气候变化对落叶松人工林生物量生长的影响模拟

何潇, 雷相东, 段光爽, 丰庆荣, 张逸如, 冯林艳

南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 120-128.

PDF(1728 KB)
PDF(1728 KB)
南京林业大学学报(自然科学版) ›› 2023, Vol. 47 ›› Issue (3) : 120-128. DOI: 10.12302/j.issn.1000-2006.202211037
研究论文

气候变化对落叶松人工林生物量生长的影响模拟

作者信息 +

Modelling the effects of climate change on stand biomass growth of larch plantations

Author information +
文章历史 +

摘要

【目的】研究气候变化对落叶松人工林生物量及其生长的影响,为落叶松人工林碳估测和适应性经营决策提供依据。【方法】利用华北和东北地区第6~8次森林资源连续清查落叶松人工纯林固定样地数据,基于理论生长方程建立林分生物量生长模型。并将不同种落叶松作为哑变量,建立了气候敏感的林分生物量生长模型,气候因子为年湿热指数(AHM)。模拟未来气候不变、两种温室气体代表性浓度路径(RCPs)(包括RCP 4.5和RCP 8.5)3种气候变化情景下的林分生物量及其连年生长量,采用两种RCP气候情景与当前情景生物量估计结果的相对差值量化气候变化对林分生物量及其生长的影响。【结果】林分生物量的基础模型、含哑变量的模型、含气候变量和哑变量生长模型的决定系数R2分别为0.938 2、0.947 0和0.950 7,采用哑变量和考虑气候因子能够明显改善模型表现。模型模拟结果表明,与当前情景比较,各树种的林分生物量及其连年生长量在RCP 4.5和RCP 8.5气候变化情景下既有增加也有减少的趋势。对于林分生物量,RCP 4.5和RCP 8.5情景下的相对差值的均值区间分别为-3.02%~2.69%和-4.72%~3.41%;对于林分生物量连年生长量,RCP 4.5和RCP 8.5情景下的相对差值的均值区间分别为-1.92%~0.30%和-2.66%~0.72%。【结论】建立的林分生物量生长模型可用于模拟气候变化下落叶松人工林的林分生物量生长过程。在气候变化的背景下,不同种落叶松人工林生物量及其生长量既有增加也有减少。未来气候变化对不同种的林分生物量及生长量的影响存在差异。总体来看,2011-2060年气候变化对华北落叶松和日本落叶松林分生物量的影响为正,其余树种为负;对华北落叶松的林分生物量连年生长量的影响为正,其余为负。

Abstract

【Objective】This study aimed to understand the effects of climate change on the stand biomass and growth in larch (Larix spp.) plantations to provide a basis for estimating carbon storage and employing adaptive management decision-making. 【Method】Sample plot data of pure larch plantations from the 6th to 8th National Forest Inventories in northern and northeastern China were used to develop stand biomass growth models based on theoretical growth equations. Taking the tree species as a dummy variable, a climate-sensitive stand biomass growth model was developed with the inclusion of the annual heat-moisture index (AHM). The stand biomass and annual increment under three climate change scenarios, including a constant climate and two greenhouse gas representative concentration paths (RCPs) (RCP 4.5, RCP 8.5), were simulated using the model. The relative differences between the estimated results under two RCP climate scenarios and the current scenario were calculated to quantify the effects of climate change on the stand biomass and annual increment. 【Result】The R2 values of the basic stand biomass growth model, model with dummy variables, and model with dummy and climate variables were 0.938 2, 0.947 0, and 0.950 7, respectively. Dummy variables and climatic factors improved the performances of the models. Compared with the current scenario, both increasing and decreasing trends were found for the stand biomass and annual increment of each tree species under RCP 4.5 and RCP 8.5. For stand biomass, the ranges of the mean values of relative differences under RCP 4.5 and RCP 8.5 scenarios were from -3.02% and -4.72 % to 2.69% and 3.41%, respectively. For the annual increment of stand biomass, the ranges of the mean values of relative differences under RCP 4.5 and RCP 8.5 scenarios were from -1.92% and -2.66% to 0.30% and 0.72%, respectively. 【Conclusion】The stand biomass growth model established in this study can be used to simulate the stand biomass growth in pure larch plantations under climate change conditions. There were both increasing and decreasing trends for the stand biomass and annual increments of larch plantations with future climate change in different tree species. The direction and magnitude of the impacts of future climate change on the stand biomass and annual increments differed among tree species. Generally, positive effects on the stand biomass were found for Larix principis-rupprechtii and L. kaempferi, but negative effects were found for other tree species; and negative effects on the stand biomass annual increment were found for all tree species with the exception of L. principis-rupprechtii.

关键词

林分生物量 / 连年生长量 / 生长模型 / 年湿热指数 / 气候变化

Key words

stand biomass / annual increment / growth model / annual heat-moisture index / climate change

引用本文

导出引用
何潇, 雷相东, 段光爽, . 气候变化对落叶松人工林生物量生长的影响模拟[J]. 南京林业大学学报(自然科学版). 2023, 47(3): 120-128 https://doi.org/10.12302/j.issn.1000-2006.202211037
HE Xiao, LEI Xiangdong, DUAN Guangshuang, et al. Modelling the effects of climate change on stand biomass growth of larch plantations[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 120-128 https://doi.org/10.12302/j.issn.1000-2006.202211037
中图分类号: S757   

参考文献

[1]
KINDERMANN G, OBERSTEINER M, SOHNGEN B, et al. Global cost estimates of reducing carbon emissions through avoided deforestation[J]. Proc Natl Acad Sci USA, 2008, 105(30):10302-10307.DOI: 10.1073/pnas.0710616105.
[2]
PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI: 10.1126/science.1201609.
[3]
朱光玉, 胡松, 符利勇. 基于哑变量的湖南栎类天然林林分断面积生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):155-162.
ZHU G Y, HU S, FU L Y. Basal area growth model for oak natural forest in Hunan Province based on dummy variable[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(2):155-162.DOI: 10.3969/j.issn.1000-2006.201704059.
[4]
STOKLAND J N. Volume increment and carbon dynamics in boreal forest when extending the rotation length towards biologically old stands[J]. For Ecol Manag, 2021, 488:119017.DOI: 10.1016/j.foreco.2021.119017.
[5]
薛春泉, 徐期瑚, 林丽平, 等. 广东主要乡土阔叶树种单木生物量生长模型[J]. 华南农业大学学报, 2019, 40(2):65-75.
XUE C Q, XU Q H, LIN L P, et al. Biomass growth models for individual tree of main indigenous broadleaf tree species in Guangdong Province[J]. J South China Agric Univ, 2019, 40(2):65-75.DOI: 10.7671/j.issn.1001-411X.201806031.
[6]
何潇, 曹磊, 徐胜林, 等. 内蒙古大兴安岭林区不同恢复阶段森林生物量特征与影响因素[J]. 北京林业大学学报, 2019, 41(9):50-58.
HE X, CAO L, XU S L, et al. Forest biomass characteristics and influencing factors in different restoration stages in the Daxing’anling forest region of Inner Mongolia,northern China[J]. J Beijing For Univ, 2019, 41(9):50-58.DOI: 10.13332/j.1000-1522.20190030.
[7]
曹磊, 刘晓彤, 李海奎, 等. 广东省常绿阔叶林生物量生长模型[J]. 林业科学研究, 2020, 33(5):61-67.
CAO L, LIU X T, LI H K, et al. Biomass growth models for evergreen broad-leaved forests in Guangdong[J]. For Res, 2020, 33(5):61-67.DOI: 10.13275/j.cnki.lykxyj.2020.05.008.
[8]
黄晓强, 信忠保, 赵云杰, 等. 林龄和立地条件对北京山区油松人工林碳储量的影响[J]. 水土保持学报, 2015, 29(6):184-190.
HUANG X Q, XIN Z B, ZHAO Y J, et al. Effects of stand ages and site conditions on carbon stock of Pinus tabuliformis plantations in Beijing mountainous area[J]. J Soil Water Conserv, 2015, 29(6):184-190.DOI: 10.13870/j.cnki.stbcxb.2015.06.033.
[9]
CLARK J S, BELL D M, HERSH M H, et al. Climate change vulnerability of forest biodiversity:climate and competition tracking of demographic rates[J]. Glob Change Biol, 2011, 17(5):1834-1849.DOI: 10.1111/j.1365-2486.2010.02380.x.
[10]
BONTEMPS J D, BOURIAUD O. Predictive approaches to forest site productivity:recent trends,challenges and future perspectives[J]. Forestry (Lond), 2014, 87(1):109-128.DOI: 10.1093/forestry/cpt034.
[11]
ZHANG X Q, LEI Y C, PANG Y, et al. Tree mortality in response to climate change induced drought across Beijing,China[J]. Clim Change, 2014, 124(1):179-190.DOI: 10.1007/s10584-014-1089-0.
[12]
SHARMA M, SUBEDI N, TER-MIKAELIAN M, et al. Modeling climatic effects on stand height/site index of plantation-grown jack pine and black spruce trees[J]. For Sci, 2015, 61(1):25-34.DOI: 10.5849/forsci.13-190.
[13]
HE X, LEI X D, DONG L H. How large is the difference in large-scale forest biomass estimations based on new climate-modified stand biomass models?[J]. Ecol Indic, 2021, 126:107569.DOI: 10.1016/j.ecolind.2021.107569.
[14]
LINDNER M, FITZGERALD J B, ZIMMERMANN N E, et al. Climate change and European forests:what do we know,what are the uncertainties,and what are the implications for forest management?[J]. J Environ Manag, 2014, 146:69-83.DOI: 10.1016/j.jenvman.2014.07.030.
[15]
MEDLYN B E, DUURSMA R A, ZEPPEL M J B. Forest productivity under climate change:a checklist for evaluating model studies[J]. Wiley Interdiscip Rev Clim Change, 2011, 2(3):332-355.DOI: 10.1002/wcc.108.
[16]
国家林业和草原局. 中国森林资源报告2014-2018[M]. 北京: 中国林业出版社, 2019.
[17]
ZANG H, LEI X D, MA W, et al. Spatial heterogeneity of climate change effects on dominant height of larch plantations in northern and northeastern China[J]. Forests, 2016, 7(12):151.DOI: 10.3390/f7070151.
[18]
LEI X D, YU L, HONG L X. Climate-sensitive integrated stand growth model (CS-ISGM) of Changbai larch (Larix olgensis) plantations[J]. For Ecol Manag, 2016, 376:265-275.DOI: 10.1016/j.foreco.2016.06.024.
[19]
ZENG W S, DUO H R, LEI X D, et al. Individual tree biomass equations and growth models sensitive to climate variables for Larix spp.in China[J]. Eur J Forest Res, 2017, 136(2):233-249.DOI: 10.1007/s10342-017-1024-9.
[20]
REINEKE L H. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627-638. DOI: 10.1111/j.1744-7348.1933.tb07434.x.
[21]
ZANG H, LEI X D, ZENG W S. Height-diameter equations for larch plantations in northern and northeastern China:a comparison of the mixed-effects,quantile regression and generalized additive models[J]. Forestry, 2016, 89(4):434-445.DOI: 10.1093/forestry/cpw022.
[22]
国家林业局. 立木生物量模型及碳计量参数落叶松:LY/T 2654-2016[S]. 北京: 中国标准出版社, 2017.
[23]
陈传国, 朱俊凤. 东北主要林木生物量手册[M]. 北京: 中国林业出版社,1989.
CHEN C G, ZHU J F. Handbook of biomass of main trees in northeast China[M]. Beijing: China Forestry Publishing House,1989.
[24]
WANG C K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. For Ecol Manag, 2006, 222(1/2/3):9-16.DOI: 10.1016/j.foreco.2005.10.074.
[25]
WANG T L, WANG G Y, INNES J L, et al. ClimateAP:an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Front Agr Sci Eng, 2017, 4(4):448.DOI: 10.15302/j-fase-2017172.
[26]
唐守正. 广西大青山马尾松全林整体生长模型及其应用[J]. 林业科学研究, 1991, 4(S): 8-13.
TANG S Z. Integrated stand growth model and its application of masson pine in Guangxi Daqingshan[J]. Forest Research, 1994, 4(supplement): 8-13.
[27]
THAPA R, BURKHART H E. Modeling stand-level mortality of loblolly pine (Pinus taeda L.) using stand,climate,and soil variables[J]. For Sci, 2015, 61(5):834-846.DOI: 10.5849/forsci.14-125.
[28]
USOLTSEV V A, MERGANICOVÁ K, KONÔPKA B, et al. Fir (Abies spp.) stand biomass additive model for Eurasia sensitive to winter temperature and annual precipitation[J]. Central Eur For J, 2019, 65(3/4):166-179.DOI: 10.2478/forj-2019-0017.
[29]
BENNETT A C, PENMAN T D, ARNDT S K, et al. Climate more important than soils for predicting forest biomass at the continental scale[J]. Ecography, 2020, 43(11):1692-1705.DOI: 10.1111/ecog.05180.
[30]
LATTA G, TEMESGEN H, ADAMS D, et al. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest[J]. For Ecol Manag, 2010, 259(4):720-729.DOI: 10.1016/j.foreco.2009.09.003.
[31]
TYLIANAKIS J M, DIDHAM R K, BASCOMPTE J, et al. Global change and species interactions in terrestrial ecosystems[J]. Ecol Lett, 2008, 11(12):1351-1363.DOI: 10.1111/j.1461-0248.2008.01250.x.
[32]
KHAN D, MUNEER M A, NISA Z U, et al. Effect of climatic factors on stem biomass and carbon stock of Larix gmelinii and Betula platyphylla in Daxing’anling Mountain of Inner Mongolia,China[J]. Adv Meteorol, 2019, 2019:1-10.DOI: 10.1155/2019/5692574.
[33]
GAO Z G, WANG Q Y, HU Z D, et al. Comparing independent climate-sensitive models of aboveground biomass and diameter growth with their compatible simultaneous model system for three larch species in China[J]. Int J Biomath, 2019, 12(7):1950053.DOI: 10.1142/s1793524519500530.
[34]
AGUIRRE A, DEL RÍO M, RUIZ-PEINADO R, et al. Stand-level biomass models for predicting C stock for the main Spanish pine species[J]. For Ecosyst, 2021, 8(1):29.DOI: 10.1186/s40663-021-00308-w.
[35]
XIE Y L, WANG H Y, LEI X D. Simulation of climate change and thinning effects on productivity of Larix olgensis plantations in northeast China using 3-PGmix model[J]. J Environ Manag, 2020, 261:110249.DOI: 10.1016/j.jenvman.2020.110249.

基金

国家重点研发计划(2022YFD2200501)
林业公益性行业科研专项项目(201504303)

编辑: 李燕文
PDF(1728 KB)

Accesses

Citation

Detail

段落导航
相关文章

/