[1] |
KINDERMANN G, OBERSTEINER M, SOHNGEN B, et al. Global cost estimates of reducing carbon emissions through avoided deforestation[J]. Proc Natl Acad Sci USA, 2008, 105(30):10302-10307.DOI: 10.1073/pnas.0710616105.
|
[2] |
PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI: 10.1126/science.1201609.
|
[3] |
朱光玉, 胡松, 符利勇. 基于哑变量的湖南栎类天然林林分断面积生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):155-162.
|
|
ZHU G Y, HU S, FU L Y. Basal area growth model for oak natural forest in Hunan Province based on dummy variable[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(2):155-162.DOI: 10.3969/j.issn.1000-2006.201704059.
|
[4] |
STOKLAND J N. Volume increment and carbon dynamics in boreal forest when extending the rotation length towards biologically old stands[J]. For Ecol Manag, 2021, 488:119017.DOI: 10.1016/j.foreco.2021.119017.
|
[5] |
薛春泉, 徐期瑚, 林丽平, 等. 广东主要乡土阔叶树种单木生物量生长模型[J]. 华南农业大学学报, 2019, 40(2):65-75.
|
|
XUE C Q, XU Q H, LIN L P, et al. Biomass growth models for individual tree of main indigenous broadleaf tree species in Guangdong Province[J]. J South China Agric Univ, 2019, 40(2):65-75.DOI: 10.7671/j.issn.1001-411X.201806031.
|
[6] |
何潇, 曹磊, 徐胜林, 等. 内蒙古大兴安岭林区不同恢复阶段森林生物量特征与影响因素[J]. 北京林业大学学报, 2019, 41(9):50-58.
|
|
HE X, CAO L, XU S L, et al. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia,northern China[J]. J Beijing For Univ, 2019, 41(9):50-58.DOI: 10.13332/j.1000-1522.20190030.
|
[7] |
曹磊, 刘晓彤, 李海奎, 等. 广东省常绿阔叶林生物量生长模型[J]. 林业科学研究, 2020, 33(5):61-67.
|
|
CAO L, LIU X T, LI H K, et al. Biomass growth models for evergreen broad-leaved forests in Guangdong[J]. For Res, 2020, 33(5):61-67.DOI: 10.13275/j.cnki.lykxyj.2020.05.008.
|
[8] |
黄晓强, 信忠保, 赵云杰, 等. 林龄和立地条件对北京山区油松人工林碳储量的影响[J]. 水土保持学报, 2015, 29(6):184-190.
|
|
HUANG X Q, XIN Z B, ZHAO Y J, et al. Effects of stand ages and site conditions on carbon stock of Pinus tabuliformis plantations in Beijing mountainous area[J]. J Soil Water Conserv, 2015, 29(6):184-190.DOI: 10.13870/j.cnki.stbcxb.2015.06.033.
|
[9] |
CLARK J S, BELL D M, HERSH M H, et al. Climate change vulnerability of forest biodiversity:climate and competition tracking of demographic rates[J]. Glob Change Biol, 2011, 17(5):1834-1849.DOI: 10.1111/j.1365-2486.2010.02380.x.
|
[10] |
BONTEMPS J D, BOURIAUD O. Predictive approaches to forest site productivity:recent trends,challenges and future perspectives[J]. Forestry (Lond), 2014, 87(1):109-128.DOI: 10.1093/forestry/cpt034.
|
[11] |
ZHANG X Q, LEI Y C, PANG Y, et al. Tree mortality in response to climate change induced drought across Beijing,China[J]. Clim Change, 2014, 124(1):179-190.DOI: 10.1007/s10584-014-1089-0.
|
[12] |
SHARMA M, SUBEDI N, TER-MIKAELIAN M, et al. Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees[J]. For Sci, 2015, 61(1):25-34.DOI: 10.5849/forsci.13-190.
|
[13] |
HE X, LEI X D, DONG L H. How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models?[J]. Ecol Indic, 2021, 126:107569.DOI: 10.1016/j.ecolind.2021.107569.
|
[14] |
LINDNER M, FITZGERALD J B, ZIMMERMANN N E, et al. Climate change and European forests:what do we know,what are the uncertainties,and what are the implications for forest management?[J]. J Environ Manag, 2014, 146:69-83.DOI: 10.1016/j.jenvman.2014.07.030.
|
[15] |
MEDLYN B E, DUURSMA R A, ZEPPEL M J B. Forest productivity under climate change:a checklist for evaluating model studies[J]. Wiley Interdiscip Rev Clim Change, 2011, 2(3):332-355.DOI: 10.1002/wcc.108.
|
[16] |
国家林业和草原局. 中国森林资源报告2014-2018[M]. 北京: 中国林业出版社, 2019.
|
[17] |
ZANG H, LEI X D, MA W, et al. Spatial heterogeneity of climate change effects on dominant height of larch plantations in northern and northeastern China[J]. Forests, 2016, 7(12):151.DOI: 10.3390/f7070151.
|
[18] |
LEI X D, YU L, HONG L X. Climate-sensitive integrated stand growth model (CS-ISGM) of Changbai larch (Larix olgensis) plantations[J]. For Ecol Manag, 2016, 376:265-275.DOI: 10.1016/j.foreco.2016.06.024.
|
[19] |
ZENG W S, DUO H R, LEI X D, et al. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp.in China[J]. Eur J Forest Res, 2017, 136(2):233-249.DOI: 10.1007/s10342-017-1024-9.
|
[20] |
REINEKE L H. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627-638. DOI: 10.1111/j.1744-7348.1933.tb07434.x.
|
[21] |
ZANG H, LEI X D, ZENG W S. Height-diameter equations for larch plantations in northern and northeastern China:a comparison of the mixed-effects,quantile regression and generalized additive models[J]. Forestry, 2016, 89(4):434-445.DOI: 10.1093/forestry/cpw022.
|
[22] |
国家林业局. 立木生物量模型及碳计量参数落叶松:LY/T 2654-2016[S]. 北京: 中国标准出版社, 2017.
|
[23] |
陈传国, 朱俊凤. 东北主要林木生物量手册[M]. 北京: 中国林业出版社,1989.
|
|
CHEN C G, ZHU J F. Handbook of biomass of main trees in northeast China[M]. Beijing: China Forestry Publishing House,1989.
|
[24] |
WANG C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. For Ecol Manag, 2006, 222(1/2/3):9-16.DOI: 10.1016/j.foreco.2005.10.074.
|
[25] |
WANG T L, WANG G Y, INNES J L, et al. ClimateAP:an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Front Agr Sci Eng, 2017, 4(4):448.DOI: 10.15302/j-fase-2017172.
|
[26] |
唐守正. 广西大青山马尾松全林整体生长模型及其应用[J]. 林业科学研究, 1991, 4(S): 8-13.
|
|
TANG S Z. Integrated stand growth model and its application of masson pine in Guangxi Daqingshan[J]. Forest Research, 1994, 4(supplement): 8-13.
|
[27] |
THAPA R, BURKHART H E. Modeling stand-level mortality of loblolly pine (Pinus taeda L.) using stand,climate,and soil variables[J]. For Sci, 2015, 61(5):834-846.DOI: 10.5849/forsci.14-125.
|
[28] |
USOLTSEV V A, MERGANICOVÁ K, KONÔPKA B, et al. Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation[J]. Central Eur For J, 2019, 65(3/4):166-179.DOI: 10.2478/forj-2019-0017.
|
[29] |
BENNETT A C, PENMAN T D, ARNDT S K, et al. Climate more important than soils for predicting forest biomass at the continental scale[J]. Ecography, 2020, 43(11):1692-1705.DOI: 10.1111/ecog.05180.
|
[30] |
LATTA G, TEMESGEN H, ADAMS D, et al. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest[J]. For Ecol Manag, 2010, 259(4):720-729.DOI: 10.1016/j.foreco.2009.09.003.
|
[31] |
TYLIANAKIS J M, DIDHAM R K, BASCOMPTE J, et al. Global change and species interactions in terrestrial ecosystems[J]. Ecol Lett, 2008, 11(12):1351-1363.DOI: 10.1111/j.1461-0248.2008.01250.x.
|
[32] |
KHAN D, MUNEER M A, NISA Z U, et al. Effect of climatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia,China[J]. Adv Meteorol, 2019, 2019:1-10.DOI: 10.1155/2019/5692574.
|
[33] |
GAO Z G, WANG Q Y, HU Z D, et al. Comparing independent climate-sensitive models of aboveground biomass and diameter growth with their compatible simultaneous model system for three larch species in China[J]. Int J Biomath, 2019, 12(7):1950053.DOI: 10.1142/s1793524519500530.
|
[34] |
AGUIRRE A, DEL RÍO M, RUIZ-PEINADO R, et al. Stand-level biomass models for predicting C stock for the main Spanish pine species[J]. For Ecosyst, 2021, 8(1):29.DOI: 10.1186/s40663-021-00308-w.
|
[35] |
XIE Y L, WANG H Y, LEI X D. Simulation of climate change and thinning effects on productivity of Larix olgensis plantations in northeast China using 3-PGmix model[J]. J Environ Manag, 2020, 261:110249.DOI: 10.1016/j.jenvman.2020.110249.
|