行道树靶标点云在线分割方法

严宇, 李秋洁

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4) : 141-149.

PDF(3513 KB)
PDF(3513 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (4) : 141-149. DOI: 10.12302/j.issn.1000-2006.202210039
专题报道Ⅲ:智慧林业之森林可视化研究(执行主编 李凤日、张怀清、曹林)

行道树靶标点云在线分割方法

作者信息 +

Online segmentation method of target point cloud in roadside tree

Author information +
文章历史 +

摘要

【目的】针对行道树对靶施药技术中的靶标实时在线分割需求,研究基于移动激光扫描(mobile laser scanning,MLS)的行道树靶标点云在线实时分割方法,建立能够实时在线准确分割行道树靶标点云的点云实例分割算法。【方法】本研究以300 m长街道一侧的行道树为研究对象,通过建立FIFO(first input first output)缓冲区,每隔一段时间读取MLS采集到的三维街道点云数据中的若干帧街道点云数据。将读取过后FIFO缓冲区中的街道点云数据转换为三通道街道图像,使用图像实例分割模型对街道图像进行分割,得到行道树候选实例。然后,对行道树候选实例与已检测到的行道树实例进行实例融合,对已检测到的行道树实例进行完整性检测,对检测完整的行道树实例执行图像-点云映射,得到行道树点云实例。最后,使用阈值滤波与K最近邻(K-nearest neighbor,KNN)两种方法在点云层面对行道树点云实例进行优化。【结果】在阈值滤波参数设置为0.65 m、KNN的半径参数设置为0.5 m时,行道树靶标点云实例分割结果最优,准确率为0.986 5,召回率为0.940 7,F1分数为0.957 6,平均每帧分割时间为5.261 ms。【结论】本研究提出的行道树靶标点云在线分割方法有效,可以满足行道树靶标实时在线分割的要求。

Abstract

【Objective】Aiming at meeting the needs of real-time online segmentation of target in the target application technology of street trees, an online real-time segmentation method of street tree target point cloud based on mobile laser scanning (MLS) was studied, and a point cloud instance segmentation algorithm that can accurately segment the target point cloud of street trees in real time and online was established.【Method】A street tree on one side of a 300 m long street was used as the research object. By establishing a FIFO (first input, first output) buffer, several frames of three-dimensional street point cloud data collected by MLS were read at regular intervals. The street point cloud data in the FIFO buffer after reading was converted into a three-channel street image, and the street image was segmented by image instance segmentation model to obtain street tree candidate instances. Subsequently, the street tree candidate instances were fused with the detected street tree instances, the integrity of the detected street tree instances was determined, and image-point cloud mapping was performed on the detected complete street tree instances to obtain the street tree point cloud instances. Finally, threshold filtering and K-nearest neighbor (KNN) were used to optimize the point cloud instances of street trees facing point clouds.【Result】When the threshold filter parameter was set to 0.65 m and the radius parameter of KNN was set to 0.5 m, the segmentation results of the street tree target point cloud instance were optimal, with an accuracy rate of 0.986 5, a recall rate of 0.940 7, an F1 score of 0.957 6, and an average segmentation time of each frame of 5.261 ms.【Conclusion】The online segmentation method of street tree target cloud proposed in this study is effective and meets the requirements of real-time online segmentation of street tree targets.

关键词

行道树靶标喷雾 / 行道树在线分割 / 实例分割 / K近邻 / 二维激光雷达(LiDAR)

Key words

targeted spraying of roadside tree / online segmentation of roadside trees / instance segmentation / K-nearest neighbor / light detection and ranging(LiDAR)

引用本文

导出引用
严宇, 李秋洁. 行道树靶标点云在线分割方法[J]. 南京林业大学学报(自然科学版). 2024, 48(4): 141-149 https://doi.org/10.12302/j.issn.1000-2006.202210039
YAN Yu, LI Qiujie. Online segmentation method of target point cloud in roadside tree[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(4): 141-149 https://doi.org/10.12302/j.issn.1000-2006.202210039
中图分类号: S758;TP391   

参考文献

[1]
金小军, 张军, 杨凡, 等. 城市行道树生长健康状况与种植形式的相关性分析[J]. 城市建筑, 2021, 18(34):188-192.
JIN X J, ZHANG J, YANG F, et al. Correlation analysis between the growth and health of urban street trees and their planting forms[J]. Urban Archit, 2021, 18(34):188-192.DOI: 10.19892/j.cnki.csjz.2021.34.42.
[2]
姚丽敏, 孙永明, 骞军彦. 晋中市榆次区行道树常见病虫害防治技术[J]. 山西林业, 2019(2):46-47.
YAO L M, SUN Y M, QIAN J Y. Control techniques of common diseases and pests of street trees in Yuci District of Jinzhong City[J]. For Shanxi, 2019(2):46-47.DOI: 10.3969/j.issn.1005-4707.2019.02.022.
[3]
商艳上, 苏田, 李臻, 等. 园林行道树复壮技术[J]. 现代农业科技, 2021(12):176-177.
SHANG Y S, SU T, LI Z, et al. Rejuvenation technology of garden street trees[J]. Mod Agric Sci Technol, 2021(12):176-177.DOI: 10.3969/j.issn.1007-5739.2021.12.071.
[4]
许秋颖. 城市行道树种植存在的问题及其养护管理措施[J]. 现代园艺, 2019(22):180-181.
XU Q Y. Problems existing in urban street tree planting and its maintenance and management measures[J]. Xiandai Hortic, 2019(22):180-181.DOI: 10.14051/j.cnki.xdyy.2019.22.116.
[5]
权龙哲, 郦亚军, 王旗, 等. 考虑风扰的对靶喷雾机械臂药液喷洒动力学建模与试验[J]. 农业机械学报, 2018, 49(6):48-59.
QUAN L Z, LI Y J, WANG Q, et al. Modeling and testing on liquid pesticide spray of serial manipulator target weeding robot considering wind disturbance[J]. Trans Chin Soc Agric Mach, 2018, 49(6):48-59.DOI: 10.6041/j.issn.1000-1298.2018.06.006.
[6]
ZHOU M C, JIANG H Y, BING Z S, et al. Design and evaluation of the target spray platform[J]. Int J Adv Rob Syst, 2021, 18(2):1729881421996146.DOI: 10.1177/1729881421996146.
[7]
DOU H J, ZHAI C Y, CHEN L P, et al. Comparison of orchard target-oriented spraying systems using photoelectric or ultrasonic sensors[J]. Agriculture, 2021, 11(8):753.DOI: 10.3390/agriculture11080753.
[8]
谷趁趁, 翟长远, 陈立平, 等. 基于激光雷达的树形靶标冠层叶面积探测模型研究[J]. 农业机械学报, 2021, 52(11):278-286.
GU C C, ZHAI C Y, CHEN L P, et al. Detection model of tree canopy leaf area based on LiDAR technology[J]. Trans Chin Soc Agric Mach, 2021, 52(11):278-286.DOI: 10.6041/j.issn.1000-1298.2021.11.030.
[9]
MARSELIS S M, ABERNETHY K, ALONSO A, et al. Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness[J]. Global Ecol Biogeogr, 2020, 29(10):1799-1816.DOI: 10.1111/geb.13158.
[10]
JASKIERNIAK D, LUCIEER A, KUCZERA G, et al. Individual tree detection and crown delineation from unmanned aircraft system (UAS) LiDAR in structurally complex mixed species eucalypt forests[J]. ISPRS J Photogramm Remote Sens, 2021, 171:171-187.DOI: 10.1016/j.isprsjprs.2020.10.016.
[11]
LI Q J, XUE Y X. Total leaf area estimation based on the total grid area measured using mobile laser scanning[J]. Comput Electron Agric, 2023, 204:107503.DOI: 10.1016/j.compag.2022.107503.
[12]
HOSSEIN S A, HEIDAR R, ALIREZA S, et al. Automated street tree inventory using mobile LiDAR point clouds based on Hough transform and active contours[J]. ISPRS J Photogramm Remote Sens, 2021, 174:19-34.
[13]
BIENERT A, GEORGI L, KUNZ M, et al. Automatic extraction and measurement of individual trees from mobile laser scanning point clouds of forests[J]. Ann Bot, 2021, 128(6):787-804.DOI: 10.1093/aob/mcab087.
[14]
XU S, SUN X Y, YUN J Y, et al. A new clustering-based framework to the stem estimation and growth fitting of street trees from mobile laser scanning data[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13:3240-3250.DOI: 10.1109/JSTARS.2020.3001978.
[15]
LI J T, CHENG X J, XIAO Z H. A branch-trunk-constrained hierarchical clustering method for street trees individual extraction from mobile laser scanning point clouds[J]. Measurement, 2022, 189:110440.DOI: 10.1016/j.measurement.2021.110440.
[16]
LI J T, CHENG X J. Supervoxel-based extraction and classification of pole-like objects from MLS point cloud data[J]. Opt Laser Technol, 2022, 146:107562.DOI: 10.1016/j.optlastec.2021.107562.
[17]
HAO W, WANG Y H, LI Y, et al. Hierarchical extraction of pole-like objects from scene point clouds[J]. Opt Eng, 2018, 57(8):1.DOI: 10.1117/1.oe.57.8.083106.
[18]
WANG W Y, YU R, HUANG Q G, et al. SGPN:Similarity group proposal network for 3D point cloud instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT, USA:IEEE, 2018:2569-2578.DOI: 10.1109/CVPR.2018.00272.
[19]
PHAM Q H, NGUYEN T, HUA B S, et al. JSIS3D:joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA, USA:IEEE, 2019:8819-8828.DOI: 10.1109/CVPR.2019.00903.
[20]
YANG B, WANG J N, CLARK R, et al. Learning object bounding boxes for 3D instance segmentation on point clouds[C]// Vancouver, Canada:33rd Conference on Neural Information Processing Systems(Neur IPS 2019), 2019:arXiv:1906.01140. http://arxiv.org/abs/1906.01140.
[21]
GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Comput Vis Medium, 2021, 7(2):187-199.DOI: 10.1007/s41095-021-0229-5.
[22]
WU B C, WAN A, YUE X Y, et al. Squeeze Seg:convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA).Brisbane,QLD, Australia:IEEE, 2018:1887-1893.DOI: 10.1109/ICRA.2018.8462926.
[23]
李秋洁, 童岳凯, 薛玉玺, 等. 基于YOLACT的行道树靶标点云分割方法[J]. 林业工程学报, 2022, 7(4):144-150.
LI Q J, TONG Y K, XUE Y X, et al. Point cloud segment method for street tree target based on YOLACT[J]. J For Eng, 2022, 7(4):144-150.DOI: 10.13360/j.issn.2096-1359.202110034.
[24]
郑志旺. 基于国产FPGA的数据采集存储系统的研究与设计[D]. 太原: 中北大学, 2021.
ZHENG Z W. Research and design of data acquisition and storage system based on domestic FPGA[D]. Taiyuan: North University of China, 2021.
[25]
WEINMANN M, URBAN S, HINZ S, et al. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas[J]. Comput Graph, 2015, 49:47-57.DOI: 10.1016/j.cag.2015.01.006.
[26]
LI Q J, YUAN P C, LIU X, et al. Street tree segmentation from mobile laser scanning data[J]. Int J Remote Sens, 2020, 41(18):7145-7162.DOI: 10.1080/01431161.2020.1754495.
[27]
BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT:real-time instance segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul, Republic of Korea: IEEE, 2019:9156-9165.DOI: 10.1109/ICCV.2019.00925.

基金

国家自然科学基金项目(31901239)

编辑: 郑琰燚
PDF(3513 KB)

Accesses

Citation

Detail

段落导航
相关文章

/