中国亚热带杉木人工林不同林分发育阶段的群落构建机制

鲁旭东, 董禹然, 李垚, 毛岭峰

南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1) : 67-73.

PDF(2727 KB)
PDF(2727 KB)
南京林业大学学报(自然科学版) ›› 2024, Vol. 48 ›› Issue (1) : 67-73. DOI: 10.12302/j.issn.1000-2006.202212037
专题报道Ⅱ:森林生态系统生物多样性研究专题(执行主编 薛建辉 方炎明)

中国亚热带杉木人工林不同林分发育阶段的群落构建机制

作者信息 +

Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China

Author information +
文章历史 +

摘要

【目的】杉木(Cunninghamia lanceolata)人工林作为中国亚热带地区最重要的生态系统形式与木材来源之一,其群落构建的过程对于解释人工林物种共存与生物多样性的维持至关重要。本研究旨在揭示中国亚热带杉木人工林群落的构建过程及其机制,为杉木人工林在经营过程中提升局域生物多样性的稳定提供理论基础。【方法】通过文献检索和野外抽样调查,收集了中国亚热带地区林龄跨度较大(3~100 a)的143个杉木人工纯林的样方数据。根据群落系统发育结构随种植时间、胸径的变化趋势,探究环境过滤、竞争排斥和随机过程在林分发育过程中的变化。【结果】整体上,杉木人工林随着林龄的增加,植物群落的净种间亲缘关系指数(NRI)和净最近种间亲缘关系指数(NTI)均表现为先降低后平缓,系统发育结构由聚集转为随机后最终趋向于发散。这一过程NRI比NTI变化更显著:在幼龄林前期阶段,NRI和NTI均大于0、系统发育结构表现为聚集;随后在林分成熟前,NRI < 0, NTI > 0,在群落整体水平上表现为发散,而在进化树末端上表现为聚集;在林分成熟后,NRI和NTI均小于0,系统发育结构表现为发散。系统发育结构随胸径的变化趋势与林龄基本一致。【结论】随着林分生长发育,亚热带杉木人工林群落构建主要动力由环境过滤,经过一段随机作用,最终由生物间相互作用主导。对于不同林龄阶段采取合理的营林措施有利于杉木人工林局域物种共存和植物多样性的维持。

Abstract

【Objective】 The process of community establishment in Chinese fir (Cunninghamia lanceolata) artificial forest, as one of the most significant ecosystems and sources of timber in China’s subtropical regions, is crucial for understanding the coexistence of species and the maintenance of biodiversity in plantation forests. The objective of this study is to investigate the process of community assembly and underlying mechanisms of Chinese fir artificial forests in Chinese subtropical, and provide a theoretical basis for enhancing the stability of local biodiversity in the management of Chinese fir artificial forests. 【Method】 Data from 143 pure Chinese fir artificial forests with a wide age range (3-100 years old) in subtropical China were collected through literature search and field sampling surveys. The changes in community phylogenetic structure with forest age and breast height diameter were examined to explore the variations in environmental filtration, competitive exclusion, and stochastic processes during stand development. 【Result】 Overall, as the forest age increased, the net relatedness index (NRI) and net taxon index (NTI) of plant communities in Chinese fir artificial forests initially decreased and then leveled off. The phylogenetic structure transitioned from aggregation to stochastic processes and eventually tended to diverge. The changes in NRI were more significant than those in NTI. In the early stage of young stands, NRI and NTI were both higher than 0, indicating aggregation in the phylogenetic structure. Before stand maturity, NRI was lower than 0, and NTI was higher than 0, showing divergence at the community level and aggregation at the end of the evolutionary tree. After stand maturity, both NRI and NTI were lower than 0, indicating a divergent phylogenetic structure. The trend of phylogenetic structure with diameter at breast height (DBH) was consistent with stand age. 【Conclusion】 The community assembly of Chinese fir artificial forests is primarily driven by environmental filtration, followed by a period of stochastic processes, and ultimately dominated by inter-biotic interactions as the forest stand grows and develops. Implementing appropriate forest management measures for different stand ages is beneficial for the coexistence of local species and the maintenance of plant diversity in Chinese fir artificial forests.

关键词

杉木人工林 / 林龄 / 系统发育 / 群落构建机制 / 亚热带地区 / 生物多样性

Key words

Chinese fir (Cunninghamia lanceolata) artificial forest / planting age / phylogeny / community assembly mechanism / subtropical region / biodiversity

引用本文

导出引用
鲁旭东, 董禹然, 李垚, . 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版). 2024, 48(1): 67-73 https://doi.org/10.12302/j.issn.1000-2006.202212037
LU Xudong, DONG Yuran, LI Yao, et al. Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 67-73 https://doi.org/10.12302/j.issn.1000-2006.202212037
中图分类号: S718.5   

参考文献

[1]
盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究, 2018, 31(1):1-14.
SHENG W T. On the maintenance of long-term productivity of plantation in China[J]. For Res, 2018, 31(1):1-14. DOI:10.13275/j.cnki.lykxyj.2018.01.001.
[2]
杨慧芳. 杉木的特征特性及良种造林技术[J]. 现代农业科技, 2022(5):97-98,101.
YANG H F. Characteristics of Cunninghamia lanceolata and afforestation techniques of improved varieties[J]. Modern Agriculture Science and Technology, 2022(5):97-98, 101. DOI:10.3969/j.issn.1007-5739.2022.05.032.
[3]
MEINERS S, CADOTTE M, FRIDLEY J, et al. Is successional research nearing its climax? New approaches for understanding dynamic communities[J]. Funct Ecol, 2015, 29:154-164. DOI:10.1111/1365-2435.12391.
[4]
张春雨, 赵秀海, 赵亚洲. 长白山温带森林不同演替阶段群落结构特征[J]. 植物生态学报, 2009, 33(6):1090-1100.
ZHANG C Y, ZHAO X H, ZHAO Y Z. Community structure in different successional stages in north temperate forests of Changbai Mountains,China[J]. Chin J Plant Ecol, 2009, 33(6):1090-1100. DOI:10.3773/j.issn.1005-264x.2009.06.009.
[5]
WEBB C O, ACKERLY D D, MCPEEK M A, et al. Phylogenies and community ecology[J]. Annu Rev Ecol Syst, 2002, 33:475-505. DOI:10.1146/annurev.ecolsys.33.010802.150448.
[6]
WEBB C O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees[J]. Am Nat, 2000, 156(2):145-155. DOI:10.1086/303378.
[7]
BRUELHEIDE H, BÖHNKE M, BOTH S, et al. Community assembly during secondary forest succession in a Chinese subtropical forest[J]. Ecol Monogr, 2011, 81(1):25-41. DOI:10.1890/09-2172.1.
[8]
SWENSON N G, STEGEN J C, DAVIES S J, et al. Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity[J]. Ecology, 2012, 93(3):490-499. DOI:10.1890/11-1180.1.
[9]
HELSEN K, HERMY M, HONNAY O. Trait but not species convergence during plant community assembly in restored semi-natural grasslands[J]. Oikos, 2012, 121(12):2121-2130. DOI:10.1111/j.1600-0706.2012.20499.x.
[10]
LEBRIJA-TREJOS E, PÉREZ-GARCÍA E A, MEAVE J A, et al. Functional traits and environmental filtering drive community assembly in a species-rich tropical system[J]. Ecology, 2010, 91(2):386-398. DOI:10.1890/08-1449.1.
[11]
ZHANG H, GILBERT B, ZHANG X X, et al. Community assembly along a successional gradient in sub-alpine meadows of the Qinghai-Tibetan Plateau, China[J]. Oikos, 2013, 122(6):952-960. DOI:10.1111/j.1600-0706.2012.20828.x.
[12]
BHASKAR R, DAWSON T, BALVANERA P. Community assembly and functional diversity along succession post-management[J]. Funct Ecol, 2014, 28:1256-1265. DOI:10.1111/1365-2435.12257.
[13]
PURSCHKE O, SCHMID B C, SYKES M T, et al. Contrasting changes in taxonomic, phylogenetic and functional diversity during a long-term succession: insights into assembly processes[J]. J Ecol, 2013, 101(4):857-866. DOI:10.1111/1365-2745.12098
[14]
LETCHER S G, CHAZDON R L, ANDRADE A C S, et al. Phylogenetic community structure during succession: evidence from three Neotropical forest sites[J]. Perspect Plant Ecol Evol Syst, 2012, 14(2):79-87. DOI:10.1016/j.ppees.2011.09.005.
[15]
WHITFELD T J S, KRESS W J, ERICKSON D L, et al. Change in community phylogenetic structure during tropical forest succession: evidence from New Guinea[J]. Ecography, 2012, 35(9):821-830. DOI:10.1111/j.1600-0587.2011.07181.x.
[16]
VERDÚ M, REY P J, ALCÁNTARA J M, et al. Phylogenetic signatures of facilitation and competition in successional communities[J]. J Ecol, 2009, 97(6):1171-1180. DOI:10.1111/j.1365-2745.2009.01565.x.
[17]
HOLL K D. Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germination, microclimate, and soil[J]. Biotropica, 1999, 31(2):229-242. DOI:10.1111/j.1744-7429.1999.tb00135.x.
[18]
CHAZDON R L. Chance and determinism in tropical forest succession[J]. Trop for Community Ecol, 2008:384-409.
[19]
CHAZDON R L, CAREAGA S, WEBB C, et al. Community and phylogenetic structure of reproductive traits of woody species in wet tropical forests[J]. Ecol Monogr, 2003, 73(3):331-348. DOI:10.1890/02-4037.
[20]
ZHANG J L. Plantlist: looking up the status of plant scientific names based on the plant list database[Z]. R Package Version 0.3.0,2017. [2022-12-01]. https://github. com/helixcn/plantlist.
[21]
JIN Y, QIAN H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants[J]. Ecography, 2019, 42(8):1353-1359. DOI:10.1111/ecog.04434.
[22]
SMITH S A, BROWN J W. Constructing a broadly inclusive seed plant phylogeny[J]. Am J Bot, 2018, 105(3):302-314. DOI:10.1002/ajb2.1019.
[23]
PARADIS E, SCHLIEP K. Ape 5.0: an environment formodern phylogenetics and evolutionary analyses in R[J]. Bioinf, 2019, 35(3):526-528. DOI:10.1093/bioinformatics/bty633.
[24]
CAVENDER-BARES J, KOZAK K H, FINE P V A, et al. The merging of community ecology and phylogenetic biology[J]. Ecol Lett, 2009, 12(7):693-715. DOI:10.1111/j.1461-0248.2009.01314.x.
[25]
PRINZING A, DURKA W, KLOTZ S, et al. The niche of higher plants: evidence for phylogenetic conservatism[J]. Proc R Soc Lond B, 2001, 268(1483):2383-2389. DOI:10.1098/rspb.2001.1801.
[26]
FINEGAN B. Pattern and process in neotropical secondary rain forests: the first 100 years of succession[J]. Trends Ecol Evol, 1996, 11(3):119-124. DOI:10.1016/0169-5347(96)81090-1.
[27]
CHAZDON R L. Tropical forest recovery: legacies of human impact and natural disturbances[J]. Perspect Plant Ecol Evol Syst, 2003, 6(1/2):51-71. DOI:10.1078/1433-8319-00042.
[28]
YU Q S, RAO X Q, OUYANG S N, et al. Changes in taxonomic and phylogenetic dissimilarity among four subtropical forest communities during 30 years of restoration[J]. For Ecol Manag, 2019, 432:983-990. DOI:10.1016/j.foreco.2018.10.033.
[29]
王少鹏, 罗明宇, 冯彦皓, 等. 生物多样性理论最新进展[J]. 生物多样性, 2022, 30(10): 21-33.
WANG S P, LUO M Y, FENG Y H, et al. Theoretical advances in biodiversity research[J]. Biodivers Sci, 2022, 30(10): 21-33. DOI:10.17520/biods.2022410.
[30]
TILMAN D, KAREIVA P M. Spatial ecology: the role of space in population dynamics and interspecific interactions[M]. Princeton N J: Princeton University Press,1997.
[31]
EMERSON B C, GILLESPIE R G. Phylogenetic analysis of community assembly and structure over space and time[J]. Trends Ecol Evol, 2008, 23(11):619-630. DOI:10.1016/j.tree.2008.07.005.

基金

中国科学院战略性先导科技专项(XDB31000000)

编辑: 郑琰燚
PDF(2727 KB)

Accesses

Citation

Detail

段落导航
相关文章

/