基于Biome-BGC模型的浙江凤阳山针阔混交林碳动态模拟

黄璐瑶, 杜珊凤, 纪小芳, 管鑫, 刘胜龙, 叶丽敏, 姜姜

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (5) : 11-20.

PDF(4196 KB)
PDF(4196 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (5) : 11-20. DOI: 10.12302/j.issn.1000-2006.202211005
专题报道:自然保护地森林生态系统研究

基于Biome-BGC模型的浙江凤阳山针阔混交林碳动态模拟

作者信息 +

Carbon dynamic simulation based on Biome-BGC model in mixed coniferous and broadleaved forest of Fengyang Mountain, Zhejiang Province

Author information +
文章历史 +

摘要

【目的】探究浙江省凤阳山亚热带针阔混交林的碳动态变化规律及其对气候变化的响应。【方法】运用Biome- BGC模型模拟了1979—2018年凤阳山的净初级生产力(NPP)、总初级生产力(GPP)和净生态系统生产力(NEP),对不同时间尺度的气候因子和NPP之间做皮尔逊相关性分析与二次函数拟合,探究NPP与主要气候因子的关系及响应模式,最后设定不同气候情景预测凤阳山未来100 a的碳动态变化趋势。【结果】过去40年凤阳山针阔混交林GPP、NPP、NEP的平均值分别为1 392.94、451.25、16.21 g/(m2·a),除了1984、2002、2005、2008及2010年,其余年份为碳汇,且呈现“碳源—碳汇”季节交替的特征。NPP对气温变化的敏感程度最高,夏季气温的上升对NPP的增加起积极作用,而冬季气温的升高却对NPP起到反作用。一定程度内,冬季降水对NPP有促进作用,而夏季降水对NPP为负作用。RCP2.6、RCP4.5、RCP6.0情景下凤阳山森林总初级生产力在21世纪均呈现上升趋势,至2100年,RCP2.6、RCP4.5和RCP6.0情景下凤阳山GPP分别达到1 552.73、1 660.30及1 960.41 g/(m2·a),相对于2018年GPP分别增加1.38%、8.41%和28.00%。【结论】凤阳山森林生态系统在正常情况下表现为碳汇,但山区夏季阴雨天气一定程度上抑制了气温对碳汇的增加作用。未来增温、降水量增加、CO2浓度升高同时作用下,将有利于凤阳山针阔混交林的生长。

Abstract

【Objective】This study aims to investigate the carbon dynamics of subtropical mixed coniferous and broadleaved forests in Fengyang Mountain, Zhejiang Province and their response to climate change. 【Method】The Biome-BGC model was used to simulate the net primary productivity (NPP), gross primary productivity (GPP), and net ecosystem productivity (NEP) in Fengyang Mountain from 1979 to 2018, to investigate the relationships between climate factors and NPP at different time scales. Pearson correlation analysis and quadratic function fitting were performed between climate factors and NPP at different temporal scales to explore the relationship and response patterns between NPP and major climate factors, and finally, different climate scenarios were applied to predict the carbon cycling trends in Fengyang Mountain in the next 100 years. 【Result】The average values of GPP, NPP and NEP of mixed coniferous and broadleaved forests in Fengyang Mountain for 40 years were 1 392.94, 451.25 and 16.21 g/(m2·a), respectively. Except for 1984, 2002, 2005, 2008 and 2010, which were carbon sinks and showed that the sensitivity of NPP to temperature change was the highest, and the increase of temperature in summer had a positive effect on the increase of NPP, while the increase of temperature in winter had a negative effect on NPP. To a certain extent, winter rainfall showed a positive effect on NPP, while summer precipitation showed a negative effect on NPP. The gross primary productivity of Fengyang Mountain forests in RCP2.6, RCP4.5 and RCP6.0 scenarios will keep increasing in the 21st century, and by 2100, the GPP of the studied forests in Fengyang Mountain under RCP2.6, RCP4.5 and RCP6.0 scenarios will reach 1 552.73, 1 660.30 and 1 960.41 g/(m2·a), respectively, and get increased 1.38%, 8.41% and 28.00% relative to the GPP in 2018. 【Conclusion】Overall, the forest ecosystem of Fengyang Mountain exhibited carbon sinks under normal conditions, but the cloudy and rainy summer weather in the mountainous area inhibited the increasing effect of temperature on carbon sinks to some extent. The future warming, increased rainfall and higher CO2 concentration simultaneously will favor the vegetation growth of mixed coniferous forests in Fengyang Mountain.

关键词

针阔混交林 / Biome-BGC模型 / 碳动态 / 气候变化 / 浙江凤阳山

Key words

mixed coniferous and broadleaved forest / Biome-BGC model / carbon dynamics / climate change / Fengyang Mountain of Zhejiang Province

引用本文

导出引用
黄璐瑶, 杜珊凤, 纪小芳, . 基于Biome-BGC模型的浙江凤阳山针阔混交林碳动态模拟[J]. 南京林业大学学报(自然科学版). 2024, 48(5): 11-20 https://doi.org/10.12302/j.issn.1000-2006.202211005
HUANG Luyao, DU Shanfeng, JI Xiaofang, et al. Carbon dynamic simulation based on Biome-BGC model in mixed coniferous and broadleaved forest of Fengyang Mountain, Zhejiang Province[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(5): 11-20 https://doi.org/10.12302/j.issn.1000-2006.202211005
中图分类号: S718.5   

参考文献

[1]
沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013, 35(5):1068-1076.
SHEN Y P, WANG G Y. Key findings and assessment results of IPCC WGI fifth assessment report[J]. J Glaciol Geocryol, 2013, 35(5):1068-1076.DOI: 10.7522/j.issn.1000-0240.2013.0120.
[2]
CANADELL J G, MOONEY H A, BALDOCCHI D D, et al. Commentary:carbon metabolism of the terrestrial biosphere:a multitechnique approach for improved understanding[J]. Ecosystems, 2000, 3(2):115-130.DOI: 10.1007/s100210000014.
[3]
李媛. 陆地植被净初级生产力估算及影响因素研究现状[J]. 宁夏大学学报(自然科学版), 2018, 39(4):362-366.
LI Y. Research status of net primary productivity estimation of terrestrial vegetation and its influencing factors[J]. J Ningxia Univ (Nat Sci Ed), 2018, 39(4):362-366.DOI: 10.3969/j.issn.0253-2328.2018.04.014.
[4]
刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20(5):733-740.
LIU G H, FU B J, FANG J Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J]. Acta Ecol Sin, 2000, 20(5):733-740.DOI: 10.3321/j.issn:1000-0933.2000.05.004.
[5]
韩其飞, 罗格平, 李超凡, 等. 基于Biome-BGC模型的天山北坡森林生态系统碳动态模拟[J]. 干旱区研究, 2014, 31(3):375-382.
HAN Q F, LUO G P, LI C F, et al. Simulation of carbon trend in forest ecosystem in northern slope of the Tianshan Mountains based on Biome-BGC model[J]. Arid Zone Res, 2014, 31(3):375-382.DOI: 10.13866/j.azr.2014.03.025.
[6]
FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere:integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374):237-240.DOI: 10.1126/science.281.5374.237.
[7]
黄国贤. 基于CBM-CFS3模型的江西省森林生态系统碳动态模拟[D]. 南昌: 江西农业大学, 2016.
HUANG G X. Carbon dynamics of forest ecosystems in Jiangxi:CBM-CFS3 model simulation[D]. Nanchang: Jiangxi Agricultural University, 2016.
[8]
温永斌, 韩海荣, 程小琴, 等. 基于Biome-BGC模型的千烟洲森林水分利用效率研究[J]. 北京林业大学学报, 2019, 41(4):69-77.
WEN Y B, HAN H R, CHENG X Q, et al. Forest water use efficiency in Qianyanzhou based on Biome-BGC model,Jiangxi Province of eastern China[J]. J Beijing For Univ, 2019, 41(4):69-77.DOI: 10.13332/j.1000-1522.20190001.
[9]
曾攀儒, 张福平, 冯起, 等. 祁连山地区不同植被生态系统固碳价值量估算及时空演变分析[J]. 冰川冻土, 2019, 41(6):1348-1358.
ZENG P R, ZHANG F P, FENG Q, et al. Estimation of the carbon sequestration value and spatial and temporal evolution of different vegetation ecosystems in Qilian Mountains[J]. J Glaciol Geocryol, 2019, 41(6):1348-1358.DOI: 10.7522/j.issn.1000-0240.2019.0047.
[10]
李传华, 韩海燕, 范也平, 等. 基于Biome-BGC模型的青藏高原五道梁地区NPP变化及情景模拟[J]. 地理科学, 2019, 39(8):1330-1339.
LI C H, HAN H Y, FAN Y P, et al. NPP change and scenario simulation in Wudaoliang area of the Tibetan Plateau based on Biome-BGC model[J]. Sci Geogr Sin, 2019, 39(8):1330-1339.DOI: 10.13249/j.cnki.sgs.2019.08.015.
[11]
李旭华, 于大炮, 代力民, 等. 长白山阔叶红松林生产力随林分发育的变化[J]. 应用生态学报, 2020, 31(3):706-716.
LI X H, YU D P, DAI L M, et al. Changes of productivity with stand development in broadleaf-Korean pine forest in Changbai Mountain,China[J]. Chin J Appl Ecol, 2020, 31(3):706-716.DOI: 10.13287/j.1001-9332.202003.018.
[12]
CHEN Y R, XIAO W F. Estimation of forest NPP and carbon sequestration in the Three Gorges Reservoir Area,using the Biome-BGC model[J]. Forests, 2019, 10(2):149.DOI: 10.3390/f10020149.
[13]
范敏锐, 余新晓, 张振明, 等. 北京山区油松林净初级生产力对气候变化情景的响应[J]. 东北林业大学学报, 2010, 38(11):46-48.
FAN M R, YU X X, ZHANG Z M, et al. Net primary productivity of a Pinus tabulaeformis forest in Beijing mountainous area in response to different climate change scenarios[J]. J Northeast For Univ, 2010, 38(11):46-48.DOI: 10.13759/j.cnki.dlxb.2010.11.026.
[14]
张文海, 吕锡芝, 余新晓, 等. 气候和CO2变化对北京山区油松林NPP的影响[J]. 广东农业科学, 2012, 39(6):4-7.
ZHANG W H, LV X Z, YU X X, et al. Impact of climate and CO2 change on net primary productivity of Pinus tabulaeformis forest in Beijing mountain area[J]. Guangdong Agric Sci, 2012, 39(6):4-7.DOI: 10.16768/j.issn.1004-874x.2012.06.064.
[15]
纪小芳, 龚元, 郑翔, 等. 凤阳山森林生态系统碳交换及其物候特征[J]. 地球环境学报, 2020, 11(4):376-389.
JI X F, GONG Y, ZHENG X, et al. Local-scale carbon exchange and phenological characteristics of forest ecosystem in Fengyang Mountain of Zhejiang,China using tower-based eddy covariance technique[J]. J Earth Environ, 2020, 11(4):376-389.DOI: 10.7515/JEE192052.
[16]
孟苗婧, 郭晓平, 张金池, 等. 海拔变化对凤阳山针阔混交林地土壤微生物群落的影响[J]. 生态学报, 2018, 38(19):7057-7065.
MENG M J, GUO X P, ZHANG J C, et al. Effects of altitude on soil microbial community in Fengyang Mountain coniferous and broad-leaved forest[J]. Acta Ecol Sin, 2018, 38(19):7057-7065.DOI: 10.5846/stxb201708211503.
[17]
孟苗婧, 张金池, 郭晓平, 等. 海拔变化对黄山松阔叶混交林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(6):106-112.
MENG M J, ZHANG J C, GUO X P, et al. Effects of altitude change on soil organic carbon fractions in Pinus taiwanensis and broad-leaved mixed forest[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):106-112.DOI: 10.3969/j.issn.1000-2006.201712031.
[18]
赵友朋, 孟苗婧, 张金池, 等. 不同林地类型土壤团聚体稳定性与铁铝氧化物的关系[J]. 水土保持通报, 2018, 38(4):75-81,86.
ZHAO Y P, MENG M J, ZHANG J C, et al. Relationship between soil aggregate stability and different forms of Fe and Al oxides in different forest types[J]. Bull Soil Water Conserv, 2018, 38(4):75-81,86.DOI: 10.13961/j.cnki.stbctb.2018.04.012.
[19]
赵友朋, 孟苗婧, 张金池, 等. 凤阳山主要林分类型土壤团聚体及其稳定性研究[J]. 南京林业大学学报(自然科学版), 2018, 42(5):84-90.
ZHAO Y P, MENG M J, ZHANG J C, et al. Study on the composition and stability of soil aggregates of the main forest stands in Fengyang Mountain,Zhejiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(5):84-90.DOI: 10.3969/j.issn.1000-2006.201801013.
[20]
张洋. 浙江凤阳山不同林分土壤有机碳矿化研究[D]. 南京: 南京林业大学, 2015.
ZHANG Y. Study on soil organic carbon mineralization in different forests of Fengyang Mountain[D]. Nanjing: Nanjing Forestry University, 2015.
[21]
田月亮. 凤阳山主要林分类型结构特征及其改土效应[D]. 南京: 南京林业大学, 2012.
TIAN Y L. The structural properties of main forest stand and their effects of soil improvement in Fengyang Mountain[D]. Nanjing: Nanjing Forestry University, 2012.
[22]
THORNTON P E, RUNNING S W. An improved algorithm for estimating incident daily solar radiation from measurements of temperature,humidity,and precipitation[J]. Agric For Meteor, 1999,93(4):211-228.DOI: 10.1016/s0168-1923(98)00126-9.
[23]
THORNTON P E, HASENAUER H, WHITE M A. Simultaneous estimation of daily solar radiation and humidity from observed temperature and precipitation:an application over complex terrain in Austria[J]. Agric For Meteor, 2000,104(4):255-271.DOI: 10.1016/s0168-1923(00)00170-2.
[24]
THORNTON P E, LAW B E, GHOLZ H L, et al. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agric For Meteor, 2002,113(1/2/3/4):185-222.DOI: 10.1016/s0168-1923(02)00108-9.
[25]
朱再春, 刘永稳, 刘祯, 等. CMIP5模式对未来升温情景下全球陆地生态系统净初级生产力变化的预估[J]. 气候变化研究进展, 2018, 14(1):31-39.
ZHU Z C, LIU Y W, LIU Z, et al. Projection of changes in terrestrial ecosystem net primary productivity under future global warming scenarios based on CMIP5 models[J]. Clim Change Res, 2018, 14(1):31-39.DOI: 10.12006/j.issn.1673-1719.2017.042.
[26]
WHITE M A, THORNTON P E, RUNNING S W, et al. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model:net primary production controls[J]. Earth Interact, 2000, 4(3):1-85.DOI: 10.1175/1087-3562(2000)004<0003:pasaot>2.0.co;2.
[27]
WATSON T A, DOHERTY J E, CHRISTENSEN S. Parameter and predictive outcomes of model simplification[J]. Water Resour Res, 2013, 49(7):3952-3977.DOI: 10.1002/wrcr.20145.
[28]
董艳辉, 李国敏, 郭永海, 等. 应用并行PEST算法优化地下水模型参数[J]. 工程地质学报, 2010, 18(1):140-144.
DONG Y H, LI G M, GUO Y H, et al. Optimization of model parameters for groundwater flow using parallelized pest method[J]. J Eng Geol, 2010, 18(1):140-144.DOI: 10.3969/j.issn.1004-9665.2010.01.021.
[29]
HE J, YANG K, TANG W J, et al. The first high-resolution meteorological forcing dataset for land process studies over China[J]. Sci Data, 2020, 7(1):25.DOI: 10.1038/s41597-020-0369-y.
[30]
《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告[M]. 北京: 科学出版社, 2015: 213-231.
Committee for The Preparation of The Third National Assessment Report on Climate Change. Third national assessment report on climate change[M]. Beijing: Science Press, 2015: 213-231.
[31]
何学兆, 周涛, 贾根锁, 等. 光合有效辐射总量及其散射辐射比例变化对森林GPP影响的模拟[J]. 自然资源学报, 2011, 26(4):619-634.
HE X Z, ZHOU T, JIA G S, et al. Modeled effects of changes in the amount and diffuse fraction of PAR on forest GPP[J]. J Nat Resour, 2011, 26(4):619-634.
[32]
ZHANG Y L, CHENG G D, LI X, et al. Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed[J]. Hydrol Process, 2013, 27(25):3762-3776.DOI: 10.1002/hyp.9514.
[33]
张越, 刘康, 张红娟, 等. 基于Biome-BGC模型的秦岭北坡太白红杉林碳源/汇动态和趋势研究[J]. 热带亚热带植物学报, 2019, 27(3):235-249.
ZHANG Y, LIU K, ZHANG H J, et al. Carbon source/sink dynamics and trend of Larix chinensis in northern slope of Qinling Mountains based on Biome-BGC model[J]. J Trop Subtrop Bot, 2019, 27(3):235-249.DOI: 10.11926/jtsb.4008.
[34]
张凤英, 张增信, 田佳西, 等. 长江流域森林NPP模拟及其对气候变化的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(1):175-181.
ZHANG F Y, ZHANG Z X, TIAN J X, et al. Forest NPP simulation in the Yangtze River basin and its response to climate change[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):175-181.DOI: 10.12302/j.issn.1000-2006.201907039.
[35]
LIU H Y, ZHANG M Y, LIN Z S. Relative importance of climate changes at different time scales on net primary productivity:a case study of the Karst area of northwest Guangxi,China[J]. Environ Monit Assess, 2017, 189(11):539.DOI: 10.1007/s10661-017-6251-5.
[36]
李亮, 何晓军, 胡理乐, 等. 1958—2008年太白山太白红杉林碳循环模拟[J]. 生态学报, 2013, 33(9):2845-2855.
LI L, HE X J, HU L L, et al. Simulation of the carbon cycle of Larix chinensis forest during 1958 and 2008 at Taibai Mountain,China[J]. Acta Ecol Sin, 2013, 33(9):2845-2855.
[37]
侯英雨, 柳钦火, 延昊, 等. 我国陆地植被净初级生产力变化规律及其对气候的响应[J]. 应用生态学报, 2007, 18(7):1546-1553.
HOU Y Y, LIU Q H, YAN H, et al. Variation trends of China terrestrial vegetation net primary productivity and its responses to climate factors in 1982-2000[J]. Chin J Appl Ecol, 2007, 18(7):1546-1553.

基金

百山祖国家公园科学研究项目(2022JBGS03)
百山祖国家公园科学研究项目(2021ZDLY01)
国家自然科学基金项目(32071612)
江苏省碳达峰碳中和科技创新专项(BE2022307)

编辑: 郑琰燚
PDF(4196 KB)

Accesses

Citation

Detail

段落导航
相关文章

/