林业废弃物与猪粪堆肥过程中理化性质变化及腐熟度评价

郑捷翔, 王艮梅, 刘亚柏, 李嘉欣, 贺紫莹, 程锦萍, 程新宇

南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (4) : 195-205.

PDF(1661 KB)
PDF(1661 KB)
南京林业大学学报(自然科学版) ›› 2025, Vol. 49 ›› Issue (4) : 195-205. DOI: 10.12302/j.issn.1000-2006.202301008
研究论文

林业废弃物与猪粪堆肥过程中理化性质变化及腐熟度评价

作者信息 +

Changes of physicochemical properties and maturity evaluation during forestry waste and pig manure co-composting

Author information +
文章历史 +

摘要

【目的】研究林业废弃物在猪粪地肥过程中的性状变化,为林业废弃物合理处置及资源化利用提供依据。【方法】以修剪的猕猴桃(Actinidia arguta)枝条(取自江苏句容市某果园)和猪粪(取自当地养猪场)为研究对象,采用好氧堆肥的方法,按照猕猴桃枝条与猪粪的不同质量比例共设置6组处理[分别为9∶1、7∶3、5∶5、3∶7、1∶9,以及9∶1处理的基础上添加了微生物菌剂的9∶1(E)处理],研究猕猴桃枝条与猪粪混合堆肥过程中养分含量的变化,并进行腐熟程度评价。【结果】除9∶1、7∶3处理的堆体未达到高温阶段,其余处理在堆肥2~4 d后均达到高温阶段(>50 ℃),且高温持续时间达7 d以上,其中9∶1(E)处理持续高温阶段的时间最长,达10 d以上。除9∶1和7∶3处理外,其余处理的堆体种子发芽指数(GI)均达到50%(第10天)和80%(第20天)以上。堆肥过程中堆体pH和电导率(EC)无明显变化规律,所有处理堆体的pH在堆肥第20天时全部达到腐熟标准,EC在堆肥全过程中均符合腐熟标准。堆肥过程中堆体有机碳含量呈持续下降趋势,堆肥结束时堆体有机碳含量较开始时下降34.19%~55.54%;全氮含量呈先下降后上升趋势,较开始时增加28.07%~48.51%;堆肥后堆体有效磷和速效钾含量较开始分别增加8.77%~200.00%和66.14%~385.55%,其中9∶1(E)处理有效磷、速效钾含量增加幅度均最大。【结论】根据主成分分析综合排名结果及林业废弃物的资源化应用,建议优先选择猕猴桃枝条与猪粪质量比5∶5或9∶1的基础上添加微生物菌剂[(9∶1)E]这2种处堆肥配比处理进行推广。

Abstract

【Objective】This study aims to provide a basis for the rational disposal and resource utilization of forestry waste.【Method】The pruned Acinidia arguta (kiwifruit) branches (taken from an orchard in Jurong City, Jiangsu Province) and pig manure (taken from the local pig farm) were utilized as aerobic composting materials. Six groups of treatments were established based on the varying mass ratios of kiwifruit branches and pig manure, specifically 9∶1, 7∶3, 5∶5, 3∶7, 1∶9, and 9∶1 (E) (microbial inoculants were added to the 9∶1 ratio). The dynamic changes in nutrient content and evaluation of maturity were monitored through temperature, pH, electrical conductivity (EC), C/N, and seed germination index (GI) during composting.【Result】With the exception of the 9∶1 and 7∶3 treatments, which did not reach the high-temperature stage, all other treatments attained high temperatures (> 50 ℃) after two to four days of composting. The duration of the high-temperature stage exceeded seven days, particularly for the 9∶1 (E) treatment, which sustained high temperatures for more than ten days. The results also indicated that the GI values of all treatments, excluding the 9∶1 and 7∶3 treatments, exceed 50% and 80% for composting durations of 10 and 20 days, respectively. No significant changes were observed in pH and EC during composting for all treated piles. The pH values achieved the maturity standard on the 20th day of composting, while the electrical conductance (EC) values consistently met the maturity standard throughout the process. During composting, organic carbon contents exhibited a continuous downward trend across all treatments, while the total nitrogen contents initially decreased and then increased. After composting, the organic carbon content declined by 34.19% to 55.54%, whereas the total nitrogen content increased by 28.07% to 48.51% compared to the values at the beginning of composting. Following composting, the mass fraction of available phosphorus and available potassium content raised by 8.77% to 200.00% and 66.14% to 385.55%, respectively, with the 9∶1 (E) treatment demonstrating the highest percentage increases for both available phosphorus and available potassium.【Conclusion】Based on the comprehensive ranking results from principal component analysis and the resource utilization of forestry waste, the composting ratios of 5∶5 or 9∶1 (E) are recommended as priorities.

关键词

林业废弃物 / 猪粪 / 好氧堆肥 / 资源化利用 / 腐熟度

Key words

forestry waste / pig manure / aerobic composting / resource utilization / maturity

引用本文

导出引用
郑捷翔, 王艮梅, 刘亚柏, . 林业废弃物与猪粪堆肥过程中理化性质变化及腐熟度评价[J]. 南京林业大学学报(自然科学版). 2025, 49(4): 195-205 https://doi.org/10.12302/j.issn.1000-2006.202301008
ZHENG Jiexiang, WANG Genmei, LIU Yabai, et al. Changes of physicochemical properties and maturity evaluation during forestry waste and pig manure co-composting[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2025, 49(4): 195-205 https://doi.org/10.12302/j.issn.1000-2006.202301008
中图分类号: S133;S718   

参考文献

[1]
艾娟娟, 厚凌宇, 邵国栋, 等. 林业废弃物基质配方特性及其对柚木生长的影响[J]. 浙江农林大学学报, 2018, 35(6):1027-1037.
AI J J, HOU L Y, SHAO G D, et al. Matrix formula with forest waste and their effects on Tectona grandis growth[J]. Journal of Zhejiang A & F University, 2018, 35(6):1027-1037.DOI: 10.11833/j.issn.2095-0756.2018.06.005.
[2]
戴小红, 孙伟生, 樊权, 等. 农林废弃物混配基质的理化性质及其对油茶幼苗生长效应的综合评价[J]. 植物资源与环境学报, 2016, 25(1):54-61.
DAI X H, SUN W S, FAN Q, et al. Physicochemical property of mixed substrates with agricultural and forestry wastes and comprehensive evaluation of their effect on growth of Camellia oleifera seedlings[J]. Journal of Plant Resources and Environment, 2016, 25(1):54-61.DOI: 10.3969/j.issn.1674-7895.2016.01.07.
[3]
MOTT C M, HOFSTETTER R W, ANTONINKA A J. Post-harvest slash burning in coniferous forests in north America:a review of ecological impacts[J]. Forest Ecology and Management, 2021,493:119251.DOI: 10.1016/j.foreco.2021.119251.
[4]
田赟, 王海燕, 孙向阳, 等. 农林废弃物环保型基质再利用研究进展与展望[J]. 土壤通报, 2011, 42(2):497-502.
TIAN Y, WANG H Y, SUN X Y, et al. The progress and prospects of agricultural and forest residue substrate[J]. Chinese Journal of Soil Science, 2011, 42(2):497-502.DOI: 10.19336/j.cnki.trtb.2011.02.048.
[5]
徐鹏翔, 沈玉君, 丁京涛, 等. 规模化养猪场粪污全量收集及贮存工艺设计[J]. 农业工程学报, 2020, 36(9):255-262.
XU P X, SHEN Y J, DING J T, et al. Slurry manure collection and design of storage system on scaled pig farms[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9):255-262.DOI: 10.11975/j.issn.1002-6819.2020.09.029.
[6]
陈广银, 董金竹, 吴佩, 等. 不同贮存方式对猪粪水理化特性的影响[J]. 华南农业大学学报, 2022, 43(4):38-46.
CHEN G Y, DONG J Z, WU P, et al. Effect of different storage methods on physic-chemical properties of pig slurry[J]. Journal of South China Agricultural University, 2022, 43(4):38-46.DOI: 10.7671/j.issn.1001-411X.202109031.
[7]
ZHU N W. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw[J]. Bioresource Technology, 2007, 98(1):9-13.DOI: 10.1016/j.biortech.2005.12.003.
[8]
刘超, 徐谞, 顾文文, 等. 典型畜禽粪便配伍食用菌菌渣堆肥研究[J]. 中国农学通报, 2018, 34(21):84-90.
LIU C, XU X, GU W W, et al. Composting efficiency of typical animal manures amended with mushroom dregs[J]. Chinese Agricultural Science Bulletin, 2018, 34(21):84-90.
[9]
周文兵, 刘大会, 朱端卫. 不同调理剂对猪粪堆肥过程及其养分状况的影响[J]. 华中农业大学学报, 2004, 23(4):421-425.
ZHOU W B, LIU D H, ZHU D W. The effect of different conditions on composting process of pig feces and their nutrients status[J]. Journal of Huazhong Agricultural, 2004, 23(4):421-425.DOI: 10.13300/j.cnki.hnlkxb.2004.04.010.
[10]
张继宁, 吕凡, 邵立明, 等. 木炭对污泥堆肥有机质减量和腐熟度的影响[J]. 同济大学学报(自然科学版), 2014, 42(4):577-581.
ZHANG J N, LYU F, SHAO L M, et al. Impact of wood biochar on organics degradation and maturity of sewage sludge[J]. Journal of Tongji University (Natural Science), 2014, 42(4):577-581.DOI: 10.3969/j.issn.0253-374x.2014.04.013.
[11]
王义祥, 李波, 叶菁, 等. 生物炭添加对猪粪菌渣堆肥过程中Cu、Zn的钝化作用[J]. 农业环境科学学报, 2019, 38(5):1176-1184.
WANG Y X, LI B, YE J, et al. Passivating effect of biochar on heavy metals(Cu and Zn)during composting of pig manure and mushroom residues[J]. Journal of Agro-Environment Science, 2019, 38(5):1176-1184.DOI: 10.11654/jaes.2018-0952.
[12]
CHAN A K N, NG A K L, NG K K Y, et al. Cloning and characterization of two novel β-glucosidase genes encoding isoenzymes of the cellobiase complex from Cellulomonas biazotea[J]. Gene, 2018, 642:367-375.DOI: 10.1016/j.gene.2017.11.043.
[13]
李磊, 王淑琦, 郭小平, 等. 初始粒径和外源添加剂对绿化废弃物堆肥腐熟效果的影响[J]. 环境工程学报, 2020, 14(10):2804-2812.
LI L, WANG S Q, GUO X P, et al. Effects of initial particle size and exogenous additives on the maturity enhancement of green waste composting[J]. Chinese Journal of Environmental Engineering, 2020, 14(10):2804-2812.DOI: 10.12030/j.cjee.201911157.
[14]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
BAO S D. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000.
[15]
LUO W H, YUAN J, LUO Y M, et al. Effects of mixing and covering with mature compost on gaseous emissions during composting[J]. Chemosphere, 2014, 117:14-19.DOI: 10.1016/j.chemosphere.2014.05.043.
[16]
张雯琪, 李建安, 吴玲利, 等. 油茶低产林改造剩余物的发酵堆肥技术[J]. 经济林研究, 2022, 40(3):46-54.
ZHANG W Q, LI J A, WU L L, et al. Fermentation and composting technology of Camellia oleifera low-yield forest transformation residues[J]. Non-wood Forest Research, 2022, 40(3):46-54.DOI: 10.14067/j.cnki.1003-8981.2022.03.005.
[17]
商佳胤, 李凯, 王丹, 等. 不同湿度葡萄冬剪废弃物堆肥效果研究[J]. 中外葡萄与葡萄酒, 2021(5):55-59.
SHANG J Y, LI K, WANG D, et al. Study on composting effect of grape winter pruning waste with different humidity[J]. Sino-Overseas Grapevine & Wine, 2021(5):55-59.DOI: 10.13414/j.cnki.zwpp.2021.05.010.
[18]
谢胜禹, 余广炜, 潘兰佳, 等. 添加生物炭对猪粪好氧堆肥的影响[J]. 农业环境科学学报, 2019, 38(6):1365-1372.
XIE S Y, YU G W, PAN L J, et al. Influence of biochar on the aerobic compost of pig manure[J]. Journal of Agro-Environment Science, 2019, 38(6):1365-1372.DOI: 10.11654/jaes.2018-1320.
[19]
黄光群, 黄晶, 张阳, 等. 沼渣好氧堆肥种子发芽指数快速预测可行性分析[J]. 农业机械学报, 2016, 47(5):177-182.
HUANG G Q, HUANG J, ZHANG Y, et al. Feasibility analysis of rapid prediction of seed germination index during digestate aerobic composting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5):177-182.DOI: 10.6041/j.issn.1000-1298.2016.05.024.
[20]
AWASTHI M K, ZHANG Z Q, WANG Q, et al. New insight with the effects of biochar amendment on bacterial diversity as indicators of biomarkers support the thermophilic phase during sewage sludge composting[J]. Bioresource Technology, 2017, 238:589-601.DOI: 10.1016/j.biortech.2017.04.100.
[21]
柴晓利, 张华, 赵由才, 等. 固体废物堆肥原理与技术[M]. 北京: 化学工业出版社, 2005.
CHAI X L, ZHANG H, ZHAO Y C. Principle and technology of solid waste composting[M]. Beijing: Chemical Industry Press, 2005.
[22]
HELLMANN B, ZELLES L, PALOJARVI A, et al. Emission of climate-relevant trace gases and succession of microbial communities during open-windrow composting[J]. Applied and Environmental Microbiology, 1997, 63(3):1011-1018.DOI: 10.1128/aem.63.3.1011-1018.1997.
[23]
CHEN X M, LIU R, HAO J K, et al. Protein and carbohydrate drive microbial responses in diverse ways during different animal manures composting[J]. Bioresource Technology, 2019, 271:482-486.DOI: 10.1016/j.biortech.2018.09.096.
[24]
周江明, 王利通, 徐庆华, 等. 适宜猪粪与菌渣配比提高堆肥效率[J]. 农业工程学报, 2015, 31(7):201-207.
ZHOU J M, WANG L T, XU Q H, et al. Optimum ratio of pig manure to edible fungi residue improving quality of organic fertilizer by composting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7):201-207.DOI: 10.3969/j.issn.1002-6819.2015.07.029.
[25]
黄向东, 韩志英, 石德智, 等. 畜禽粪便堆肥过程中氮素的损失与控制[J]. 应用生态学报, 2010, 21(1):247-254.
HUANG X D, HAN Z Y, SHI D Z, et al. Nitrogen loss and its control during livestock manure composting[J]. Chinese Journal of Applied Ecology, 2010, 21(1):247-254.DOI: 10.13287/j.1001-9332.2010.0048.
[26]
MOHARANA P C, BISWAS D R. Assessment of maturity indices of rock phosphate enriched composts using variable crop residues[J]. Bioresource Technology, 2016, 222:1-13.DOI: 10.1016/j.biortech.2016.09.097.
[27]
王洁洁, 杨金艳, 陈步涨, 等. 优化好氧发酵木屑添加量提升污泥再利用潜力[J]. 浙江农林大学学报, 2022, 39(3):662-670.
WANG J J, YANG J Y, CHEN B Z, et al. Optimal addition of aerobic fermentation sawdust in landfill sludge reuse[J]. Journal of Zhejiang A & F University, 2022, 39(3):662-670.DOI: 10.11833/j.issn.2095-0756.20210335.
[28]
马利民, 陈玲, 吕彦, 等. 污泥土地利用对土壤中重金属形态的影响[J]. 生态环境, 2004, 13(2):151-153.
MA L M, CHEN L, LV Y, et al. Effects of sewage sludge application to land on species of heavy metals in soil[J]. Ecology and Environmental Sciences, 2004, 13(2):151-153.DOI: 10.16258/j.cnki.1674-5906.2004.02.001.
[29]
BRITO L M, COUTINHO J, SMITH S R. Methods to improve the composting process of the solid fraction of dairy cattle slurry[J]. Bioresource Technology, 2008, 99(18):8955-8960.DOI: 10.1016/j.biortech.2008.05.005.
[30]
杨婷, 钟全林, 李宝银, 等. 短期铵态氮与硝态氮配施对刨花楠幼苗生长及叶片性状的影响[J]. 应用生态学报, 2022, 33(1):25-32.
YANG T, ZHONG Q L, LI B Y, et al. Effects of short-term combined application of ammonium nitrogen and nitrate nitrogen on the growth and leaf traits of Machilus pauhoi seedlings[J]. Chinese Journal of Applied Ecology, 2022, 33(1):25-32.DOI: 10.13287/j.1001-9332.202201.026.
[31]
单德鑫, 李淑芹, 许景钢. 好氧堆肥对难溶性磷转化的影响[J]. 环境科学学报, 2009, 29(1):146-150.
SHAN D X, LI S Q, XU J G. Effects of aerobic composting on transformation of rock phosphate[J]. Acta Scientiae Circumstantiae, 2009, 29(1):146-150.DOI: 10.13671/j.hjkxxb.2009.01.007.
[32]
席北斗, 李英军, 刘鸿亮, 等. 温度对生活垃圾堆肥效率的影响[J]. 环境污染治理技术与设备, 2005, (7): 33-36.
XI B D, LI Y J, LIU H L, et al. Effect of temperature on composting efficiency of domestic waste[J]. Environmental Pollution Control Technology and Equipment, 2005, (7): 33-36. DOI: 10.3969/j.issn.1673-9108.2005.07.007.
[33]
冯海萍, 曲继松, 杨冬艳, 等. C/N比对枸杞枝条基质化发酵堆体腐熟效果的影响[J]. 新疆农业科学, 2014, 51(6):1112-1118.
FENG H P, QU J S, YANG D Y, et al. Effects of C/N ratio on nutrient changes and maturity index of wolfberry branches fermentation for substrate production[J]. Xinjiang Agricultural Sciences, 2014, 51(6):1112-1118.DOI: 10.6048/j.issn.1001-4330.2014.06.019.
[34]
赵啸林, 刘朝斌, 耿增超, 等. 菌剂和辅料对核桃青皮堆肥进程及腐熟度的影响[J]. 西北林学院学报, 2023, 38(2):153-159,216.
ZHAO X L, LIU C B, GENG Z C, et al. Effects of bacterial agents and excipients on composting process and maturity of walnut green peel[J]. Journal of Northwest Forestry University, 2023, 38(2):153-159,216.DOI: 10.3969/j.issn.1001-7461.2023.02.21.
[35]
秦莉, 沈玉君, 李国学, 等. 不同C/N比对堆肥腐熟度和含氮气体排放变化的影响[J]. 农业环境科学学报, 2009, 28(12):2668-2673.
QIN L, SHEN Y J, LI G X, et al. The impact of composting with different C/N on maturity variation and emission of gas concluding N[J]. Journal of Agro-Environment Science, 2009, 28(12):2668-2673.DOI: 10.3321/j.issn:1672-2043.2009.12.036.
[36]
丁晓艳, 王越, 王宁, 等. 外接堆肥微生物在餐厨废弃物好氧堆肥中的应用[J]. 生物技术通报, 2022, 38(5):47-55.
DING X Y, WANG Y, WANG N, et al. Application of exogenous microbial inoculum in the composting of kitchen waste[J]. Biotechnology Bulletin, 2022, 38(5):47-55.DOI: 10.13560/j.cnki.biotech.bull.1985.2022-0137.
[37]
徐宏强, 沈加禾, 张焕朝, 等. 银杏残叶添加比例对猪粪好氧堆肥的影响[J]. 南京林业大学学报(自然科学版), 2016, 40(1):39-43.
XU H Q, SHEN J H, ZHANG H C, et al. Aerobic composting of pig manure amended with different ratios of Ginkgo leave residues[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(1):39-43.DOI: 10.3969/j.issn.1000-2006.2016.01.007.

基金

江苏省林业科技创新与示范推广项目(LKKJ[2020]11)
江苏省社会发展面上项目(BE2020781)

编辑: 孟苗婧
PDF(1661 KB)

Accesses

Citation

Detail

段落导航
相关文章

/