基于简化基因组开发青冈和滇青冈微卫星引物

欧阳泽怡, 李志辉, 牟虹霖, 姜小龙, 程勇, 吴际友

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 62-70.

PDF(2132 KB)
PDF(2132 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (6) : 62-70. DOI: 10.12302/j.issn.1000-2006.202212002
研究论文

基于简化基因组开发青冈和滇青冈微卫星引物

作者信息 +

Designing of microsatellite primers for Quercus glauca and Q. glaucoides (Fagaceae) based on RAD-seq data

Author information +
文章历史 +

摘要

【目的】青冈(Quercus glauca)和滇青冈(Q. glaucoides)为珍贵树种,是东亚亚热带常绿阔叶林的重要建群种以及典型地理替代种,具有很高的生态和经济价值。开发其微卫星(simple sequence repeats,SSR)引物有助于分析其群体遗传格局及遗传多样性,为2种青冈林的管理和资源开发利用提供参考,也可为跨物种间的微卫星标记开发提供借鉴。【方法】分别基于3株青冈和3株滇青冈植株的简化基因组测序数据开发SSR引物。先后采用Stacks 2.0b软件process_radtags模型和SciRoKo 3.4软件对测序数据进行过滤和提取。利用Primer premier 6.0软件设计SSR引物。【结果】使用pyRAD 3.0.66软件对序列进行聚类,共鉴定出217个SSR位点,其中35%(76个)的SSR位点在青冈和滇青冈中均具有多态性。设计并筛选出28对SSR引物,分别在两个青冈群体和两个滇青冈群体(共48个个体)中进行巢式聚合酶链式反应(PCR)扩增。开发的28对SSR引物分布在青冈10条染色体上,SSR引物均在青冈和滇青冈个体中成功扩增,扩增率达到了90.7%。SSR分型分析结果表明,从遗传多样性方面看,所开发的28对引物中,共有176个等位基因;引物的等位基因数为3~13,平均为6.29个;期望杂合度为0.223~0.886,观察杂合度为 0.159~0.830。【结论】利用简化基因组数据可以快速、高效、经济地开发青冈和滇青冈通用微卫星引物,为后续2种青冈群体遗传学研究提供基础。也证明利用简化基因组测序数据,可开发近缘物种的通用微卫星引物。

Abstract

【Objective】Quercus glauca and Q. glaucoides are valuable and dominant species in the subtropical evergreen broadleaf forests of East Asia. They represent typical geographical vicarious species with significant ecological and economic importance. Therefore, the development of SSR primers for these two species can facilitate the analysis of genetic patterns and genetic diversity for the management and resource development of evergreen broadleaf forests as well as provide a reference for the development of microsatellite markers across species.【Method】This study developed SSR primers based on RADseq data from three Q. glauca and three Q. glaucoides individuals, respectively. The sequencing data were filtered and extracted using the process_radtags model in Stacks 2.0b software and SciRoKo 3.4 software sequentially. SSR primers were designed using Primer premier V6.0 software.【Result】The sequences were clustered using pyRAD 3.0.66, identifying a total of 217 SSR loci, 35% (76) of which were polymorphic in both species. Twenty-eight SSR primer pairs were designed and validated in two Q. glauca populations and two Q. glaucoides populations (48 individuals in total) through nested polymerase chain reaction (PCR) amplification. The 28 SSR primer pairs are distributed across ten chromosomes of the Q. glauca genome and successfully amplified in Q. glauca and Q. glaucoides individuals, with an amplification rate of 90.7%. The SSR genotyping analysis detected a total of 176 alleles, with the number of alleles per primer ranging from 3 to 13, and an average of 6.29. The expected and observed heterozygosity of the primers ranged from 0.223 to 0.886 and from 0.159 to 0.830, respectively.【Conclusion】The universal microsatellite primers developed in this study using RADseq data for Q. glauca and Q. glaucoides provide a basis for further population genetics studies of these species. In addition, this study demonstrates that RADseq data can be employed to rapidly, efficiently, and be used to cost-effectively develop universal microsatellite primers for closely related species.

关键词

青冈 / 滇青冈 / 微卫星 / 简化基因组

Key words

Quercus glauca / Quercus glaucoides / microsatellite / RAD-seq

引用本文

导出引用
欧阳泽怡, 李志辉, 牟虹霖, . 基于简化基因组开发青冈和滇青冈微卫星引物[J]. 南京林业大学学报(自然科学版). 2024, 48(6): 62-70 https://doi.org/10.12302/j.issn.1000-2006.202212002
OUYANG Zeyi, LI Zhihui, MOU Honglin, et al. Designing of microsatellite primers for Quercus glauca and Q. glaucoides (Fagaceae) based on RAD-seq data[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 62-70 https://doi.org/10.12302/j.issn.1000-2006.202212002
中图分类号: S795   

参考文献

[1]
姜小龙. 福建青冈和岭南青冈系统发育关系及居群遗传结构[D]. 长沙: 中南林业科技大学, 2020.
JIANG X L. Phylogenetic relationship and population genetic structure of Quercus chungii and Q.championii[D]. Changsha: Central South University of Forestry & Technology, 2020.DOI:10.27662/d.cnki.gznlc.2020.000507.
[2]
DENK T, GRIMM G W, MANOS P S, et al. An updated infrageneric classification of the oaks:review of previous taxonomic schemes and synthesis of evolutionary patterns in Oaks Physiological Ecology.Exploring the Functional Diversity of Genus Quercus L.[M]. Cham:Springer, 2017,13-38. DOI: 10.1007/978-3-319-69099-5.
[3]
MANOS P S, DOYLE J J, NIXON K C. Phylogeny,biogeography,and processes of molecular differentiation in Quercus Subgenus Quercus (Fagaceae)[J]. Mol Phylogenet Evol, 1999, 12(3):333-349.DOI: 10.1006/mpev.1999.0614.
[4]
罗艳, 周浙昆. 青冈亚属植物的地理分布[J]. 云南植物研究, 2001, 23(1):1-16,28.
LUO Y, ZHOU Z K. Phytogeography of Quercus subg. Cyclobalanopsis[J]. Acta Bot Yunnanica, 2001, 23(1):1-16,28.
[5]
中国科学院中国植物志编辑委员会. 中国植物志-第四十二卷,第一分册[M]. 北京: 科学出版社,1993.
[6]
郭双兴. 云南临沧晚中新世邦卖组植物群[J]. 古生物学报, 2011, 50(3):353-408.
GUO S X. The late Miocene Bangmai flora from Lincang County of Yunnan,southwestern China[J]. Acta Palaeontol Sin, 2011, 50(3):353-408.DOI: 10.19800/j.cnki.aps.2011.03.008.
[7]
郭双兴. 四川西部高原上新世植物群[J]. 古生物学报, 1978, 17(3):343-350,373.
GUO S X. Pliocene floras of western Sichuan[J]. Acta Palaeontol Sin, 1978, 17(3):343-350,373.DOI: 10.19800/j.cnki.aps.1978.03.007.
[8]
罗冉, 吴委林, 张旸, 等. SSR分子标记在作物遗传育种中的应用[J]. 基因组学与应用生物学, 2010, 29(1):137-143.
LUO R, WU W L, ZHANG Y, et al. SSR marker and its application to crop genetics and breeding[J]. Genom Appl Biol, 2010, 29(1):137-143.DOI: 10.3969/gab.029.000137.
[9]
SELKOE K A, TOONEN R J. Microsatellites for ecologists:a practical guide to using and evaluating microsatellite markers[J]. Ecol Lett, 2006, 9(5):615-629.DOI: 10.1111/j.1461-0248.2006.00889.x.
[10]
DAVEY J W, HOHENLOHE P A, ETTER P D, et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing[J]. Nat Rev Genet, 2011, 12(7):499-510.DOI: 10.1038/nrg3012.
[11]
胡亚亚, 刘兰服, 冀红柳, 等. 简化基因组测序技术研究进展[J]. 江苏师范大学学报(自然科学版), 2018, 36(4):63-68.
HU Y Y, LIU L F, JI H L, et al. Research progress on the reduced-representation genome sequencing technique[J]. J Jiangsu Norm Univ (Nat Sci Ed), 2018, 36(4):63-68.DOI: 10.3969/j.issn.2095-4298.2018.04.012.
[12]
宁馨, 姜小龙, 邓敏, 等. 基于简化基因组数据开发岭南青冈微卫星引物[J]. 植物研究, 2020, 40(4):629-634.
NING X, JIANG X L, DENG M, et al. Development of microsatellite primers of Quercus championii with RAD-seq data[J]. Bull Bot Res, 2020, 40(4):629-634.DOI: 10.7525/j.issn.1673-5102.2020.04.018.
[13]
李慧, 刘东超, 徐瑞瑞, 等. 基于RAD-seq技术的金银花SSR标记开发及鉴定[J]. 北京林业大学学报, 2021, 43(6):108-117.
LI H, LIU D C, XU R R, et al. Development and identification of SSR markers based on RAD-seq of Lonicera japonica[J]. J Beijing For Univ, 2021, 43(6):108-117.DOI: 10.12171/j.1000-1522.20200337.
[14]
GAO Y, YIN S, LIU C, et al. A rapid approach for SSR development in Amorphophallus paeoniifolius using RAD-seq[J]. Taiwania, 2018, (63): 281-285.
[15]
王久利, 陈世龙, 邢睿, 等. 椭圆叶花锚简化基因组的SSR信息分析及SSR引物开发[J]. 植物研究, 2018, 38(2):292-297.
WANG J L, CHEN S L, XING R, et al. Simplified genome SSR information and development of SSR primers of Halenia ellipitica (Gentianaceae)[J]. Bull Bot Res, 2018, 38(2):292-297.DOI: 10.7525/j.issn.1673-5102.2018.02.018.
[16]
CATCHEN J M, AMORES A, HOHENLOHE P, et al. Stacks:building and genotyping loci De novo from short-read sequences[J]. G3 Genes|genomes|genetics, 2011, 1(3):171-182.DOI: 10.1534/g3.111.000240.
[17]
KOFLER R, SCHLÖTTERER C, LELLEY T. SciRoKo:a new tool for whole genome microsatellite search and investigation[J]. Bioinformatics, 2007, 23(13):1683-1685.DOI: 10.1093/bioinformatics/btm157.
[18]
EATON D A R. PyRAD:Assembly of de novo RADseq loci for phylogenetic analyses[J]. Bioinformatics, 2014, 30(13):1844-1849.DOI: 10.1093/bioinformatics/btu121.
[19]
SINGH V K, MANGALAM A K, DWIVEDI S, et al. Primer premier:program for design of degenerate primers from a protein sequence[J]. BioTechniques, 1998, 24(2):318-319.DOI: 10.2144/98242pf02.
[20]
SCHUELKE M. An economic method for the fluorescent labeling of PCR fragments[J]. Nat Biotechnol, 2000, 18(2):233-234.DOI: 10.1038/72708.
[21]
HOLLAND M M, PARSON W. GeneMarker© HID:a reliable software tool for the analysis of forensic STR data[J]. J Forensic Sci, 2011, 56(1):29-35.DOI: 10.1111/j.1556-4029.2010.01565.x.
[22]
PEAKALL R, SMOUSE P E. Genalex 6:genetic analysis in Excel.Population genetic software for teaching and research[J]. Mol Ecol Notes, 2006, 6(1):288-295.DOI: 10.1111/j.1471-8286.2005.01155.x.
[23]
APARICIO J M, ORTEGO J, CORDERO P J. What should we weigh to estimate heterozygosity,alleles or loci?[J]. Mol Ecol, 2006, 15(14):4659-4665.DOI: 10.1111/j.1365-294X.2006.03111.x.
[24]
兰进茂, 覃瑞, 夏婧. 华蟹甲的简化基因组测序及SSR引物开发[J]. 中南民族大学学报(自然科学版), 2021, 40(3):258-263.
LAN J M, QIN R, XIA J. Simplified genome SSR information and the development of SSR primers in Sinacalia tangutica (Asteraceae)[J]. J South Central Univ Natl (Nat Sci Ed), 2021, 40(3):258-263.DOI: 10.12130/znmdzk.20210307.
[25]
LV S Z, CHENG S, WANG Z Y, et al. Draft genome of the famous ornamental plant Paeonia suffruticosa[J]. Ecol Evol, 2020, 10(11):4518-4530.DOI: 10.1002/ece3.5965.

基金

国家科技支撑计划(2012BAD21B03)
湖南省自然科学基金青年基金项目(2021JJ41069)
湖南省林业局林业科技攻关项目(XLK201706)

编辑: 吴祝华
PDF(2132 KB)

Accesses

Citation

Detail

段落导航
相关文章

/