的正负。The red arrows represent environmental factors, the blue arrows represent rhizosphere soil bacteria (top 4) at the phylum level, the length represents its variation in the sorting space, and the quadrants where the arrows are located represent the positive and negative correlations between them and the sorting axis. A. 四川牡丹P. decomposita; B. 紫斑牡丹P. rockii; C. 黄牡丹P. lutea; D. 卵叶牡丹P. qiui; E. 杨山牡丹P. ostii; F. 狭叶牡丹P. potanini; G. 紫牡丹P. delavayi; H. 稷山牡丹P. jishanensis; I. 大花黄牡丹P. ludlowii. 数字表示重复。The number represents repetition. pH. 酸碱度potential of hydrogen; SOM. 有机质soil organic matter; TN. 全氮total nitrogen; AP. 速效磷available phosphorous; AK. 速效钾available K.Proteobacteria.变形菌门;Acidobacteria.酸杆菌门;Actinobacteria.放线菌门; Chloroflexi.绿弯菌门。"
[1] | 李嘉珏, 张西方, 赵孝庆. 中国牡丹[M]. 北京: 中国大百科全书出版社, 2011. |
LI J J, ZHANG X F, ZHAO X Q. Tree peony in China[M]. Beijing: Encyclopedia of China Publishing House:2011. | |
[2] | ZHOU S L, ZOU X H, ZHOU Z Q, et al. Multiple species of wild tree peonies gave rise to the ‘King of flowers’,Paeonia suffruticosa Andrews[J]. Proc R Soc B, 2014, 281(1797):20141687.DOI: 10.1098/rspb.2014.1687. |
[3] | 孟丽, 郑国生. 部分野生与栽培牡丹种质资源亲缘关系的RAPD研究[J]. 林业科学, 2004, 40(5):110-115. |
MENG L, ZHENG G S. Phylogenetic relationship analysis among Chinese wild species and cultivars of Paeonia Sect. Moutan using RAPD markers[J]. Sci Silvae Sin, 2004, 40(5):110-115.DOI: 10.3321/j.issn:1001-7488.2004.05.018. | |
[4] | YUAN J H, CORNILLE A, GIRAUD T, et al. Independent domestications of cultivated tree peonies from different wild peony species[J]. Mol Ecol, 2014, 23(1):82-95.DOI: 10.1111/mec.12567. |
[5] | YANG R X, LIU P, YE W Y. Illumina-based analysis of endophytic bacterial diversity of tree peony (Paeonia Sect. Moutan) roots and leaves[J]. Braz J Microbiol, 2017, 48(4):695-705.DOI: 10.1016/j.bjm.2017.02.009. |
[6] | WANG Z Q, ZHU C J, LIU S S, et al. Comprehensive metabolic profile analysis of the root bark of different species of tree peonies (Paeonia Sect.Moutan)[J]. Phytochemistry, 2019, 163:118-125.DOI: 10.1016/j.phytochem.2019.04.005. |
[7] | IBARRA J G, COLOMBO R P, GODEAS A M, et al. Analysis of soil bacterial communities associated with genetically modified drought-tolerant corn[J]. Appl Soil Ecol, 2020, 146:103375.DOI: 10.1016/j.apsoil.2019.103375. |
[8] | HU D, LI S H, LI Y, et al. Streptomyces sp.strain TOR3209:a rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community[J]. Sci Rep, 2020, 10(1):20132.DOI: 10.1038/s41598-020-76887-5. |
[9] | HANEY C H, SAMUEL B S, BUSH J, et al. Associations with rhizosphere bacteria can confer an adaptive advantage to plants[J]. Nat Plants, 2015, 1(6):15051.DOI: 10.1038/nplants.2015.51. |
[10] | 赵辉, 王喜英, 徐仕强, 等. 贵州武陵片区不同种植年限设施菜地土壤微生物群落的结构和功能多样性[J]. 河南农业科学, 2021, 50(1):81-91. |
ZHAO H, WANG X Y, XU S Q, et al. Soil microbial community structure and functional diversity in vegetable greenhouse for different planting years in Wuling area of Guizhou Province[J]. J Henan Agric Sci, 2021, 50(1):81-91.DOI: 10.15933/j.cnki.1004-3268.2021.01.010. | |
[11] | CAMENZIND T, HÄTTENSCHWILER S, TRESEDER K K, et al. Nutrient limitation of soil microbial processes in tropical forests[J]. Ecol Monogr, 2018, 88(1):4-21.DOI: 10.1002/ecm.1279. |
[12] | 林宁, 韦良焕, 蔡吉祥, 等. 叶尔羌河流域荒漠河岸林胡杨根际微生物数量时空变化及其与根际土壤环境因子的关系[J]. 植物资源与环境学报, 2023, 32(2):82-91. |
LIN N, WEI L H, CAI J X, et al. Temporal and spatial variation of numbers of rhizosphere microorganisms of Populus euphratica in desert riparian forest of Yarkant River basin and their relationships with rhizosphere soil environmental factors[J]. J Plant Resour Environ, 2023, 32(2):82-91. | |
[13] | YANG J, KLOEPPER J W, RYU C M. Rhizosphere bacteria help plants tolerate abiotic stress[J]. Trends Plant Sci, 2009, 14(1):1-4.DOI: 10.1016/j.tplants.2008.10.004. |
[14] | 尹原森, 马国胜, 曹春燕, 等. 不同地区凤丹根际土壤微生物功能多样性分析[J]. 分子植物育种, 2021, 19(20):6918-6926. |
YIN Y S, MA G S, CAO C Y, et al. Soil rhizosphere microbial functional diversity analysis of Fengdan(Paeonia ostii) in three different regions[J]. Mol Plant Breed, 2021, 19(20):6918-6926.DOI: 10.13271/j.mpb.019.006918. | |
[15] | 耿晓东, 周英, 汪成忠, 等. 不同种植年限对凤丹牡丹根际真菌群落组成和多样性的影响[J]. 江苏农业科学, 2021, 49(23):145-151. |
GENG X D, ZHOU Y, WANG C Z, et al. Impacts of different planting years on composition and diversity of rhizosphere fungal community of Paeonia ostia[J]. Jiangsu Agric Sci, 2021, 49(23):145-151.DOI: 10.15889/j.issn.1002-1302.2021.23.026. | |
[16] | 李昱莹, 刘曙光, 廉小芳, 等. 油用牡丹‘凤丹’不同种植年限根际真菌群落多样性变化研究[J]. 基因组学与应用生物学, 2020, 39(4):1672-1685. |
LI Y Y, LIU S G, LIAN X F, et al. Study on the variation of fungal community diversity in the rhizosphere soil of oil tree peony ‘Feng Dan’ in different planting years[J]. Genom Appl Biol, 2020, 39(4):1672-1685.DOI: 10.13417/j.gab.039.001672. | |
[17] | 郭丽丽, 尹伟伦, 郭大龙, 等. 油用凤丹牡丹不同种植时间根际细菌群落多样性变化[J]. 林业科学, 2017, 53(11):131-141. |
GUO L L, YIN W L, GUO D L, et al. Variations of bacterial biodiversity in rhizosphere soils of oil tree peony cropping continuously for different years[J]. Sci Silvae Sin, 2017, 53(11):131-141.DOI: 10.11707/j.1001-7488.20171115. | |
[18] | 史冬燕, 王宜磊. 牡丹根际微生物区系及土壤酶活的研究[J]. 黑龙江农业科学, 2013(6):15-17. |
SHI D Y, WANG Y L. Study on microflora and enzyme activity in rhizospheric soil of Paeonia suffruticosa[J]. Heilongjiang Agric Sci, 2013(6):15-17. | |
[19] | XUE D, HUANG X D. Changes in soil microbial community structure with planting years and cultivars of tree peony (Paeonia suffruticosa)[J]. World J Microbiol Biotechnol, 2014, 30(2):389-397.DOI: 10.1007/s11274-013-1457-3. |
[20] | 冯玮娜, 彭培好. 四川牡丹根际微生物及种子内生菌组成[J]. 东北林业大学学报, 2020, 48(1):88-94. |
FENG W N, PENG P H. Microbial composition associated with the rhizosphere and seed endosphere of Paeonia szechuanica[J]. J Northeast For Univ, 2020, 48(1):88-94.DOI: 10.13759/j.cnki.dlxb.2020.01.015. | |
[21] | 王雪山, 杜秉海, 姚良同, 等. 种植年限对牡丹根际土壤微生物群落结构的影响[J]. 山东农业大学学报(自然科学版), 2012, 43(4):508-516. |
WANG X S, DU B H, YAO L T, et al. Effects of planting years on microbial communities’ structure in peony rhizosphere soil[J]. J Shandong Agric Univ (Nat Sci), 2012, 43(4):508-516. | |
[22] | 邵秋雨, 董醇波, 韩燕峰, 等. 植物根际微生物组的研究进展[J]. 植物营养与肥料学报, 2021, 27(1):144-152. |
SHAO Q Y, DONG C B, HAN Y F, et al. Research progress in the rhizosphere microbiome of plants[J]. J Plant Nutr Fertil, 2021, 27(1):144-152.DOI: 10.11674/zwyf.20203. | |
[23] | WANG C Q, WANG Y, MA J J, et al. Screening and whole-genome sequencing of two streptomyces species from the rhizosphere soil of peony reveal their characteristics as plant growth-promoting rhizobacteria[J]. Biomed Res Int, 2018, 2018:1-11.DOI: 10.1155/2018/2419686. |
[24] | HAN J G, SONG Y, LIU Z G, et al. Culturable bacterial community analysis in the root domains of two varieties of tree peony (Paeonia ostii)[J]. FEMS Microbiol Lett, 2011, 322(1):15-24.DOI: 10.1111/j.1574-6968.2011.02319.x. |
[25] | FADROSH D W, MA B, GAJER P, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform[J]. Microbiome, 2014, 2(1):1-7.DOI: 10.1186/2049-2618-2-6. |
[26] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
[27] | 仇硕, 赵健, 张翠萍, 等. 中国野牡丹科观赏植物种质资源的研究现状与展望[J]. 安徽农业科学, 2008, 36(22):9471-9472,9519. |
QIU S, ZHAO J, ZHANG C P, et al. Research status and prospect of Melastomataceae ornamental plants germplasm resources in China[J]. J Anhui Agric Sci, 2008, 36(22):9471-9472,9519.DOI: 10.13989/j.cnki.0517-6611.2008.22.108. | |
[28] | YU X X, ZHAO J T, LIU X Q, et al. Cadmium pollution impact on the bacterial community structure of arable soil and the isolation of the cadmium resistant bacteria[J]. Front Microbiol, 2021, 12:698834.DOI: 10.3389/fmicb.2021.698834. |
[29] | ALAWIYE T, BABALOLA O. Metagenomic insight into the community structure and functional genes in the sunflower rhizosphere microbiome[J]. Agriculture, 2021, 11(2):167.DOI: 10.3390/agriculture11020167. |
[30] | DENG L T, ZHAO M M, BI R X, et al. Insight into the influence of biochar on nitrification based on multi-level and multi-aspect analyses of ammonia-oxidizing microorganisms during cattle manure composting[J]. Bioresour Technol, 2021, 339:125515.DOI: 10.1016/j.biortech.2021.125515. |
[31] | 王福. 牡丹野生资源现状和引种驯化[J]. 中国花卉盆景, 2012(6):4-6. |
WANG F. Present situation,introduction and domestication of wild peony resources[J]. China Flower & Penjing, 2012(6):4-6. | |
[32] | 孙晓刚, 王莉莉, 郭太君. 土壤pH值对3个牡丹品种的生长及光合特性的影响[J]. 东北林业大学学报, 2016, 44(3):42-46. |
SUN X G, WANG L L, GUO T J. Effect of soil pH on growth and photosynthetic characteristic of three Paeonia suffruticosa varieties[J]. J Northeast For Univ, 2016, 44(3):42-46.DOI: 10.13759/j.cnki.dlxb.20160118.028. | |
[33] | 李怡, 程平, 余林, 等. 刚竹属3个竹种根际土壤微生物群落结构[J]. 世界竹藤通讯, 2020, 18(5):32-37. |
LI Y, CHENG P, YU L, et al. Microbial community structure in rhizosphere soil of 3 bamboo species of Phyllostachys[J]. World Bamboo Rattan, 2020, 18(5):32-37.DOI: 10.12168/sjzttx.2020.05.005. | |
[34] | CHEN Y H, DAI Y, WANG Y L, et al. Distribution of bacterial communities across plateau freshwater lake and upslope soils[J]. J Environ Sci, 2016, 43:61-69.DOI: 10.1016/j.jes.2015.08.012. |
[35] | LI W K, NIU S K, LIU X D, et al. Short-term response of the soil bacterial community to differing wildfire severity in Pinus tabulaeformis stands[J]. Sci Rep, 2019, 9:1148.DOI: 10.1038/s41598-019-38541-7. |
[36] | AZARBAD H, NIKLINSKA M, LASKOWSKI R, et al. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients[J]. FEMS Microbiol Ecol, 2015, 91(1):1-11.DOI: 10.1093/femsec/fiu003. |
[37] | SHENG P, YU Y Z, ZHANG G H, et al. Bacterial diversity and distribution in seven different estuarine sediments of Poyang Lake,China[J]. Environ Earth Sci, 2016, 75(6):1-9.DOI: 10.1007/s12665-016-5346-6. |
[38] | WANG C, DONG D, WANG H S, et al. Metagenomic analysis of microbial consortia enriched from compost:new insights into the role of Actinobacteria in lignocellulose decomposition[J]. Biotechnol Biofuels, 2016, 9(1):22.DOI: 10.1186/s13068-016-0440-2. |
[39] | SOUSA R M S, MENDES L W, ANTUNES J E L, et al. Diversity and structure of bacterial community in rhizosphere of Lima bean[J]. Appl Soil Ecol, 2020, 150:103490.DOI: 10.1016/j.apsoil.2019.103490. |
[40] | LIN Y X, YE G P, LUO J F, et al. Nitrosospira cluster 8a plays a predominant role in the nitrification process of a subtropical ultisol under long-term inorganic and organic fertilization[J]. Appl Environ Microbiol, 2018, 84(18):1031-1038.DOI: 10.1128/aem.01031-18. |
[41] | WANG C, TANG K X, DAI Y, et al. Identification,characterization,and site-specific mutagenesis of a thermostable ω-transaminase from Chloroflexi bacterium[J]. ACS Omega, 2021, 6(26):17058-17070.DOI: 10.1021/acsomega.1c02164. |
[42] | ARSHAD A, DALCIN M P, FRANK J, et al. Mimicking microbial interactions under nitrate-reducing conditions in an anoxic bioreactor: enrichment of novel Nitrospirae bacteria distantly related to Thermodesulfovibrio[J]. Environ Microbiol, 2017, 19(12):4965-4977.DOI: 10.1111/1462-2920.13977. |
[43] | KRZYZANOWSKA D M, IWANICKI A, CZAJKOWSKI R, et al. High-quality complete genome resource of tomato rhizosphere strain Pseudomonas donghuensis P482,a representative of a species with biocontrol activity against plant pathogens[J]. Mol Plant Microbe Interact, 2021, 34(12):1450-1454.DOI: 10.1094/MPMI-06-21-0136-A. |
[1] | 范明阳, 胡萌, 杨园, 方炎明. 中国东部地区马尾松与黄山松群落分类及群落结构和物种多样性特征[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 47-58. |
[2] | 颜铮明, 阮宏华, 廖家辉, 石珂, 倪娟平, 曹国华, 沈彩芹, 丁学农, 赵小龙, 庄鑫. 不同林龄杨树人工林地表甲虫群落多样性特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 236-242. |
[3] | 尹世轩, 吴永波, 黄潇宇. 常州市金坛生态红线区鸟类多样性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 219-225. |
[4] | 樊瑶羽薇, 仁增朗加, 董建梅, 任媛, 葛大朋, 招雪晴, 苑兆和. 西藏野生石榴果实重要性状与综合评价[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 73-80. |
[5] | 魏祯祯, 宋程威, 郭丽丽, 郭琪, 侯小改. ‘凤丹’PoERF4基因的克隆及表达分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 56-62. |
[6] | 徐慧, 姚霞珍, 佟珂珂, 邢震, 李垚. 3种牡丹花器官不同部位挥发性成分分析[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 63-69. |
[7] | 伊贤贵, 董鹏, 谢春平, 彭智奇, 杨国栋, 董京京, 钟育谦, 翟飞飞, 王贤荣. 江苏宜兴龙池山自然保护区固定样地物种组成分析[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 159-168. |
[8] | 王玄, 崔鹏, 丁晶晶, 常青. 江苏南部沿海越冬水鸟群落结构及多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 178-184. |
[9] | 陈宏健, 郝德君, 田敏, 周杨, 夏小洪, 赵欣怡, 乔恒, 谈家金. 室内饲养松墨天牛幼虫不同肠段细菌的群落结构及功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 143-151. |
[10] | 朱晗, 郝德君, 魏原芝, 孙丽昕, 文全民. 仁扇舟蛾幼虫肠道可培养细菌群落结构分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 171-176. |
[11] | 陈秀波, 段文标, 陈立新, 朱德全, 赵晨晨, 刘东旭. 小兴安岭3种原始红松混交林土壤nirK型反硝化微生物群落特征[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 77-86. |
[12] | 周永晟, 徐子恒, 袁发银, 尚旭岚, 孙操稳, 方升佐. 亚热带3个地点青钱柳群落特征比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 29-35. |
[13] | 潘婷婷, 陈林, 杨国栋, 伊贤贵, 王贤荣. 南京北部郊野森林群落物种多样性及其环境解释[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 48-54. |
[14] | 张晓艳, 季新月, 王雷, 张绮纹, NERVO Giuseppe, 李金花. 不同地点黑杨派无性系生长性状变异及其与叶片性状相关分析[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 65-73. |
[15] | 罗长维,陈友,张涛. 油用牡丹‘凤丹’主要传粉昆虫的传粉行为比较[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 148-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||