[1] |
TAO S L, GUO Q H, XU S W, et al. A geometric method for wood-leaf separation using terrestrial and simulated lidar data[J]. Photogram Engng Rem Sens, 2015, 81(10):767-776.DOI: 10.14358/pers.81.10.767.
|
[2] |
杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12):1575-1585.
|
|
YANG B S, DONG Z. Progress and perspective of point cloud intelligence[J]. Acta Geod Cartogr Sin, 2019, 48(12):1575-1585.DOI: 10.11947/j.AGCS.2019.20190465.
|
[3] |
孙圆, 林秀云, 熊金鑫, 等. 基于地面激光强度校正数据的单木枝叶分离[J]. 中国激光, 2021, 48(1):0104001.
|
|
SUN Y, LIN X Y, XIONG J X, et al. Separation of single wood branches and leaves based on corrected TLS intensity data[J]. Chin J Lasers, 2021, 48(1):0104001.DOI: 10.3788/CJL202148.0104001.
|
[4] |
CALDERS K, DISNEY M I, ARMSTON J, et al. Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability[J]. IEEE Trans Geosci Remote Sens, 2017, 55(5):2716-2724.DOI: 10.1109/TGRS.2017.2652721.
|
[5] |
夏国芳, 胡春梅, 曹毕铮, 等. 激光入射角度对点云反射强度的影响研究[J]. 激光杂志, 2016, 37(4):11-13.
|
|
XIA G F, HU C M, CAO B Z, et al. Study on the influence of laser incident angle on the reflection intensity of the point cloud[J]. Laser J, 2016, 37(4):11-13.DOI: 10.14016/j.cnki.jgzz.2016.04.011.
|
[6] |
曹伟, 陈动, 史玉峰, 等. 激光雷达点云树木建模研究进展与展望[J]. 武汉大学学报(信息科学版), 2021, 46(2):203-220.
|
|
CAO W, CHEN D, SHI Y F, et al. Progress and prospect of LiDAR point clouds to 3D tree models[J]. Geomat Inf Sci Wuhan Univ, 2021, 46(2):203-220.DOI: 10.13203/j.whugis20190275.
|
[7] |
黄亮, 许文雅, 谭帅. 树木三维点云的枝叶分割方法[J]. 北京测绘, 2022, 36(1):18-22.
|
|
HUANG L, XU W Y, TAN S. 3D point cloud segmentation method for branches and leaves of trees[J]. Beijing Surv Mapp, 2022, 36(1):18-22.DOI: 10.19580/j.cnki.1007-3000.2022.01.004.
|
[8] |
FARMAKIS I, BONNEAU D, HUTCHINSON D J, et al. Supervoxel-based multi-scale point cloud segmentation using fnea for object-oriented rock slope classification using TLS[J]. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2020, 43:1049-1056.DOI: 10.5194/isprs-archives-xliii-b2-2020-1049-2020.
|
[9] |
林筱涵, 李爱农, 边金虎, 等. 基于网络图的地基激光雷达复杂树木点云枝叶分离方法[J]. 遥感技术与应用, 2022, 37(1):161-172.
|
|
LIN X H, LI A N, BIAN J H, et al. A method for separating leaf and wood components of complex tree point cloud data based on network graph with terrestrial laser scanning[J]. Remote Sens Technol Appl, 2022, 37(1):161-172.DOI: 10.11873/j.issn.1004-0323.2022.1.0161.
|
[10] |
WANG D, MOMO T S, CASELLA E. LeWoS:a universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR[J]. Me-thods Ecol Evol, 2020, 11(3):376-389.DOI: 10.1111/2041-210x.13342.
|
[11] |
WANG D, HOLLAUS M, PFEIFER N. Feasibility of machine learning methods for separating wood and leaf points from terrestrial laser scanning data[J]. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, 2017, IV-2/W4:157-164.DOI: 10.5194/isprs-annals-iv-2-w4-157-2017.
|
[12] |
VICARI M B, DISNEY M, WILKES P, et al. Leaf and wood classification framework for terrestrial LiDAR point clouds[J]. Methods Ecol Evol, 2019, 10(5):680-694.DOI: 10.1111/2041-210x.13144.
|
[13] |
QI C R, YI L, SU H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. December,2017, Long Beach,California,USA: ACM, 2017:5105-5114.DOI: 10.5555/3295222.3295263.
|
[14] |
赵江洪, 窦新铜, 曹月娥, 等. 一种基于分割结果实现三维点云分类的方法[J]. 测绘科学, 2022, 47(3):85-95.
|
|
ZHAO J H, DOU X T, CAO Y E, et al. A method for 3D point cloud classification based on segmentation results[J]. Sci Surv Mapp, 2022, 47(3):85-95.DOI: 10.16251/j.cnki.1009-2307.2022.03.012.
|
[15] |
ZHOU J J, WEI H Q, ZHOU G Y, et al. Separating leaf and wood points in terrestrial laser scanning data using multiple optimal scales[J]. Sensors, 2019, 19(8):1852.DOI: 10.3390/s19081852.
|
[16] |
汪献义, 邢艳秋, 尤号田, 等. 基于近邻几何特征的TLS林分点云分类研究[J]. 北京林业大学学报, 2019, 41(6):138-146.
|
|
WANG X Y, XING Y Q, YOU H T, et al. TLS point cloud classification of forest based on nearby geometric features[J]. J Beijing For Univ, 2019, 41(6):138-146.DOI: 10.13332/j.1000-1522.20180308.
|
[17] |
麻卫峰, 王金亮, 张建鹏, 等. 一种改进法向量估算的点云特征提取[J]. 测绘科学, 2021, 46(11):84-90,146.
|
|
MA W F, WANG J L, ZHANG J P, et al. Feature extraction from point cloud based on improved normal vector[J]. Sci Surv Mapp, 2021, 46(11):84-90,146.DOI: 10.16251/j.cnki.1009-2307.2021.11.012.
|
[18] |
梁冲. 面向树木特征提取的室外场景点云数据语义分类[D]. 南京: 南京师范大学, 2021.
|
|
LIANG C. Semantic classification of outdoor scenic spot pointcloud data for tree feature extraction[D]. Nanjing: Nanjing Normal University, 2021.
|
[19] |
ZHU X, SKIDMORE A K, DARVISHZADEH R, et al. Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest[J]. Int J Appl Earth Obs Geoinf, 2018, 64:43-50.DOI: 10.1016/j.jag.2017.09.004.
|
[20] |
卢晓艺, 云挺, 薛联凤, 等. 基于树木激光点云的有效特征抽取与识别方法[J]. 中国激光, 2019, 46(5):411-422.
|
|
LU X Y, YUN T, XUE L F, et al. Effective feature extraction and identification method based on tree laser point cloud[J]. Chin J Lasers, 2019, 46(5):411-422.DOI: 10.3788/CJL201946.0510002.
|
[21] |
PATEL H H, PRAJAPATI P. Study and analysis of decision tree based classification algorithms[J]. Ijcse, 2018, 6(10):74-78.DOI: 10.26438/ijcse/v6i10.7478.
|
[22] |
王艳秋, 徐传飞, 于戈, 等. 一种面向不确定对象的可见k近邻查询算法[J]. 计算机学报, 2010, 33(10):1943-1952.
|
|
WANG Y Q, XU C F, YU G, et al. Visible k-nearest neighbor queries over uncertain data[J]. Chin J Comput, 2010, 33(10):1943-1952.DOI: 10.3724/SP.J.1016.2010.01943.
|
[23] |
刘刚, 尹一涵, 郑智源, 等. 基于三维点云的群体樱桃树冠层去噪和配准方法[J]. 农业机械学报, 2022, 53(S2):1-11.
|
|
LIU G, YIN Y H, ZHENG Z Y, et al. Denoising and registration method of group cherry trees canopy based on 3D point cloud[J]. Trans Chin Soc Agric Mach, 2022, 53(S2):1-11.DOI: 10.6041/j.issn.1000-1298.2022.s2.021.
|
[24] |
张卉冉, 董震, 杨必胜, 等. 点云压缩研究进展与趋势[J]. 武汉大学学报(信息科学版), 2023, 48(2):192-205.
|
|
ZHANG H R, DONG Z, YANG B S, et al. Progress and perspectives of point cloud compression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2):192-205.DOI: 10.13203/j.whugis20210103.
|
[25] |
CHENG X, ZENG M, LIN J P, et al. Efficient L0 resampling of point sets[J]. Comput Aided Geom Des, 2019, 75:101790.DOI: 10.1016/j.cagd.2019.101790.
|
[26] |
DONG Z, YANG B S, LIANG F X, et al. Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor[J]. ISPRS J Photogramm Remote Sens, 2018, 144:61-79.DOI: 10.1016/j.isprsjprs.2018.06.018.
|
[27] |
张继超, 刘宁, 宋伟东, 等. 一种特征选择的全极化雷达影像分类方法[J]. 测绘科学, 2022, 47(6):127-134.
|
|
ZHANG J C, LIU N, SONG W D, et al. A fully polarimetric radar image classification method based on feature selection[J]. Sci Surv Mapp, 2022, 47(6):127-134.DOI: 10.16251/j.cnki.1009-2307.2022.06.016.
|
[28] |
卢华清, 伍吉仓, 张子健. 面向地基激光点云的树木枝叶分离[J]. 中国激光, 2022, 49(23):156-167.
|
|
LU H Q, WU J C, ZHANG Z J. Tree branch and leaf separation facing TLS point cloud[J]. Chin J Lasers, 2022, 49(23):156-167. DOI: 10.3788/CJL.202249.2310001.
|
[29] |
BECKER C, ROSINSKAYA E, HÄNI N, et al. Classification of aerial photogrammetric 3D point clouds[J]. Photogramm Eng Remote Sensing, 2018, 84(5):287-295.DOI: 10.14358/pers.84.5.287.
|
[30] |
邢艳秋, 蔡硕, 汪献义. 采用多尺度近邻体素特征的TLS林分点云分类[J]. 遥感信息, 2021, 36(5):1-7.
|
|
XING Y Q, CAI S, WANG X Y. TLS point cloud classification of forest by multi-scale neighbor voxel features[J]. Remote Sens Inf, 2021, 36(5):1-7.DOI: 10.3969/j.issn.1000-3177.2021.05.001.
|