[1] |
金小军, 张军, 杨凡, 等. 城市行道树生长健康状况与种植形式的相关性分析[J]. 城市建筑, 2021, 18(34):188-192.
|
|
JIN X J, ZHANG J, YANG F, et al. Correlation analysis between the growth and health of urban street trees and their planting forms[J]. Urban Archit, 2021, 18(34):188-192.DOI: 10.19892/j.cnki.csjz.2021.34.42.
|
[2] |
姚丽敏, 孙永明, 骞军彦. 晋中市榆次区行道树常见病虫害防治技术[J]. 山西林业, 2019(2):46-47.
|
|
YAO L M, SUN Y M, QIAN J Y. Control techniques of common diseases and pests of street trees in Yuci District of Jinzhong City[J]. For Shanxi, 2019(2):46-47.DOI: 10.3969/j.issn.1005-4707.2019.02.022.
|
[3] |
商艳上, 苏田, 李臻, 等. 园林行道树复壮技术[J]. 现代农业科技, 2021(12):176-177.
|
|
SHANG Y S, SU T, LI Z, et al. Rejuvenation technology of garden street trees[J]. Mod Agric Sci Technol, 2021(12):176-177.DOI: 10.3969/j.issn.1007-5739.2021.12.071.
|
[4] |
许秋颖. 城市行道树种植存在的问题及其养护管理措施[J]. 现代园艺, 2019(22):180-181.
|
|
XU Q Y. Problems existing in urban street tree planting and its maintenance and management measures[J]. Xiandai Hortic, 2019(22):180-181.DOI: 10.14051/j.cnki.xdyy.2019.22.116.
|
[5] |
权龙哲, 郦亚军, 王旗, 等. 考虑风扰的对靶喷雾机械臂药液喷洒动力学建模与试验[J]. 农业机械学报, 2018, 49(6):48-59.
|
|
QUAN L Z, LI Y J, WANG Q, et al. Modeling and testing on liquid pesticide spray of serial manipulator target weeding robot considering wind disturbance[J]. Trans Chin Soc Agric Mach, 2018, 49(6):48-59.DOI: 10.6041/j.issn.1000-1298.2018.06.006.
|
[6] |
ZHOU M C, JIANG H Y, BING Z S, et al. Design and evaluation of the target spray platform[J]. Int J Adv Rob Syst, 2021, 18(2):1729881421996146.DOI: 10.1177/1729881421996146.
|
[7] |
DOU H J, ZHAI C Y, CHEN L P, et al. Comparison of orchard target-oriented spraying systems using photoelectric or ultrasonic sensors[J]. Agriculture, 2021, 11(8):753.DOI: 10.3390/agriculture11080753.
|
[8] |
谷趁趁, 翟长远, 陈立平, 等. 基于激光雷达的树形靶标冠层叶面积探测模型研究[J]. 农业机械学报, 2021, 52(11):278-286.
|
|
GU C C, ZHAI C Y, CHEN L P, et al. Detection model of tree canopy leaf area based on LiDAR technology[J]. Trans Chin Soc Agric Mach, 2021, 52(11):278-286.DOI: 10.6041/j.issn.1000-1298.2021.11.030.
|
[9] |
MARSELIS S M, ABERNETHY K, ALONSO A, et al. Evaluating the potential of full-waveform lidar for mapping pan-tropical tree species richness[J]. Global Ecol Biogeogr, 2020, 29(10):1799-1816.DOI: 10.1111/geb.13158.
|
[10] |
JASKIERNIAK D, LUCIEER A, KUCZERA G, et al. Individual tree detection and crown delineation from unmanned aircraft system (UAS) LiDAR in structurally complex mixed species eucalypt forests[J]. ISPRS J Photogramm Remote Sens, 2021, 171:171-187.DOI: 10.1016/j.isprsjprs.2020.10.016.
|
[11] |
LI Q J, XUE Y X. Total leaf area estimation based on the total grid area measured using mobile laser scanning[J]. Comput Electron Agric, 2023, 204:107503.DOI: 10.1016/j.compag.2022.107503.
|
[12] |
HOSSEIN S A, HEIDAR R, ALIREZA S, et al. Automated street tree inventory using mobile LiDAR point clouds based on Hough transform and active contours[J]. ISPRS J Photogramm Remote Sens, 2021, 174:19-34.
|
[13] |
BIENERT A, GEORGI L, KUNZ M, et al. Automatic extraction and measurement of individual trees from mobile laser scanning point clouds of forests[J]. Ann Bot, 2021, 128(6):787-804.DOI: 10.1093/aob/mcab087.
|
[14] |
XU S, SUN X Y, YUN J Y, et al. A new clustering-based framework to the stem estimation and growth fitting of street trees from mobile laser scanning data[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13:3240-3250.DOI: 10.1109/JSTARS.2020.3001978.
|
[15] |
LI J T, CHENG X J, XIAO Z H. A branch-trunk-constrained hierarchical clustering method for street trees individual extraction from mobile laser scanning point clouds[J]. Measurement, 2022, 189:110440.DOI: 10.1016/j.measurement.2021.110440.
|
[16] |
LI J T, CHENG X J. Supervoxel-based extraction and classification of pole-like objects from MLS point cloud data[J]. Opt Laser Technol, 2022, 146:107562.DOI: 10.1016/j.optlastec.2021.107562.
|
[17] |
HAO W, WANG Y H, LI Y, et al. Hierarchical extraction of pole-like objects from scene point clouds[J]. Opt Eng, 2018, 57(8):1.DOI: 10.1117/1.oe.57.8.083106.
|
[18] |
WANG W Y, YU R, HUANG Q G, et al. SGPN:Similarity group proposal network for 3D point cloud instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT, USA:IEEE, 2018:2569-2578.DOI: 10.1109/CVPR.2018.00272.
|
[19] |
PHAM Q H, NGUYEN T, HUA B S, et al. JSIS3D:joint semantic-instance segmentation of 3D point clouds with multi-task pointwise networks and multi-value conditional random fields[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA, USA:IEEE, 2019:8819-8828.DOI: 10.1109/CVPR.2019.00903.
|
[20] |
YANG B, WANG J N, CLARK R, et al. Learning object bounding boxes for 3D instance segmentation on point clouds[C]// Vancouver, Canada:33rd Conference on Neural Information Processing Systems(Neur IPS 2019), 2019:arXiv:1906.01140. http://arxiv.org/abs/1906.01140.
|
[21] |
GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Comput Vis Medium, 2021, 7(2):187-199.DOI: 10.1007/s41095-021-0229-5.
|
[22] |
WU B C, WAN A, YUE X Y, et al. Squeeze Seg:convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA).Brisbane,QLD, Australia:IEEE, 2018:1887-1893.DOI: 10.1109/ICRA.2018.8462926.
|
[23] |
李秋洁, 童岳凯, 薛玉玺, 等. 基于YOLACT的行道树靶标点云分割方法[J]. 林业工程学报, 2022, 7(4):144-150.
|
|
LI Q J, TONG Y K, XUE Y X, et al. Point cloud segment method for street tree target based on YOLACT[J]. J For Eng, 2022, 7(4):144-150.DOI: 10.13360/j.issn.2096-1359.202110034.
|
[24] |
郑志旺. 基于国产FPGA的数据采集存储系统的研究与设计[D]. 太原: 中北大学, 2021.
|
|
ZHENG Z W. Research and design of data acquisition and storage system based on domestic FPGA[D]. Taiyuan: North University of China, 2021.
|
[25] |
WEINMANN M, URBAN S, HINZ S, et al. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas[J]. Comput Graph, 2015, 49:47-57.DOI: 10.1016/j.cag.2015.01.006.
|
[26] |
LI Q J, YUAN P C, LIU X, et al. Street tree segmentation from mobile laser scanning data[J]. Int J Remote Sens, 2020, 41(18):7145-7162.DOI: 10.1080/01431161.2020.1754495.
|
[27] |
BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT:real-time instance segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul, Republic of Korea: IEEE, 2019:9156-9165.DOI: 10.1109/ICCV.2019.00925.
|